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ABSTRACT
We present a new scheme, GALTAG, for refining the photometric redshift measurements of
faint galaxies by probabilistically tagging them to observed galaxy groups constructed from a
brighter, magnitude-limited spectroscopy survey. First, this method is tested on the DESI light-
cone data constructed on the GALFORM galaxy formation model to tests its validity. We then
apply it to the photometric observations of galaxies in the Kilo-Degree Imaging Survey (KiDS)
over a 1 deg2 region centred at 15h. This region contains Galaxy and Mass Assembly (GAMA)
deep spectroscopic observations (i band < 22) and an accompanying group catalogue to r band
< 19.8. We demonstrate that even with some trade-off in sample size, an order of magnitude
improvement on the accuracy of photometric redshifts is achievable when using GALTAG.
This approach provides both refined photometric redshift measurements and group richness
enhancement. In combination these products will hugely improve the scientific potential of
both photometric and spectroscopic data sets. The GALTAG software will be made publicly
available at https://github.com/pkaf/galtag.git.
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1 INTRODUCTION

Fundamental to many core aspects of galaxy evolution science is the
precise and accurate measurement of the distances to galaxies using
redshifts. There are two largely distinct methods for obtaining these
redshifts, either using spectroscopically identified emission and ab-
sorption line features (spectroscopic redshift, zs) or via observed
broad-band colours matched to a library of spectral templates tar-
geting the large-scale continuum shape (photometric redshift, zp).
Due to the nature of spectroscopic observations, the former is more
precise, but much more observationally costly than the latter. Thus,
photometric redshifts can sample orders of magnitude more galax-
ies for a similar investment of telescope time, but to a lower fidelity.
The trade-off between sample size and precision, when measuring
galaxy redshifts, is largely decided based on the specific scientific
question being posed (i.e large sample size photometric redshifts
for cosmology versus small sample high precision spectroscopic
redshifts for group and pair science). However, over the last decade
there have been vast improvements in the precision of our pho-
tometric redshifts based on improved templates, deep and larger
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are imaging surveys and improvements to photometry fitting algo-
rithms. This has led to photometric redshifts becoming big business
in the field of galaxy formation and evolution, (e.g. Budavári 2009;
Carliles et al. 2010; Budavári 2012; Dahlen et al. 2013; Graham
et al. 2017, etc.), with survey teams pursuing ever more sophisti-
cated approaches to increase the precision of redshift measurements
derived from photometry alone.

The different approaches of zp measurement can be broadly clas-
sified into four categories, which we discuss below

(i) spectral energy distributions (SED)/template fitting technique,
(ii) machine learning approach using training and test data,
(iii) moment-based clustering, and
(iv) inference from cosmic web constraints.

Thus far, the most commonly used technique in zp estimation is
the template fitting methods. In this method given a library of ref-
erence galaxy spectra one fits the observed broad-band photometry
of a galaxy to find the best-fitting reference spectra to solve for
the redshift. The completeness of the template and the imperfect
observed fluxes due to biases such as disparate zero-point errors in
different photometric bands or underestimated errors limits the use
of this method. An advantage of this method is that it provides fully
probabilistic treatment to the redshift measurement, allowing to
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impose priors over the different types, that can further be a func-
tion of redshift, of galaxies (Baum 1962; Loh & Spillar 1986;
Connolly et al. 1995; Brunner et al. 1997; Benı́tez 2000; Bol-
zonella, Miralles & Pelló 2000; Furusawa et al. 2000; Fontana
et al. 2000; Le Borgne & Rocca-Volmerange 2002; Brammer,
van Dokkum & Coppi 2008; Ilbert et al. 2009; Hildebrandt
et al. 2012; Laigle et al. 2016) etc. are some e.g. of this
category.

