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Abstract 

Three-dimensional (3D) direct numerical simulation (DNS) results of flow past a 

circular cylinder are influenced by numerical aspects, e.g. the spanwise domain length 

and the lateral boundary condition adopted for the simulation. It is found that 

inappropriate numerical setup which restricts the development of intrinsic wake 

structure leads to an over-prediction of the onset point of the secondary wake 

instability (Recr). A best practice of the numerical setup is presented for the accurate 

prediction of Recr by DNS while minimizing the computational cost. The cylinder 

span length should be chosen based on the intrinsic wavelength of the wake structure 

to be simulated, whereas a long span length is not necessary. For the wake transitions 

above Recr, since the wake structures no longer follow particular wavelengths but 

become disordered and chaotic, a span length of more than 10 cylinder diameters 

(approximately three times the intrinsic wavelength) is recommended for the 

simulations to obtain wake structures and hydrodynamic forces that are not strongly 

restricted by the numerical setup. The performances of the periodic and symmetry 

lateral boundary conditions are compared and discussed. The symmetry boundary 

condition is recommended for predicting Recr, while the periodic boundary condition 

is recommended for simulating the wake structures above Recr. The general 

conclusions drawn through a circular cylinder are expected to be applicable to other 

bluff body configurations. 
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1. Introduction 

Steady incoming flow past a long bluff body or a set of bluff bodies at relatively 

low Reynolds numbers (Re) has been studied extensively with numerical approaches 

such as direct numerical simulation (DNS) and large eddy simulation (LES). As a 

classical case, flow past a circular cylinder is governed by a single dimensionless 

parameter Re (= UD/ν), defined based on the approaching flow velocity U, the 

cylinder diameter D and the kinematic viscosity of the fluid ν. For bluff bodies with 

different cross-sectional shapes or multiple bluff bodies, the geometric configuration 

of the bodies also influences the flow. For simplicity, the present study focuses on 

flow past a circular cylinder. The general conclusions drawn through a circular 

cylinder, however, are expected to be applicable to other bluff body configurations. 

The major focuses of previous studies on flow past a circular cylinder at 

relatively low Re values were on wake transition to three-dimensional (3D) 

instabilities and corresponding wake structures in different flow regimes. It is 

well-known that the flow undergoes a transition to the secondary wake instability 

when Re reaches to a moderate threshold of Recr ~ 190 (e.g. Williamson, 1996; 

Barkley and Henderson, 1996). The first 3D instability mode is represented by an 

ordered Mode A vortex structure (before the natural evolvement of vortex dislocations) 

which has a spanwise wavelength λA of 3.96 at Recr and reduces slightly with increase 

of Re (Williamson, 1996; Barkley and Henderson, 1996). For Re ranging from 230 to 

250, the wake transitions gradually to Mode B, with a spanwise wavelength λB of ~ 

0.82 (Williamson, 1996). In order to resolve the 3D flow structures for Re > Recr, the 

numerical simulation is extended to 3D, which requires the selection of appropriate 

spanwise domain length Lz and boundary conditions at the two lateral boundaries 

perpendicular to the cylinder span. For simplicity, Lz, λA and λB in this paper are all 

normalized with the cylinder diameter. 
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It is important to note that λA and λB denote the most unstable spanwise 

wavelengths of Mode A and Mode B, respectively. They are intrinsic properties of the 

flow and are usually obtained from experiments or linear stability analysis. However, 

in typical 3D DNS, if Lz is not specified as an integer multiple of the most unstable 

spanwise wavelength, the simulated wavelength may be dependent on the choice of Lz. 

In order to distinguish it from the most unstable wavelength, the simulated 

wavelength will be denoted as λ (which is also normalized with the cylinder 

diameter). 

The influence of Lz on the convergence of 3D numerical results of flow past a 

circular cylinder has been studied extensively in the literature. The 3D DNS study 

based on a spectral element method (SEM) by Gioria et al. (2011) with Re = 400 and 

Lz = 0 – 12 observed the emergence of flow three-dimensionality at Lz ~ 0.35 and a 

converged 3D flow for Lz ≥ 6. Based on a finite difference method (FDM) approach, 

Lei et al. (2001) performed 3D DNS at Re = 1000 with Lz ranging from 0 to 6, and 

found that the force coefficients and pressure around the cylinder generally converged 

at Lz ≥ 2. Labbé and Wilson (2007) performed LES with Re = 40 – 1000 and Lz = 0.5π, 

π, and 2π, and observed increased numbers of Mode A vortex pairs at Re of 200 and 

225 with increase of Lz. They also suggested a minimum Lz of 4 for Re ≤ 300 and a 

minimum Lz of between 0.5π and 1.0π for higher Re values in order to accurately 

predict the force coefficients and 3D wake structures. Karniadakis and Triantafyllou 

(1992) performed 3D DNS based on a SEM approach at Re = 225 and 300, and 

observed similar power spectra and flow patterns for Lz of π and 2π. The DNS based 

on SEM by Posdziech and Grundmann (2001) found that the Strouhal number and 

base pressure coefficient at Re = 280 converged and matched independent 

experimental results at Lz = 2λA (= 6.74). 

