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Editorial

Chronic Kidney Disease (CKD) has now become 
of major concern [1-5] to various global health 
diseases such as cardiovascular disease, diabetes 
[6,7] and neurodegenerative diseases [8]. In the 
developed and developing world the high cost 
of kidney treatment may reach 40-70 billion 
dollars. In the developing world mitochondrial 
apoptosis in CKD has become important with 
relevance to acute kidney injury that may lead to 
end stage renal disease. Interests in environmental 
factors that may induce mitochondrial apoptosis 
and kidney disease [9,10] has accelerated with 
the discovery of the heat shock gene Sirtuin 1 
(Sirt 1) that is connected to heat shock proteins 
(HSP), mitophagy and programmed cell death 
(FIGURE 1) [11]. The nuclear receptor Sirt 1 
and HSP play a major role in the maintenance of 
kidney health and disease with Sirt 1 repression 
and HSP critical to maintain kidney cell survival 
[12-17].

Sirt 1 is connected to core body temperature, 
autoimmune and mitochondrial disease 
[11,18,19] with Sirt 1 repression connected to 
the control of the adaptive immunity and linked 
to acute kidney injury. Core body temperature 
disturbances inactivate the heat shock gene 
Sirt 1 with acceleration of protein aggregation 
that involve the HSP and amyloid beta [11] 
and linked to acute kidney injury. The kidney 
is important in the clearance of amyloid beta 
[20,21] and HSP is important to kidney amyloid 
beta clearance and formation of amyloid beta 
oligomers that are associated with kidney 
and Alzheimer’ disease [11,22-24]. Sirt 1 and 
autoimmune disease of the kidney [12,13,22-24] 
are now intertwined and involve dysregulation 
of immunogenic HSP and amyloid beta proteins 
with primary defect in mitochondrial apoptosis 
[11].

In the developing world the global chronic 
disease epidemic has major implications with 

Figure 1: In the developing world mitochondrial apoptosis and chronic kidney disease (CKD) have become 
of major concern. Protein aggregation and a defective immune response is connected to mitophagy and kidney 
disease. Developing world individuals and core body temperature changes are linked to protein aggregation and 
autoimmune disease in CKD (heat shock protein) with relevance to Alzheimer’s disease (amyloid beta).
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relevance to Sirt 1 gene inactivation and CKD. 
Repressors of Sirt 1 [25] such as gram negative 
bacterial lipopolysaccharides (LPS) should be 
measured in the plasma to avoid CKD in the 
developing world [26-28]. Xenobiotics and the 
developing world are closely associated [29] 
and CKD will present elevated xenobiotics 
that enter the brain and associated with Sirt 1 
inactivation and neuron apoptosis with relevance 
to Alzheimer’s disease and neurodegenerative 
diseases. Developing world individuals that 
contain Sirt 1 inhibitors such as LPS/xenobiotics 
may be referred to as environment sensitive 
individuals to core body temperature changes 
with accelerated HSP-amyloid beta aggregation 
that induces acute kidney disease with chronic 
renal failure. Gram negative bacterial amyloid 
peptide [30] may further interfere with HSP-
amyloid beta aggregation [11] with acceleration 
of kidney associated amyloidosis and 
mitochondrial apoptosis.

Genomic medicine [31,32] is now critical to 
the treatment of mitophagy in CKD without 
genomic medicine treatment in nephrology the 
kidney is the major concern in the global chronic 
disease epidemic. In the developing world various 
nutrients [11] need to be consumed to prevent 
uncontrolled protein aggregation that lead to 
kidney damage. In developing world individuals 
the pathway for immunogenic HSP-amyloid 
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beta pathway is defective [11] and linked to 
autoimmune disease, mitophagy and CKD. 
Diabetics and CKD is now of major concern 
for Alzheimer’s disease with Sirt 1 now closely 
linked to neurodegeneration and longevity [33] 
in developing world individuals. Appetite control 
may be critical to prevent autoimmune disease 
[18] with the kidney the most sensitive organ to 
undergo accelerated autoimmune disease in the 
global chronic disease epidemic.

Conclusion

Environmental factors have become of major 
concern to mitophagy and kidney disease in 
individuals from the developing world. Heat 
shock gene Sirt 1 inactivation leads to protein 
aggregation and chronic kidney disease. Food 
consumption in the developing world is of major 
interest to reverse and stabilize uncontrolled 
protein aggregation and maintain Sirt 1 
activation to prevent kidney cell apoptosis in 
these populations. 
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