In the machine learning approach, first, an empirical model re-
lating galaxy fluxes with redshifts is constructed over the training
(trustworthy) data for which the exact redshift is already known.
The trained (predictive) model is then run to predict the redshift
of the remaining galaxies (target data). With the ever increasing
efficiency of computers, as well as due to the surge of the spec-
troscopic spectra from different observational campaigns boosting
the sample size of the training data, the machine learning approach
has gained more popularity recently. An advantage of this method
is that during the training phase the model learns the complicated
relationships within the observables (e.g. fluxes as a function of
redshift which is further a function of galaxy types and so on)
that is naturally propagated to the final redshift estimation (Firth,
Lahav & Somerville 2003; Budavári 2009; Wolf 2009; Bonfield
et al. 2010; Sadeh, Abdalla & Lahav 2016; Bilicki et al. 2017;
Cavuoti et al. 2017; Leistedt & Hogg 2017) etc are some e.g. of this
category.

In the moment-based clustering approach, the position of galaxies
in physical space and their proximity to large-scale structures of the
cosmic web are utilized to constrain the redshifts of galaxies. The
applicability of this approach has been limited due to lack of enough
overlap between appropriate zs samples and photometric ones, but
where there is overlap it is found to yield good constraint on zp

(Hildebrandt et al. 2017; Morrison et al. 2017). This approach is
not a stand-alone technique to measure zp, but more of the ancillary
approach to calibrate redshift distribution or to further refine the
already measured redshifts. (Matthews & Newman 2010; Rahman
et al. 2016; Morrison et al. 2017) etc are a few e.g. of this category.

The last category uses the distribution of the large-scale structure
of the cosmic web to directly inform the plausible radial posi-
tions of galaxies with photometric redshifts (see Kovač et al. 2010;
Aragon-Calvo et al. 2015). Of the four techniques discussed here,
this family of methods offers the most dramatic refinement pos-
sibilities, although it is also the most expensive in terms of data
requirements. The method we propose in this paper broadly falls
into this category, where we will refine the pre-measured zp using
out prior knowledge of the galaxy group distribution rather than the
more diffuse cosmic web.

In this paper, we describe a complete implementation of photo-
metric redshift refinement method and present the results of apply-
ing the technique to realistic mock catalogues as well as observed
data as a proof of concept. Throughout the paper, we assume a
flat lambda cold dark matter (�CDM) cosmology with �m = 0.3,
�� = 0.7, and Hubble parameter H0 = 100 h km s−1 Mpc−1, where
we have assumed h = 1. This paper is organized as follows. In Sec-
tion 2, we describe the GAMA (Galaxy and Mass Assembly) and
KiDS (Kilo Degree Survey) observational data as well as the DESI
mock catalogue that are used to test our method. In Section 3,
we outline the halo based prior that is essentially adopted from the
MAGGIE (Models and Algorithms for Galaxy Groups, Interlopers and
Environment, Duarte & Mamon 2015), and the redshift refinement
method. In Section 4, we show the method in-action. Finally, we
discuss and summarize our work and provide future prospects in
Section 5.

2 DATA

A minimal data set that is required for our redshift refinement
scheme is:

(i) a galaxy group catalogue constructed on some apparent mag-
nitude limited galaxy redshift survey and

(ii) a galaxy catalogue, fainter than the group catalogue but cover-
ing the same area of sky and with photometric redshift measurement
which we wish to refine.

To begin with we construct two independent sets of data ob-
tained from disparate sources, (i) a set of observational data includes
galaxy catalogue with photometric observations from the KiDS sur-
vey (r > 19.8 mag) and group catalogue from the GAMA survey
(r < 19.8 mag) that share identical sky coverage, and (ii) a set of
theoretical data form the DESI mock catalogue light-cones derived
from the GALFORM galaxy formation model. The former forms our
test sample to demonstrate the validity of our methods. To match
the magnitude limit of the observational data, we also divide the
DESI catalogue into two parts separated at an apparent magnitude
limit on r = 19.8 mag, identical to that of the GAMA survey.

Below, we provide more details about these data, as well as of
the derived quantities.