The influence of Lz on the development of vortex dislocation has also been 

studied in the literature. Extensive experimental studies have shown that the ordered 

Mode A vortex structure will evolve spontaneously into a more stable pattern with 

large-scale vortex dislocations (e.g. Williamson, 1992, 1996). This phenomenon has 

also been confirmed through numerical studies based on different mathematical 
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formulations (e.g. Henderson, 1997; Braza et al., 2001; Behara and Mittal, 2010). In a 

SEM based DNS study by Henderson (1997), time-periodic Mode A was observed at 

Re of 190 and 195 when Lz was restricted to 3.96 (~ λA), whereas spatiotemporal 

chaotic wake structures were observed at Re of 220 when Lz was extended to 14.78 (~ 

4λA). Similarly, at Re = 265, time-periodic Mode B was observed when Lz = 0.822 (~ 

λB), whereas a chaotic mixture of Modes A and B was observed when Lz = 13.152 (~ 

16λB). In a finite volume method (FVM) based DNS study by Persillon and Braza 

(1998), vortex dislocation was not observed due to the use of a small Lz of 2.25. In a 

follow-up study by Braza et al. (2001), a much larger Lz of 12 was used, and 

large-scale vortex dislocations were observed at Re = 220. Based on a finite element 

method (FEM) approach, the DNS by Behara and Mittal (2010) also observed vortex 

dislocations at Re of 200 and 220 with a relatively large Lz of 10. In general, the above 

studies showed that vortex dislocations can be observed under relatively large Lz but 

are suppressed by short Lz of about the wavelength of the wake structure. However, 

the shortest Lz that can be adopted for relatively Lz-independent simulations involving 

vortex dislocations has not been addressed. 

On the other hand, less attention has been paid to the influence of the choice of 

the lateral boundary conditions (BCs) on the prediction of the flow characteristics 

including the Recr, spanwise wavelength, and wake structure. In fact, the prediction of 

flow characteristics is dependent on both the Lz value and the lateral BC. 

Two kinds of BCs are usually adopted at the lateral boundaries to approximate an 

infinite span length in numerical studies, i.e. the periodic lateral BC (adopted by, e.g., 

Karniadakis and Triantafyllou, 1992; Henderson, 1997; Braza et al., 2001; Lei et al., 

2001; Posdziech and Grundmann, 2001; Zhao et al., 2013) and the symmetry lateral 

BC (adopted by, e.g., Labbé and Wilson, 2007; Behara and Mittal, 2010; Tong et al., 

2014). The periodic BC imposes a spanwise periodicity of Lz on the flow through the 

linkage between the two lateral boundaries: 

ui(x, y, z = 0, t) = ui(x, y, z = Lz, t) (1.1) 

∂ui/∂z(x, y, z = 0, t) = ∂ui/∂z(x, y, z = Lz, t) (1.2) 

p(x, y, z = 0, t) = p(x, y, z = Lz, t) (1.3) 
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∂p/∂z(x, y, z = 0, t) = ∂p/∂z(x, y, z = Lz, t) (1.4) 

where (x, y, z) are Cartesian coordinates (see Fig. 1), ui is the velocity component in 

the direction xi (= (x1, x2, x3) = (x, y, z)), t is time and p is pressure. On the other hand, 

the symmetry BC treats both of the lateral boundaries as symmetry planes: 

∂ux/∂z = ∂uy/∂z = ∂p/∂z = uz = 0      at z = 0 and z = Lz (1.5) 

Previous studies showed that either of the two BCs can be used to reproduce the 

ordered Mode A and Mode B vortex structures, due to the spanwise periodicity of the 

two modes (Williamson, 1996). When the periodic BC is imposed at the lateral 

boundaries, the simulated flow is forced to contain only an integer number (denoted 

as n) of the vortex pairs in the spanwise direction to satisfy the BC at the lateral 

boundaries. In contrast, when the symmetry BC is employed at the lateral boundaries, 

the number of vortex pairs in the simulated flow is constrained to 0.5n, as all the 

planes in the middle of the adjacent positive and negative vortices are symmetrical. 

The symmetry BC allows a half of a vortex pair to be captured. Consequently, the 

simulated spanwise wavelength λ is restricted to Lz/n for the periodic BC and 2Lz/n for 

the symmetry BC, and thus may be different from the most unstable wavelength (λA or 

λB) of the flow. Therefore, the accuracy of the simulation may be dependent on the 

choices of not only the Lz value but also the lateral BC. It is also noted that the 

symmetry BC condition characterized by Eq. (1.5) may also rule out the possibility of 

travelling waves such as oblique vortex shedding, which warrants a further 

investigation. 
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(b)  

Fig. 1. (a) Schematic model of the computational domain, and (b) Close-up view of 

the mesh in the x-y plane near the cylinder. 

 

To complement the earlier works, the primary aim of this study is to investigate 

the combined influence of the lateral BC and Lz on the prediction of Recr as well as 

the Mode A and Mode B flows at Recr < Re < 300, for which a general guideline on 

the choices of the lateral BC and Lz for DNS has not been proposed in the literature 

(although DNS has been used extensively for predicting bluff body flows). 

For other bluff body configurations, e.g. a square cylinder (Robichaux et al., 

1999), an elliptic cylinder (Leontini et al., 2015), a circular ring (Sheard et al., 2003), 

two circular cylinders in staggered arrangements (Carmo et al., 2008), a rotating 

cylinder near a moving wall (Rao et al., 2015), etc., similar Mode A and Mode B 

flows (as well as other modes) with similar spanwise wavelengths were obtained 

based on stability analysis. In addition to bluff body flows, stability analysis of the 

flow over a backward-facing step (Barkley et al., 2002) and the flow through a 

partially blocked channel (Griffith et al., 2007) also found that the onset of the 

secondary instability was represented by a 3D mode with a specific spanwise 

wavelength. Hence the general conclusions drawn from the present study through a 

circular cylinder are expected to provide guidance on the choices of the lateral BC and 

Lz for a non-linear DNS analysis of the above flows. 
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2. Numerical model 

2.1. Numerical method 

The DNS have been carried out with OpenFOAM (www.openfoam.org) through 

solution of the continuity and incompressible Navier-Stokes equations: 
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The same numerical approach as used in Jiang et al. (2016) is adopted here. 

