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ABSTRACT 

There is no universally accepted benchmark model for pricing exotic FX options to 

market, such as that for European vanilla FX options.  The use of not only different models but 

also of different methodologies, results in widely dispersed model-dependent exotic option 

prices for any given set of market and contract inputs.  The severity of the resultant model price 

dispersion is strong evidence of model risk.  Model risk is especially acute for price-makers in 

sell-side banks who, owing to the heterogeneity of over-the-counter (OTC) exotic options, do 

not have actual traded daily closing mark-to-market prices for all exotic options in their book, 

and so must mark-to-model instead.  If the model does not perform well, it will not reflect market 

reality, and neither will the reported daily profit and loss.  Given that sell-side banks use models 

throughout the price-making process, from pricing market risk to identifying hedging strategies, 

defining risk limits, reporting to key stakeholders internally and externally, as well as 

determining trader bonuses and Basel II capital retention levels, model risk is an important 

consideration in the OTC exotic option space. 

The orthodox response to model risk is price centric.  Orthodoxy develops models that 

rely on complex and esoteric mathematics in order to improve pricing accuracy, even if it results 

in models that are opaque and inaccessible to most price-makers and risk managers who use 

them.  In contrast, this research focuses on hedging strategies.  This is because price-makers, 

irrespective of the model used to price, hedge unwanted imbalances in exotic FX option risk 

with liquid, traded European vanilla FX option strategies like butterflies and risk reversals.  

Since price-maker hedging activity is relatively model-independent, whereas price is highly 

model-dependent, it follows that the actual hedging behaviour of price-makers should dictate 

the form of the pricing model if model risk is to be minimised.  In this context, the traded vanilla 

volatility surface is only relevant to exotic option prices insofar as it prices the cost of a traded 

hedge.  Since it is not possible, let alone practical to trade a whole-of-volatility-surface hedge, 

there is no economic substance to bind orthodoxy’s whole-of-volatility-surface calibrations to 

traded exotic option prices. 

This research presents a variant of the vanna-volga model which, in addition to pricing 

smile risk and skew risk, also prices term risk, which is the risk that an exotic option terminates 

prior to expiry owing to the spot price trading at or through a barrier price.  The model presented 

here uniquely prices to market the cost of a European vanilla FX option hedge portfolio that 

matures at the exotic FX option’s expected stopping time, instead of at the expiration date like 

other vanna-volga models.  By expiring at the exotic option’s expected stopping time, the hedge 

uniquely prices the non-trivial term structure that is present not only in the level of volatility, but 

also in its smile and skew.  Why price the cost of expensive long-dated butterflies if the exotic 

option is expected to terminate sooner, leaving a residual butterfly open position that has to be 

unwound?  It is eminently logical to price instead butterflies that expire at the same time as the 

exotic option being hedged.  As well as making redundant the use of arbitrary constants, 

empirics, calibrations, simulations, etc. that introduce model risk into other models, the model in 

this research also identifies the traded market hedge upon which the model price is based.  As 

a result, price-makers can trade the calendar effect in exotic options in an intuitive manner that 

is analogous to, and internally consistent with trading the calendar effect in vanilla options. 
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The empirical research in this thesis involves the following steps, which together makes 

it larger in scale and scope than existing papers in the published literature.  Model prices for 

American binary FX options are tested against actual traded market prices, and against a 

competitor model that is widely used in the exotic FX option market.  For the first time, model 

prices are not just tested to establish their proximity to traded market prices, but also, by using 

additional information about the known micro-structure of the exotic FX option market, whether 

model prices reflect actual traded market behaviour.  It was found that the model exceeded 

challenging performance benchmarks, in that its prices were both extremely accurate and 

reflected known market behaviour, for a large sample of actual traded market prices. 
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CHAPTER 1 

INTRODUCTION 

1.1. Motivation for the research 

This thesis is motivated by the scale and scope of unresolved problems caused by the 

absence of a universally accepted benchmark model for pricing exotic options to market.  The 

lack of consensus on market pricing within both academia and industry exists not only at model 

level, but even at the more rudimentary methodological level.  The large number of competing 

methodologies for pricing exotic options to market is proof of both the lack of consensus in the 

solution and the economic significance of the problem. 

Given the presence of competing models, it is not only plausible but likely that two sell-

side bank counterparties to an exotic option will calculate different model prices, despite using 

identical inputs.  The potential for both banks to show an immediate revaluation profit, owing to 

heterogeneous over-the-counter exotic options having to be marked-to-model rather than to 

market, is untenable, especially for internal and external stakeholders responsible for 

supervision. 

The overall aim of this research is to develop a model for pricing exotic options to 

market which: (i) predicts actual traded market prices with sufficient accuracy to be a useful 

decision-making tool for price-makers in practice; (ii) identifies and quantifies market risk in a 

manner which provides unique insights into risk management of exotic options for price-makers 

in practice; and (iii) achieves real savings in computational efficiency relative to best practice 

quantitative models exemplified by the universal volatility models of Jex, Henderson and 

Wang (1999), and Lipton and McGhee (2002).  A model which satisfies (i), (ii) and (iii) will 

potentially be a leading contender for becoming a universally accepted benchmark model for 

pricing exotic options to market, as there are no other published models that meet all of these 

criteria. 