2.1 Galaxy and Mass Assembly (GAMA) survey

The GAMA survey is a spectroscopic and multiwavelength survey
of ∼300 000 galaxies down to Petrosian r-band magnitude mr =
19.8 over ∼286 deg2 with high- spatial completeness carried out
on the Anglo-Australian Telescope (Driver et al. 2011; Liske et al.
2015). Details of the GAMA survey characteristics are given in
Driver et al. (2011), with the survey input catalogue described in
Baldry et al. (2010), the spectroscopic processing outlined in Hop-
kins et al. (2013), and the spectroscopic tiling algorithm explained
in Robotham et al. (2010), while the group catalogue is provided in
Robotham et al. (2011). The group catalogue is constructed using
an adaptive Friends-of-Friends (FoF) algorithm, linking galaxies in
projected and line-of-sight separations. For the full details about the
algorithm, diagnostic tests, construction, and caveats of the group
catalogue we refer the reader to Robotham et al. (2011). As such we
only use the galaxy group data from the northern equatorial region of
the GAMA survey field centred at 15h, i.e. 218.5◦ < RA < 219.5◦

and −1.09◦ < Dec. < 0.0◦ and refer to it as the G15SQRDEG region. In
the G15SQRDEG region we have 1712 galaxies with r < 19.8 mag of
which ∼55 per cent galaxies are present in 236 galaxy groups with
richness ≥2, whereas remaining galaxies are singleton i.e. with no
observed satellites within the magnitude depth of the survey. We
describe the relevant properties of the group galaxies in Section 2.4.

The 1 deg2 field centred at G15 region aka G15SQRDEG is selected
mainly because in this region we have galaxies spectra out to a
deeper magnitude limit in i band mi = 22 mag than the formal limit
of the GAMA survey, providing us with spectroscopic redshifts to
compare against our refined photometric redshift and to establish
the robustness of our method. For simplicity, we refer this set of
data as a G15SQRDEG-DEEP spectroscopic data.

Spectroscopic observations of the G15SQRDEG-DEEP region were
undertaken using the AAT AA OMEGA+2DF system in 2014 July–Sept.
Targets were selected to i < 22 (r < 24) mag and assigned to fibres
using a nightly feedback method, where initially sources were tiled
as described in Robotham et al. (2010). Pointings were observed for
40 min intervals. Following each pointing spectra were automati-
cally reduced using 2DFDR and assigned redshifts and confidences
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Figure 1. Galaxy and group samples. Left: position of KiDS galaxies in
G15SQRDEG region (blue region) and overlapping galaxy groups (represented
by the positions of the central galaxies) from the GAMA group catalogue
(red dots) in the entire G15 region shown in the equatorial coordinates.
Right: zoomed-in version of the left-hand panel at G15SQRDEG region. RA
and Dec. are equatorial angles in degrees.

using AUTOZ (Baldry et al. 2014). Sources with secure redshifts
were removed from the target list and those without redshifts were
re-observed. Once multiple observations of the same source were
acquired, they were signal to noise weighted stacked prior to red-
shifting. This process was repeated to allow variable integration
times depending on the ability to obtain a redshift for a particu-
lar source. Once completed, all sources were visually inspected and
redshifts adjusted accordingly. The catalogue contains 3241 targeted
sources of which 2289 have a secure redshift (VIS CLASS==‘Y’).

2.2 Kilo-Degree Survey (KiDS)

In the G15SQRDEG-DEEP region, we constructed a photometric cata-
logue of fainter galaxies with r > 19.8 mag obtained from the Kilo-
Degree Survey (KiDS, Kuijken et al. 2015). KiDS is an optical wide-
field imaging survey carried out with the VLT Survey Telescope and
the OmegaCAM camera. To obtain the photometric measurements
of G15SQRDEG-DEEP galaxies we undertook following steps. First, in
the image cut-out centred at the G15SQRDEG-DEEP region we fixed
the apertures manually and then measured the photometry using the
Lambda Adaptive Multi Band Deblending Algorithm in R (LAMB-
DAR) software (Wright et al. 2016). LAMBDAR requires at least the
image from which one wants photometry measurements and also
a corresponding catalogue of aperture parameters. Then it places
the apertures over the image and measures the flux within them.
Also, it performs deblending for those apertures which intersect
with each other and provides the sky background noise to subtract
from the galaxies. It then estimates noise correlation, calculate flux
accounting for local backgrounds. Finally, we get fluxes and flux
uncertainties over the four optical u, g, r, and i bands observation
from the KiDS and five near-infrared Z, J, H, Ks, and Y bands from
VISTA Kilo-Degree Infrared Galaxy Survey (VIKING; Edge et al.
2013).