Specifically, the FVM approach and the PISO (Pressure Implicit with Splitting of 

Operators) algorithm (Issa, 1986) are used to solve the equations. The convection, 

diffusion and time derivative terms are discretized, respectively, using a fourth-order 

cubic scheme, a second-order linear scheme, and a blended scheme consisting of the 

second-order Crank-Nicolson scheme and a first-order Euler implicit scheme. 

 

2.2. Computational domain and mesh 

The computational domain and mesh are determined based on a domain size and 

mesh resolution dependence study reported separately in Jiang et al. (2016). The 

standard 3D mesh reported in Jiang et al. (2016) is adopted in this study. Based on the 

standard 3D mesh, Jiang et al. (2016) obtained DNS results of wake transitions of a 

circular cylinder which are in good agreement with the experimental results reported 

in Williamson (1996). 

The details of the standard 3D mesh are as follows. A hexahedral computational 

domain of 50D×40D×Lz as shown in Fig. 1(a) is constructed. The spanwise domain 

length Lz is varied in this study. In the x-y plane (i.e. the plane perpendicular to the 

cylinder span), the cylinder perimeter is discretized with 132 nodes. The radial size of 

the first layer of mesh next to the cylinder is 0.001D. The cell expansion ratio in the 

whole domain is kept below 1.1. For wake structure visualization, a relatively high 
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mesh resolution in the near wake is used by specifying a constant cell size along the 

x-direction for x/D ranges from approximately 1.0 to 5.5. A close-up view of the mesh 

in the x-y plane near the cylinder is shown in Fig. 1(b). The 3D mesh is formed by 

replicating the two-dimensional (2D) mesh along the z-axis, resulting in an identical 

mesh resolution in all planes perpendicular to the cylinder span. The cell size in the 

spanwise direction is 0.1D. 

The boundary conditions are specified as follows. At the inlet boundary, a 

uniform flow velocity U is specified in the x-direction. At the outlet, the Neumann BC 

(i.e. zero normal gradient) is applied for the velocity, and the pressure is specified as a 

reference value of zero. The symmetry BC is applied at the top and bottom boundaries. 

The non-slip BC is applied on the cylinder surface. At the two lateral boundaries 

perpendicular to the cylinder span, both the periodic and the symmetry BCs are tested 

in this study. The periodic BC is used by default unless otherwise stated. 

 

3. Prediction of Recr 

3.1. Influence of λ on the prediction of Recr 

It is found that the prediction of Recr is affected by the accuracy of the spanwise 

wavelength simulated by DNS (based on the choices of the lateral BC and Lz). This is 

explained with reference to the neutral stability curve for Mode A as presented by 

Barkley and Henderson (1996) and Posdziech and Grundmann (2001) (partially 

reproduced in Fig. 2 for the convenience of discussion). Note that the vertical 

coordinate λ shown in Fig. 2 refers to the wavelength of perturbations. According to 

Barkley and Henderson (1996), flow past a circular cylinder is linearly unstable to 3D 

perturbations only if the wavelength of perturbations falls in the area enclosed by the 

neutral curve at the corresponding Re value. The dashed line that cuts through the 

enclosed area represents the variation of λA with Re. The points on the neutral curve 

correspond to the neutral state of the flow where perturbations neither grow nor decay. 

For numerical simulations, the maximum wavelength of perturbations is capped 

by Lz. A direct interpretation is that no Mode A instability would be triggered if Lz is 
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smaller than the corresponding λ on the lower branch of the neutral curve for the 

periodic lateral BC (Fig. 2) or Lz < λ/2 for the symmetry lateral BC. If the wavelength 

of perturbations contained in the numerical simulation falls within the area enclosed 

by the neutral curve (Fig. 2), Mode A instability would be triggered. Since the 

spanwise wavelength λ of the flow predicted by DNS is determined by the choices of 

the lateral BC and Lz, while Recr is normally determined by trial and error through 

varying Re along a constant value of λ, the predicted Recr would be the corresponding 

Re value at the intersection point of the neutral curve with the horizontal line passing 

through λ (rather than λA). It is seen from Fig. 2 that Recr would inevitably be 

over-predicted if the simulated spanwise wavelength λ of the Mode A structure is 

different from the intrinsic wavelength λA at the left tip of the neutral curve, regardless 

of under- or over-prediction of λ. 
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Fig. 2. Dependence of the 3D Mode A wake instability on the spanwise wavelength 

and the Reynolds number (with the periodic lateral BC). 

 

This potential issue was less considered in previous 3D DNS studies for the 
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prediction of Recr. Table 1 lists some studies on the prediction of Recr, along with their 

choices of the lateral BC and Lz. It is found that apart from Jiang et al. (2016), the 

predicted Recr values were all larger than the ones obtained from the linear stability 

analysis (e.g. 188.5 (±1.0) by Barkley and Henderson (1996), 190.2 (±0.02) by 

Posdziech and Grundmann (2001), and 190.5 by Rao et al. (2013)) and the 

experimental study (e.g. Recr = 194 by Williamson (1996)). The relatively accurate 

prediction of Recr by Jiang et al. (2016) was achieved with the periodic lateral BC and 

Lz = 12.0. In that case, three Mode A streamwise vortex pairs were observed along the 

cylinder span width, which resulted in a simulated λ of 4.0 that is very close to the λA 

of 3.96 (Barkley and Henderson, 1996) or 3.966 (Posdziech and Grundmann, 2001) at 

the left tip of the neutral curve (Fig. 2). In contrast, the discrepancy between λ and λA 

for some other studies listed in Table 1 would contributed to the over-prediction of 

Recr. 

 

Table 1. Prediction of Recr based on different choices of the lateral BC and Lz. 

