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Fig. 1: One of 10000 most parsimonious trees. Number of nucleotide changes are
shown above and bootstrap support percentages below the branches. Branches not
present in the strict consensus tree are indicated by arrows. CH=Chloanthoideae,
LA=Lamioideae, PO=Pogestemonoideae, VI=Viticoideaec, TE/AJ=Ajugoideae,
NE=Nepetoideae.
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Fig. 1: Average viability (%) (s.e.) (a) and weight (mg) (£s.e.) of 10 seeds (b) of 4
individuals in 4 populations representing two genetic provenances of Hemigenia exilis
(E1 and E2 are southern provenance, C1 and C2 are northern provenance (Chapter 2).

Experiment 2: Establishing optimal conditions for germination (temperature, GA,,
nicking)

Temperature (p<0.01), GA, (p<0.01) and the interaction of temperature x GA, (p<0.01)
showed significant effects on germination. The highest germination of 41% was
achieved under a low temperature / high GA, regime (15°C / 30uM GA,;) (Fig 2.1a).
The dormancy breaking effect of GA, was expressed to a greater degree at lower
temperatures (Fig. 2.1a-d). Germination of intact seed without GA,; reaches as
maximum of 31% after 34 weeks at 25°C and was similar to nicked seed at that
temperature (Fig. 2.1c). Nicking of the seed coat increased germination significantly
(p<0.001), especially at the lower temperatures (Fig. 2.1a, b). At 25°C and 30°C,
germination of both intact and nicked seed was similar (30% and 20% respectively)
(Fig. 2.1c,d). Dissection of the non-germinated seed showed that more than 90%
contained white plump endosperm, indicating that low viability was not the reason for

lack of germination.
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Fig. 2.1: Germination response (%) of Hemigenia exilis tested under 4 temperature
regimes and 5 GA; concentrations (UM). The LSD bar applies to all 4 graphs. '

Once the radicle started protruding, radicle elongation and unfolding of the cotyledons

was accomplished within 4 days (Fig. 2.2)

Fig. 2.2: Germination of intact seed of Hemigenia exilis, illustrating the gradual
protrusion and subsequent elongation of the radicle, and unfolding of cotyledons.
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Experiment 2: Soil seed bank study

The only perennial germinants observed during the 10-month period were H. exilis.
Most of the germination occurred in the first 15 weeks, that is during winter (Fig. 4).
More H. exilis seedlings emerged in the 1-year old soil (up to 101 seeds m on average)
than in the fresh soil (up to 15 seeds m? on average) (P=0.044). The number of
seedlings was higher in samples collected within the canopy of the mother plant than at
distance (P=0.005). Unlike in the soil burial experiment, addition of GA, did not

increase germination of H. exilis (P=0.85).

Germination of annuals was higher in the fresh soil than in the 1-year old soil
(P=0.035), and more germinants were recorded in soil samples closer to a H. exilis
shrub (P=0.004). Annuals included species belonging to the Asteraceae (Angianthus,
Cephalipterum, Mpyriocephalum, Podotheca, Waitzia), Portulacaceae (Calandrinia
polyandra), Chenopodiaceae (Dysphania), Amaranthaceae (Ptilotus) and Poaceae.

Addition of GA; had no effect on germination of annuals (P=0.33).
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Fig. 4: Germination (seedling m™>ts.e.) of Hemigenia exilis in fresh (a) and 1 year old
soil (b), and annuals in fresh (c) and stored (d) soil in response to distance from a
mother plant and GA; (note different scales on y-axes)

71













































Xylem Potential (MPa)
#
*|

=
=
=
=
;;
o

C.
= = !
] i
o
£ 10 4 .
©
£ s i
<
0 Ui S I==51 I ' S | e | I = T 1 T
100 €

—t—
o ]

A (nmol g1 s°1)
o & 8 &
1 1 1

gS (mmol m2 s-1)

M
==L T [} il T =g e === I = [} T2 = e ==

200 - [ [

100

0 ' L ,

(pE=iow e (== o=t == = = i e | [y o=

¥ i 1 i 1

winter

300 Jfy _I_ - . summer

200 - ‘ d

ci (pmol mol-1)

100 - d

. | e e T L (oo i U 3 I i |. - l.
egaabaan aq ec el es hp he ss sc po sl trees  longlived shortlived
species lifeform

Fig. 1: Xylem potential (a), specific leaf area (b), area-based photosynthesis (c), mass-
based photosynthesis (d), stomatal conductance (e) and intercellular CO, concentration
of 13 species (left column) and their respective life forms (trees, long-lived and short-
lived shrubs) (right column) growing in the Northeast Goldfields of Western Australia
in winter (white) and summer (shaded). Bars represent standard errors. See Table 1 for
details of species.
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The substrates varied significantly in several chemical soil properties (Fig. 3). Amounts
of Ni in FZ material were similar to those found in the native habitat, and were 4 times
higher than in the mix and 10 times higher than in the topsoil (Fig. 3a). Trends were
similar with regard to Co and K (Fig. 3b and e). Although FZ contained only 1/2, 1/3 to
1/10 of the amounts of nitrate and ammonium compared to the mix and topsoil, these
differences were not significant (Fig. 3c). In contrast, FZ contained significantly less
reactive Fe (Fig. 3g) and organic carbon (Fig. 3h). Conductivity was lower in the FZ
and mix, and 3 times higher in the topsoil (Fig. 3i). The pH of the FZ was neutral to
slightly alkaline, whereas in the mix and topsoil, it was slightly acidic. Despite the
significant differences in several chemical characteristics between substrates, survival

and plant growth were not affected by these properties (P>0.05).
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Fig. 3: Chemical soil analysis of the 3 substrates on the waste rock dump (waste, mix
and topsoil) and soil in the native habitat (nat) (£s.e.).
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