The complete G15SQRDEG-DEEP photometric catalogue consists
of 164 581 galaxies; removing those with incomplete photometric
measurements and with i > 22 mag (to match the magnitude limit
of the spectroscopic sample) results in a final sample of 59 134
galaxies. The left-hand panel of Fig. 1 shows the entire G15 region
of the GAMA survey, where the red dots represent the group central
and singleton galaxies, whereas the blue mask depict the G15SQRDEG

region. The right-hand panel is the zoomed in version of the left-
hand panel centred at G15SQRDEG region, where blue dots show
galaxies in G15SQRDEG-DEEP photometric catalogue. Next, we use

the derived photometry measurements of this sample to estimate
their photometric redshift.

2.2.1 Photometric-redshift measurement

In this work, we mainly rely on the machine learning approach
of ANNz2 (Sadeh et al. 2016) to derive photometric redshifts.
ANNz2 is a new implementation of the code of Collister & La-
hav (2004), which utilizes methods such as ANN and boosted de-
cision/regression tree, and is freely available software package. To
recap, the algorithm uses machine learning methods to learn the re-
lation between photometry and redshift from an appropriate training
set of galaxies for which the redshift is already known. The trained
model is then used to predict the photometric redshift of the galaxies
for which spectroscopic measurements are lacking.

The data we use here to train the ANNz2 networks and gen-
erate a catalogue of photometric redshifts consists of galaxies in
G15SQRDEG-DEEP region, a subset for which spectroscopic redshifts
have been determined (described in Section 2.1). This catalogue
consists of 3241 galaxies with i < 22 mag, out of which 2289
galaxies have a high quality spectroscopic redshift measurement.
Matching these galaxies up to their corresponding entries in the
G15SQRDEG-DEEP photometric catalogue provide us with photomet-
ric measurements in the u, g, r, i, Z, Y, J, H, and Ks bands for most
galaxies. Removing those with missing or incomplete photometric
measurements leaves us with 2188 galaxies, this being the final
sample used in the training and validation runs of ANNz2. Half
of these galaxies are randomly selected for training with the other
half used for validation. Finally, we apply the trained ANNz2 net-
works to the G15SQRDEG-DEEP photometric catalogue to determine
their photometric redshifts.

Methods

ANNz2 employs two different approaches which can be selected
by the user, namely, artificial neural networks (ANN) or boosted
decision trees (BDT). Both approaches consist of a training phase
where the networks are trained on data with known spectroscopic
redshifts, a validation phase and an evaluation phase where the
resulting trained networks are applied to a new photometric data
set where the redshifts are unknown. In this section, we apply both
methods and determine which provides the most consistent results
for our data set. In both cases we used 50 iterations in the training
phase, as additional iterations resulted in limited improvements and
increased the risk of biases introduced from overtraining, given our
limited training sample.

The ANN approach uses at least three layers of nodes, the input
layer (consisting of the same number of nodes as the number of
input variables), at least one hidden layer and a final node which
outputs the calculated photometric redshift. In each instance of the
training run, the number of hidden layers and the number of nodes
in each hidden layer are randomly set, along with weightings in
the various connections between nodes in neighbouring layers. The
PDF of the galaxy’s redshift is determined from the distribution of
the weighted photometric redshift estimates from the ensemble of
trained networks.

In contrast, the BDT approach takes the input through an initial
root node and passes it through branching linkages of internal nodes
before arriving at a final output node, or ‘leaf’. Similarly to the ANN
approach, each BDT training run initializes a new tree with different
weightings of the input data. This results in a ‘forest’ of decision
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