Reference Method Lateral 

BC 

Lz Simulated 

λ 

Predicted 

Recr 

Karniadakis and 

Triantafyllou (1992) 

SEM Periodic π, 2π π 200 – 210 

Behara and Mittal 

(2010) 

FEM Symmetry 10.0 4.0 200 

Zhao et al. (2013) FEM Periodic 19.2 3.84 > 200 

Tong et al. (2014) FVM Symmetry 9.6 3.84 > 200 

Jiang et al. (2016) FVM Periodic 12.0 4.0 193.25 

 

In addition to the influence by λ, the mesh resolution in the x-y plane is also an 

important factor affecting the prediction of Recr. For example, based on a refined 3D 

mesh with four times the cell number in the x-y plane with respect to the standard 3D 

mesh, a slightly reduced and converged Recr value of 189.96 is obtained, which is 
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extremely close to the linear stability analysis result of Recr ~ 190 and ~1.7% smaller 

than the Recr of 193.25 obtained with the standard 3D mesh. To facilitate comparison 

of the present DNS results based on the standard 3D mesh with the linear stability 

analysis results, the influence of the mesh resolution on the prediction of Recr is taken 

into account by translating the left tips of the two neutral curves by Barkley and 

Henderson (1996) and Posdziech and Grundmann (2001) horizontally to Re = 193.25 

while maintaining the same increase rate of Re for all of the points on each curve (Fig. 

2). It is also seen that the two shifted neutral curves are in better agreement with each 

other than before (Fig. 2). It is believed that this is also due to the elimination of the 

mesh dependence effect of the results between Barkley and Henderson (1996) and 

Posdziech and Grundmann (2001). 

 

3.2. Prediction with the periodic lateral BC 

Recall that the Lz (= 12) used in Jiang et al. (2016) corresponds to a λ (= 4.0) that 

is marginally larger than λA (= 3.96 or 3.966). Further calculation is carried out to 

assess the influence of the ~ 1% discrepancy between λ and λA on the accuracy of the 

prediction of Recr. The calculation is performed with the standard 3D mesh and Lz = 

11.9. This corresponds to λ = 3.967 which is extremely close to the λA obtained from 

linear stability analysis (with a discrepancy of ~ 0.1%). The Recr value obtained with 

Lz = 11.9 is 193.26, which is extremely close to the Recr of 193.25 obtained with Lz = 

12.0 (λ = 4.0) in Jiang et al. (2016). It is seen that a 1% discrepancy between λ and λA 

induces a negligible difference on the prediction of Recr. This is because that Recr is 

relatively insensitive to the variation of λ at the left end of the neutral curve (Fig. 2). 

Furthermore, simulations are carried out with Lz = 4.0, 8.0 and 24.0 which 

ultimately lead to a λ of 4.0. The Recr values obtained with Lz = 4.0, 8.0 and 24.0 are 

193.39, 193.37 and 193.35, respectively. The above cases demonstrate that the 

prediction of Recr is negligibly influenced by the absolute span length of the 

computational domain as long as the simulated λ is accurate enough. 

In contrast, a much higher Recr of 196.05 is obtained with Lz = 13.5. This is 
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because Lz = 13.5 leads to an inaccurate prediction of λ = 4.5 which is ~ 13.6% larger 

than λA. The predicted Recr, although on the shifted neutral curves shown in Fig. 2, is 

not at the left tip and therefore not accurate. This case confirms that the discrepancy 

between λ and λA contributes to the over-prediction of Recr in 3D DNS. For an 

accurate prediction of Recr, it is essential to choose a proper Lz which satisfies the 

criterion of λ = λA. 

To further examine the influence of Lz on the simulation results, a series of cases 

at Re = 200 is calculated, with Lz ranging from 1 to 16. It is found that 3D instability 

does not occur (i.e. Recr > 200) for Lz = 1, 2, 3, 5, 6, and 10. For the cases with 3D 

instability, the simulated wavelength of Mode A is plotted in Fig. 2. For the cases 

without 3D instability, all the possible wavelengths (λ = Lz/n) are plotted in Fig. 2. It is 

seen that the two groups of the wavelengths are well separated by the shifted neutral 

curves, which once again confirms the over-prediction of Recr due to the influence of 

λ. 

The influence of Lz on the prediction of Recr is further explained in Fig. 3 where 

the shifted neutral curve from Barkley and Henderson (1996) is transformed into the 

(Re, Lz) space by employing Lz = nλ. Neutral curves with n = 1 – 6 are plotted in Fig. 

3. The left tip of each of the neutral curves is placed at (Recr, nλA) = (193.25, 3.96n). 

The shadow area in Fig. 3 represents the parameter range within which 3D instability 

does not occur, while 3D instability is expected to be observed in the clear area. This 

is confirmed by the numerical results with Re = 200 as shown in Fig. 3. It is also seen 

that all the points located at the left tip of the neutral curves which satisfy Lz ~ nλA 

correspond to the lowest and most accurate Recr values. 
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Fig. 3. Dependence of the 3D Mode A instability on the spanwise domain length and 

the Reynolds number (with the periodic lateral BC). 

 

It is expected that the maximum relative error in the prediction of Recr generally 

decreases with increase of Lz (but not monotonically). Since 3D instability would not 

be observed in the shadow area of Fig. 3, the best estimate of Recr that can be obtained 

for a given Lz corresponds to the intersection point between a horizontal line through 

Lz and the neutral curve. If Fig. 3 is separated into a number of horizontal strips by 

drawing horizontal dashed lines through the intersection points (marked by solid dots) 

of the adjacent neutral curves, the horizontal strip that encloses (Recr, nλA) represents a 

parameter space within which n pairs of the Mode A structure are expected. For a 

particular Lz value that falls into the horizontal strip that encloses (Recr, nλA), the 

maximum difference between the predicted Recr and the real Recr is bounded by the 

difference between the Re value corresponding to the dot point at the lower boundary 

of the horizontal strip and the real Recr value if Lz < nλA, and the difference between 

the Re value corresponding to the dot point at the upper boundary of the horizontal 

strip and the real Recr value if Lz > nλA. For example, for n = 2 the maximum relative 
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errors (Δ) of the prediction of Recr for Lz < 2λA and for Lz > 2λA are 15.8% and 4.9%, 

respectively. It is seen from Fig. 3 that the maximum relative error reduces when more 

Mode A vortex pairs are resolved in the domain. If λA is not known a priori, the 

resolution of 3 pairs of Mode A in the domain generally indicates a relative error of 

less than 5% in the prediction of Recr, and the resolution of 6 pairs of Mode A 

generally indicates a relative error of less than 1%. 