1.2. Economic significance of the research 

1.2.1. Model risk 

Model risk is the risk that model prices do not reflect financial economic substance.  

Model risk is one of the most significant challenges confronting exotic option trading businesses 

in the banking industry, firstly, because sell-side bank dependency upon exotic option models is 

high; and secondly, the absence of a universally accepted benchmark model for pricing exotic 

options to market increases the likelihood that model predictions will diverge from market 

reality. 

Sell-side banks rely on exotic option models for a broad range of critical tasks from 

pricing market risk to identifying hedging strategies, calculating daily profit and loss, defining 

risk limits, reporting to key stakeholders both internally and externally, as well as determining 

trader bonuses and Basel II capital retention levels.  It is because of their widespread use 

throughout the sell-side process that models have a key role not only in retaining capital, but, 

paradoxically, in depleting it.  For example: 
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• in the absence of a benchmark model there is more potential for the economic 

cost of exotic option market risk to be mis-priced at the point of transfer from 

end-user to bank, which undermines bank profitability;1

• the lack of articulation between exotic option model prices and the market price 

of the vanilla options traded to hedge them, exposes banks to the risk of failing 

to recover the cost of intermediating market risk; 

 

• it is because book risk limits are defined in terms of model sensitivities to factor 

inputs, and daily profit and loss revaluations are by necessity marked-to-model, 

that unrealised model profits can diverge appreciably from profits that would be 

realised if the options were liquidated in the market; and 

• price-makers can exploit their intimate knowledge of models and their unique 

access to the market to game model revaluations, i.e., to maximise bonuses 

based on unrealised model profits at the expense of profits realised in a later 

reporting period.2

Therefore, model risk is economically significant for sell-side banks active in exotic 

options.  Furthermore, given that the bulk of exotic option trading volume is concentrated in a 

relatively small subset of sell-side banks, the likelihood of model risk in one bank compounding 

into systemic risk across the banking industry is increased. 

 

1.2.2. Market efficiency 

Bid-ask (trading) spreads and internal (sales) distribution margins are two examples of 

market inefficiencies that increase the cost of optionality for buy-side end-users.  While non-

zero spreads and margins are necessary to encourage liquidity provision, excessive spreads 

and margins are a friction on the transfer of risk in the real economy.  In this context, the 

European vanilla FX option market is relatively efficient.  The market universally accepts the 

Garman and Kohlhagen (1983) extension of the Black and Scholes (1973) and Merton (1973) 

model, with its accompanying exogenous volatility surface, to price European vanilla FX options 

to market.  As a result, European vanilla FX option market prices are so transparent they are 

commoditised.  Competition among banks for vanilla franchise flows is so intense that market 

inefficiencies like bid-ask spreads and internal distribution margins are minimised to the point of 

profitability being crucially dependent upon high transaction volume.3

In contrast, the exotic FX option market is relatively inefficient.  The absence of a 

universally accepted benchmark model for pricing exotic FX options to market makes price 

discovery opaque.  Opacity results in wider bid-ask spreads as the risk of mis-pricing is greater.  

Opacity also allows excessive internal distribution margins to be concealed from end-users.  In 

both cases, end-users pay more for optionality than if the exotic FX option market was more 

efficient. 

 

 

 

                                                     
1 If a bank underprices optionality, it does not receive sufficient premium to intermediate the market risk.  Conversely, if a bank 

overprices optionality, its franchise flow is undermined as end-users either leave for competitors or have their credit quality 
deteriorate by overpaying to transfer risk. 

2 A practice known as system-arbitrage in sell-side banks. 
3 Since profit is the product of volume and spread / margin, a decrease in spread / margin requires an increase in volume to 

maintain, let alone grow, profits. 
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1.2.3. Market completeness 

Exotic options improve market completeness by increasing the range of payoffs 

available to end-users to hedge away, or speculate on, market risk.  Exotic options, individually 

or in combination with other exotic and / or vanilla options, make it possible for market risk to be 

divided and subdivided into its constituent elements.  As a result, hedging and speculation can 

be implemented with precision, according to the end-user’s unique needs.  However, the market 

is not as complete as it could be, because liquidity provision for first generation exotic options is 

sustained by the current size of bid-ask spreads and internal distribution margins.  If there was 

consensus on a market pricing benchmark model, then competition would force a decline in 

spreads and margins for first generation exotic options that would require liquidity providers to 

innovate in order to maintain and grow profits sourced from franchise flows.4

1.3. Contribution of the research 

 

The major contribution of this research is the discovery of a key variable crucial for 

pricing exotic options to market, which results in: (i) extremely strong pricing performance both 

absolutely and relative to a best practice competitor; (ii) unique insights into risk management 

for price-makers in practice; and (iii) significant computational efficiencies relative to best 

practice quantitative models.  The key variable is the expected stopping time of exotic options, 

which is an analytic function dependent upon market and contract inputs only. 