 

3.3. Influence of the lateral BC on the prediction of Recr 

The influence of Lz on the prediction of Recr and λ for the symmetry lateral BC is 

examined by conducting a series of numerical tests at Re = 200. For each combination 

of the lateral BC and Lz, the possible λ values for Mode A (λ = Lz/n for the periodic 

BC and λ = 2Lz/n for the symmetry BC) and the simulated λ are both shown in Fig. 4. 

The possible values below λ = 2 are omitted for simplicity. For the cases without 3D 

instability, the simulated λ is regarded as ∞ in Fig. 4. The shadow area in Fig. 4 

represents the range of λ enclosed by the shifted neutral curves within which 3D 

instability is expected. It is seen that outside this range, 3D instability cannot be 

excited. Since there are more chances that the possible λ falls into the neutral curve 

range for a given Lz by using the symmetry BC than the periodic BC, it is more likely 

for the flow to form a 3D instability by using the symmetry BC. This is consistent 

with the results shown in Fig. 3 (for the periodic BC) and Fig. 5 (for the symmetry 

BC). In Fig. 5, in addition to Lz = nλ, the neutral curves are also transformed to Lz = (n 

– 0.5)λ. It is seen that the use of the symmetry BC leads to a reduction of error in the 

prediction of Recr. For example, if λA is not known a priori, the resolution of 3 pairs of 

Mode A with the symmetry BC (rather than 6 pairs with the periodic BC) generally 

indicates a relative error of less than 1% in the prediction of Recr (Fig. 5). 

Fig. 6 shows the relative errors in the prediction of Recr as a function of Lz. 

Judging from the fitted curves based on the local peaks of the relative errors, the 

maximum relative error one can expect by using the symmetry BC is less than a half 

of that from using the periodic BC at the same Lz value. 
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Fig. 4. Possible λ values for Mode A and the simulated λ for each lateral BC and Lz 
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Fig. 5. Dependence of the 3D Mode A instability on the spanwise domain length and 

the Reynolds number (with the symmetry lateral BC). 
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Fig. 6. Relative error in the prediction of Recr as a function of Lz. 

 

It has been demonstrated previously by using the periodic BC that an accurate 

prediction of Recr requires λ = λA rather than a long Lz. This is also confirmed by using 

the symmetry BC and low Lz values of 2.0 and 4.0 (both correspond to λ = 4.0). The 

predicted Recr are 193.33 and 193.37, respectively, close enough to the ones obtained 

with the periodic BC and λ = 4.0. For the purpose of minimizing the computational 

cost while maintaining the accuracy of the prediction of Recr, the use of the symmetry 

BC and Lz = λA/2 (if λA is known a priori) is recommended. The simulation of only a 

half of a pair of the Mode A structure is guaranteed by the antisymmetrical nature of 

the Mode A vortex pairs. 

 

4. Prediction of the 3D wake flow at Re = 200 

4.1. Hydrodynamic forces and flow three-dimensionality 

The previous set of cases at Re = 200 (just above Recr) with Lz = 1 – 16 and both 

lateral BCs is further used to investigate the influence of the lateral BC and Lz on the 

prediction of the wake structures and hydrodynamic forces on the cylinder. The 
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influence on the vortex structures (including the development of vortex dislocations) 

is examined through numerical flow visualization of the non-dimensional streamwise 

vorticity: 

yz
x

uu D

y z U


 
    

 (4.1) 

The three-dimensionality of the flow is quantified by the spanwise disturbance energy 

Ez (divided by Lz to facilitate comparison) which is defined as: 

2
1

d
2

z
z V

z

u
E V

L U
   
   (4.2) 

where V is the non-dimensional volume of the flow field of interest (the near-wake 

region of x/D = 0 – 5, y/D = -20 – 20, and z/D = 0 – Lz for the present study). The 

fully developed flow is also quantified by examining the Strouhal number (St), the 

base pressure coefficient (Cpb), and the drag and lift force coefficients (CD and CL), 

which are defined as: 

/LSt f D U  (4.3) 

2( ) / ( / 2)pb bC p p U   (4.4) 

2/ ( / 2)D D zC F DU L  (4.5) 

2/ ( / 2)L L zC F DU L  (4.6) 

where fL is the frequency of the fluctuating lift force, pb is the time-averaged pressure 

at the rear stagnation point of the cylinder, p∞ is the reference pressure at the inlet of 

the domain, ρ is fluid density, and FD and FL are the integrated drag force and lift 

force on the cylinder, respectively. The time-averaged drag and lift coefficients are 

denoted as DC  and LC , respectively. The root-mean-square lift coefficient LC   is 

defined as: 

 2

,
1

1 N

L L i L
i

C C C
N 

    (4.7) 

where N is the number of values in the time-history of CL. 

The present numerical results show that the choices of the lateral BC and Lz do 
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have some effects on the wake structures. For example, for the cases of P4 and S4 (the 

letter P or S represents the periodic (P) or symmetry (S) lateral BC while the number 

denotes the chosen Lz), the cylinder wake is exclusively occupied by one pair of 

sustained Mode A vortex structure which contains some small-scale irregularities. A 

typical streamwise vorticity field for the case of P4 is shown in Fig. 7(a), where a 

small-scale irregularity is marked by the rectangular frame. For the case of S2, a half 

of the vortex pair is observed. However, vortex dislocation is completely suppressed 

due to the confinement of the short span. This is consistent with the numerical results 

by Henderson (1997) and Persillon and Braza (1998) by using short span lengths. Due 

to the absence of dislocation, the fluctuations of the drag and lift coefficients in the 

fully developed state are quite regular (Fig. 8(a)), and the spanwise energy Ez remains 

in an equilibrium level without large-amplitude fluctuations (Fig. 8(b)). As can be 

seen in Fig. 8, the reductions of the drag coefficient and the fluctuation amplitude of 

the lift coefficient from their 2D counterparts (marked by the horizontal dashed lines 

in Fig. 8(a)) are consistent with the increase of Ez. These variations indicate that the 

energy is partly transferred to the spanwise direction. 
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Fig. 8. Time-histories of (a) the drag and lift coefficients, and (b) the spanwise 

disturbance energy integrated over x/D = 0 – 5, for the cases with different Lz (with 

the periodic lateral BC). The horizontal dashed lines denote the fluctuation amplitudes 

of the force coefficients obtained with 2D DNS. 

 

Further calculations with Lz = 3.5 (= 0.906λA), 3.865 (= λA), 4.2 (= 1.087λA), and 

4.5 (= 1.164λA) are carried out. For each of the above Lz, almost identical results are 

obtained by using the two lateral BCs. Similar results as discussed in the previous 

paragraph by using Lz = 4.0 are also observed for Lz = 3.865 and 4.2. However, due to 

a stronger confinement by using Lz = 3.5 (< λA), the Mode A vortex pair becomes 



21 
 

extremely ordered (Fig. 7(b)). For a less confined Lz of 4.5, alternate formation of the 

relatively ordered Mode A structure (Fig. 7(c)) and small-scale vortex dislocations 

(marked by a rectangular frame in Fig. 7(d)) can be observed. Consequently, irregular 

fluctuations of the time-histories of the force coefficients and Ez are observed in the 

fully developed state (Fig. 8). It should be noted that for Lz within the range of 3.387 

to 4.774 which includes all of the above cases, only one pair of the Mode A structure 

is expected at the onset of the secondary instability (see Fig. 3 and Fig. 5). However, 

according to the above case studies, the upper limit of Lz for the complete suppression 

of vortex dislocation is ~ 1.1λA (4.2 < Lz < 4.5) rather than Lz = 4.774. This indicates 

that the suppression of dislocation is due to the confinement of Lz to the intrinsic 

wavelength λA, rather than the initial formation of only one pair of Mode A. 

 Beyond Lz ~ 1.1λA, dislocations can be observed and the time-histories of the 

force coefficients and Ez display irregular fluctuations. However, for 1.1λA < Lz ≤ 9, 

dislocations in the domain may disappear completely once in a while, and be replaced 

by the development of extremely ordered Mode A structure. This is illustrated with 

the case of P8 as shown in Fig. 7(e) (with large-scale vortex dislocations) and Fig. 7(f) 

(ordered Mode A). The disappearance of the dislocations results in a dramatic 

reduction of the flow three-dimensionality in the domain. As shown in the third 

column of Fig. 8, the fluctuation amplitudes of the force coefficients can once in a 

while reach their 2D counterparts and meanwhile the Ez value exhibits a sharp drop to 

a very low level. As the ordered Mode A starts to develop after that, the flow 

three-dimensionality starts to grow again. This phenomenon is most pronounced in P9 

and P8 where the time-averaged Ez decreases significantly compared with the rest of 

the cases (Fig. 9). 
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Fig. 9. Time-averaged spanwise energy Ez integrated over the near wake region of x/D 

= 0 – 5. 

 

Fig. 10 shows the statistically stationary hydrodynamic forces on the cylinder 

calculated from the fully developed flow. For the cases without 3D instability, 500 

non-dimensional time units (defined as t* = Ut/D) are used for the statistics. The 

statistically stationary results are very close to the 2D DNS results as marked in Fig. 

10, and are thus omitted for simplicity. When 3D instability takes place, 800 to 1000 

non-dimensional time units are used for the statistics. The sufficiency of the statistical 

data is confirmed by obtaining very close results with only the second half of the 

sampling period (see Fig. 10). 
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Fig. 10. Statistically stationary hydrodynamic forces on the cylinder: (a) the Strouhal 

number, (b) the base pressure coefficient, (c) the mean drag coefficient, and (d) the 

root-mean-square lift coefficient. The results obtained with the periodic BC are shown 

by open circles (○) while the results obtained with the symmetry BC are shown by 

open triangles (ᇞ). To confirm the sufficiency of the statistical data, the results 

obtained with only the second half of the sampling period are shown by (×) for the 

periodic BC and (+) for the symmetry BC. 

 

In Fig. 10(a), St is determined based on the peak frequency derived from the fast 

Fourier transform (FFT) of the time-history of CL. Normally, a distinct peak frequency 

is observed, which corresponds to a single St value. However, a distinct peak 

frequency is not observed for the cases of P8, P9, and S8 even when the calculation is 

performed up to 3500 non-dimensional time units. Hence the St values corresponding 

to the two leading peaks are plotted in Fig. 10(a). For the case of P9, one of the 

leading frequencies even reaches the 2D limit, and the base pressure and force 

coefficients shown in Fig. 10(b–d) are also obviously over-predicted. This is due to 

the frequent disappearance of the vortex dislocations as discussed earlier on. 

Apart from the cases of P8, P9, and S8 for which temporal complexity is 

observed for the fully developed flow, the cases with Lz > 9 all produce similar results 

of St, Cpb, and DC . The small discrepancy ranges of the results (1.9%, 3.8%, and 
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1.7%, respectively) are largely attributed to the limited sampling periods. In contrast, 

a roughly decreasing trend of LC   is observed with increasing Lz. As addressed by 

Henderson (1997), this is because the integrated lift coefficient is more likely to be 

cancelled out by the phase differences along the span. According to the above results, 

Lz > 10 is required to accurately predict the hydrodynamic forces on the cylinder 

(apart from the ones that may be cancelled out along the span). Surprisingly, even 

without the occurrence of vortex dislocation, the use of Lz = λA can also give fairly 

close approximations of St, Cpb, and DC . However, under the even stronger 

confinement of Lz ~ 0.9λA where only extremely ordered Mode A takes place, the 

three-dimensionality of the flow is drastically reduced, which is represented by the 

obvious shifts of the Ez and hydrodynamic forces towards the 2D limit (Fig. 9 and Fig. 

10). 

 

4.2. Distribution of the vortices in the spanwise direction	

Although similar quantitative results such as the Ez and hydrodynamic forces are 

obtained by using the periodic and symmetry BCs, the distribution of the vortices 

along the cylinder span can be different. According to the symmetry BC assumption 

given in Eq. (1.5), the streamwise vorticity ωx and the transverse vorticity ωy (= ∂ux/∂z 

- ∂uz/∂x) are both forced to be zero at the two lateral boundaries perpendicular to the 

span. As a result, the development of the ωx and ωy components near the two lateral 

boundaries is restricted. One example is that oblique vortex shedding would be 

completely suppressed at the two ends of the span by the symmetry BC. 

Fig. 11 shows the spanwise distribution of the time-averaged spanwise 

disturbance (uz/U)2 sampled at (x/D, y/D) = (3.0, 0.5) along the cylinder span. The 

sampling periods are the same as those used for obtaining the Ez and hydrodynamic 

forces. Similar results as shown in Fig. 11 are also observed for the spanwise 

distribution of the time-averaged streamwise enstrophy ωx
2 sampled at the same point 

along the span. Hence the results of ωx
2 are not presented and only the results of 

(uz/U)2 are discussed. 
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It is seen in Fig. 11 that for all of the cases using the symmetry BC, the (uz/U)2 at 

the two ends of the span decreases to zero. This also restricts the development of flow 

three-dimensionality and vorticity for at least 0.5D from each end of the span. In 

contrast, the periodic BC is free from this restriction, and the (uz/U)2 does not drop to 

very small values at any position along the span width for Lz > 10. 

For the cases of P4 and S4, two extremely regular peaks of the (uz/U)2 are 

observed along the cylinder span (Fig. 11). This is because only one pair of sustained 

Mode A vortex structure (without dislocation) is observed in the domain (Fig. 7(a)) 

and it does not vary along the span. For the cases with Lz = 7 – 9, dislocations can be 

observed for more than 70% of the sampling period (apart from ~ 35% for P9), yet the 

flow three-dimensionality and vortices distributed along the span width are still 

strongly affected by the insufficiency of Lz. Under the symmetry BC, the spanwise 

distribution of the (uz/U)2 is largely symmetrical for S6, S7, and S9. Under the 

periodic BC, a periodic spanwise distribution of the (uz/U)2 is observed for P7. In 

addition, the (uz/U)2 may even drop to extremely low levels (apart from the two ends 

of the span) for S6, S7, P7, P8, and P9, which suggests that dislocations are not 

randomly distributed along the span but are actually avoiding some particular 

spanwise locations. For both lateral BCs, randomly distributed dislocations can only 

be achieved with Lz > 10. 
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Fig. 11. Spanwise distribution of the time-averaged spanwise disturbance (uz/U)2 

sampled at (x/D, y/D) = (3.0, 0.5) along the cylinder span for the cases with different 
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Lz and lateral BCs. 

 

5. Influence of the intrinsic wavelengths for Re > Recr 

Apart from leading to an over-prediction of Recr, the difference between the 

simulated wavelength λ and the most unstable wavelengths λA and λB may also affect 

the simulation results in the subsequent wake transition stages, including Mode A with 

large-scale vortex dislocations (Recr < Re ≤ 260), the mode swapping process (230 ≤ 

Re ≤ 260), and the occurrence of relatively ordered Mode B (265 ≤ Re ≤ 270) and 

disordered Mode B structures (Re ≥ 280). The above ranges of Re were obtained by 

Jiang et al. (2016) based on the same numerical formulation and computational mesh 

(with the periodic lateral BC and Lz = 12). 

Previous numerical studies simulating the 3D flows adopted different criteria for 

the choice of Lz. The SEM studies by Henderson (1997) and Posdziech and 

Grundmann (2001) specified Lz to be very close to an integer multiple of λA and λB, 

since they believed that for an accurate prediction of the 3D results the largest Mode 

A and Mode B eigenvalues in the discrete spectrum should be included. On the other 

hand, some studies using the conventional 3D DNS involving FEM and FVM 

formulations adopted a constant Lz for the cases with different Re (e.g. Persillon and 

Braza, 1998; Behara and Mittal, 2010; Zhao et al., 2013; Tong et al., 2014), 

irrespective of the reduction of λA with increases of Re as reported by Williamson 

(1996) and Barkley and Henderson (1996). 

The effect of the discrepancy between the simulated wavelength λ (based on the 

lateral BC and Lz) and the intrinsic most unstable wavelengths λA and λB on the 3D 

DNS results for Re > Recr is examined. Section 4 presents the results at Re = 200 

which falls into the wake transition regime of Mode A with large-scale dislocations. 

For all of the cases with Lz > 10, where the simulated λ ranges from 3.50 to 4.33 while 

λA = 3.865, the quantitative results of the Ez and hydrodynamic forces (Fig. 9 and Fig. 

10) do not appear to correlate with the relationship between λ and λA. This is likely 

because after the onset of dislocations, vortex structures are affected by multiple 
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instability mechanisms such as the ones responsible for both Mode A and Mode B 

(Williamson, 1996; Thompson et al., 2001) and are no longer largely controlled by the 

instability mechanism responsible for the intrinsic wavelength of λA. 

For the relatively ordered Mode B structure at Re = 270, two cases with Lz = 10.6 

and Lz = 12.0 are examined. At Re = 270, the linear stability analysis by Posdziech 

and Grundmann (2001) predicted the most unstable wavelengths for the two modes of 

λA = 3.53 and λB = 0.825. Based on the stability analysis results by Posdziech and 

Grundmann (2001), Lz = 12.0 corresponds to 3.40λA or 14.55λB, while Lz = 10.6 

corresponds to 3.00λA or 12.85λB. The span length of 10.6 with respect to 12.0 is much 

closer to an integer multiple of λA or λB. However, the quantitative results obtained 

from the fully developed flow (t* = 800 – 1600) for the two cases are extremely close 

(see Table 2), and the sharp-peaked frequency spectra of CL are also in close 

agreement (Fig. 12). This suggests that there is no need to consider the most unstable 

wavelengths in simulations for this regime with Lz > 10. For both cases, the dominant 

wake structure is the ordered Mode B, while scattered Mode A (without dislocation) 

may sometimes be observed along the span as well (e.g. Fig. 13(b)). In Fig. 13(a), the 

cylinder span width is occupied by 13 pairs of ordered Mode B structure. However, 

after dividing the cylinder span evenly into 13×2 sections, it is seen that the Mode B 

vortex pairs are not exactly evenly distributed along the span width, i.e. each pair may 

have a wavelength λ that is slightly different from λB. In addition, with the intermittent 

appearance of Mode A at random spanwise locations, the simulated λ for the two 

modes are unlikely influenced by Lz. 
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Table 2. Quantitative results for the two cases at Re = 270 with different Lz. The 

variations of the results are represented by the relative differences with respect to the 

second column. 

Quantity Lz = 10.6 Lz = 12.0 

Full data length  Second half Full data length Second half 

St 0.20563 +0.03% +0.02% +0.05% 

-Cpb 1.10684 -0.64% +0.40% +0.96% 

DC  1.34865 +0.14% +0.24% +0.25% 

LC   0.56093 +0.77% +1.25% +1.29% 
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Fig. 12. Frequency spectra of CL for the two cases at Re = 270 with different Lz. 
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P10.6 at Re = 270 and t* = 1500, and (c) case P12 at Re = 280 and t* = 2240. Dark 

grey and light yellow denote positive and negative values, respectively. The flow is 

from the left to the right past the cylinder on the left. 

 

 It has been demonstrated that for Lz > 10, both Mode A with large-scale 

dislocations and relatively ordered Mode B are not strongly correlated with the exact 

wavelengths of λA and λB, and the simulation results are not strongly dependent on the 

simulated λ with respect to λA and λB. It is believed that the above conclusion is also 

valid for the gradual mode swapping process from Mode A with dislocations to Mode 

B. The conclusion is also expected to be applicable for Re above 270, as the Mode B 

structure becomes increasingly disordered, and the wavelength of Mode B becomes 

increasingly varied along the span width (e.g. Fig. 13(c)). This suggests that for the 

simulations of the wake transitions above Recr, the Lz value does not have to be an 

integer multiple of the most unstable wavelength of Mode A or Mode B. 

 

6. Conclusions 

 The effects of the spanwise domain length (Lz) and the boundary condition (BC) 

at the two lateral boundaries perpendicular to the cylinder span on three-dimensional 

(3D) direct numerical simulation (DNS) results of flow past a circular cylinder are 

examined. It is found that an over-prediction of the onset point of the secondary wake 

instability (Recr) may be attributed to the discrepancy between the simulated 

wavelength (λ) and the most unstable spanwise wavelength of Mode A (λA), rather 

than an Lz that is not sufficiently long. For the purpose of minimizing the 

computational cost while maintaining the accuracy of the prediction of Recr, the use of 

the symmetry BC and Lz = λA/2 (if λA is known a priori) is recommended. If λA is not 

known a priori, a resolution of 3 pairs of Mode A under the symmetry BC generally 

indicates a relative error of less than 1% in the prediction of Recr. The maximum 

relative error one can expect by using the symmetry BC is less than a half of that from 

using the periodic BC at the same Lz value. 
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The predicted vortex structures and hydrodynamic forces in the first 3D wake 

transition regime of Mode A with vortex dislocations is studied at Re = 200 with both 

lateral BCs. For Lz within the limit of ~ 1.1λA, due to the confinement of Lz to the 

intrinsic wavelength λA, sustained Mode A vortex structure is observed while vortex 

dislocation is completely suppressed. For 1.1λA < Lz ≤ 9, although vortex dislocations 

can be observed, the vortices distributed along the span width are still strongly 

affected by the insufficiency of Lz. For both lateral BCs, randomly distributed 

dislocations and converged hydrodynamic forces can only be achieved with Lz > 10 (~ 

3λA). However, when the symmetry BC is applied, the streamwise and transverse 

vorticities are both forced to be zero at the two lateral boundaries. This restricts the 

development of the flow three-dimensionality and vorticity for at least 0.5D from 

each end of the span. The periodic BC is free from this restriction. 

For the wake transition regimes above Recr, including Mode A with vortex 

dislocations, the mode swapping process, and the relatively ordered and disordered 

Mode B structures, the simulation results with Lz > 10 are not strongly dependent on 

the simulated λ (based on the lateral BC and Lz) with respect to λA and λB. This is 

because the dislocations and Mode B structures are not strongly correlated with the 

exact wavelengths of λA and λB, and the simulated wavelengths are not strongly 

influenced by Lz. This suggests that for the simulations of the wake transitions above 

Recr, the Lz value does not have to be an integer multiple of λA or λB. 
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