The discovery of the crucial role of expected stopping time in pricing exotic options to 

market occurred because this research is focused on the financial economics of the market, 

and not the financial mathematics that has come to define contemporary exotic option modelling 

orthodoxy.  If one recognises the pivotal role of price-makers in price discovery, i.e., that price-

makers make prices, not models, then it follows that it must be price-makers’ hedging activity 

which binds the traded European vanilla volatility surface to exotic option market prices, and not 

arbitrary mathematical assumptions about the functional form of volatility dynamics imposed by 

financial engineers.  That is why price-makers originally used the market price of high-order 

greeks defined by the traded European vanilla volatility surface, to price to market the 

contribution to hedging costs of high-order greeks in exotic options, as per the heuristic models 

of Savery (2000), Famery and Cornu (2000), Lipton and McGhee (2002), and Wystup (2003).  

Despite their logic and pragmatism, heuristic models had disappointing pricing performance that 

resulted in their becoming discredited and ultimately rejected in favour of increasingly complex 

mathematical models with a much weaker connection to the actual traded market mechanism. 

This research makes a significant contribution to the literature by demonstrating that the 

disappointing pricing performance of heuristic models in the past was not because of a failure of 

heuristic models in general, but rather a failure of specific applications of the heuristic model.  

This finding is profound, not just in abstract, theoretical terms, but, as shown in sections 1.3.1-

1.3.4 inclusive, in terms of the real economic contribution to participants active in exotic options. 

 

 

                                                     
4 There are second and third generation exotic FX options, however, these options trade in much smaller volumes than first 

generation options.  In fact, second and third generation options are considered highly illiquid, and are rarely brokered through 
interbank brokers. 
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1.3.1. Reduction in model risk 

The strength of the pricing results in this research is prima facie evidence that the 

model presented herein captures the essence of the actual traded market mechanism.  The 

model’s accuracy is compelling, given that the empirical research in this thesis is much larger in 

scale and scope than exotic option pricing research published in the literature. 

But model risk is not just about accuracy, it is also about the process.  Model risk 

increased because orthodox quantitative modelling diverged from actual traded market practice.  

Their arbitrary price-sensitive assumptions, while plausible, are also “unverified, indeed 

unverifiable” (Derman, 2003, p. 13).  In contrast, price-maker’s in the market, irrespective of the 

model they use to price, hedge unwanted imbalances in book high-order greeks with liquid, 

commoditised European vanilla option trading strategies like (delta neutral) risk reversals and 

(vega neutral) butterflies.  Hence, price is highly model-dependent, whereas hedging is 

relatively model-independent.  As a result, to reduce model risk exotic option model prices must 

articulate with the cost of the European vanilla options that hedge them, otherwise mark-to-

model exotic option profits and mark-to-market vanilla option profits will be asymmetric and will 

permit arbitrage.  The model presented in this thesis preserves articulation and symmetry.  

Orthodox quantitative models, on the other hand, take specific, traded Garman and Kohlhagen 

volatilities and, via calibration, turn them into generic, non-traded whole-of-volatility-surface 

parameters.  Since it is not possible to trade a whole-of-volatility-surface hedge, there is no 

economic substance to bind arbitrary model parameters to traded exotic option market prices, 

as “there are no obvious relationships between market and model parameters” (Hakala and 

Kirch, 2002, p. 249).  Unlike the model in this research, orthodox quantitative models dis-

articulate exotic option prices from traded vanilla hedging costs, thereby undermining the 

economics of wholesale financial intermediation, and increasing model risk. 

1.3.2. Improvement in market efficiency 

In essence, the model in this research is a simple and transparent mechanism for 

mapping the universally accepted market supplement for European vanilla options - the traded 

volatility surface - to the market supplement5 for American and European exotic options.  The 

model in this research effectively reduces complex exotic option risk to simple combinations of 

traded European vanilla options, analogous to Black and Scholes’ (1973) and Merton’s (1973) 

reduction of European vanilla option risk to simple combinations of traded linear instruments.  It 

is by working within the universally accepted vanilla paradigm that the full extent of prior 

knowledge in vanilla options can be directly and conveniently applied to gaining unique insights 

into exotic options.  Conversely, orthodox quantitative models make vanilla option pricing more 

complex in order to obtain exotic option prices.  That is, they replace the universally accepted 

exogenous traded volatility surface with arbitrary endogenous volatility dynamics, and, in the 

process, dilute and distort the information content in the European vanilla market supplement, 

and sever the internally consistent link with the market supplement for exotic options.6

                                                     
5 The market supplement for exotic FX options is the difference between the the market traded price and the theoretical value.  This 

difference can be positive, negative or zero. 

 

6 It is incorrect to retain the exogenous traded volatility surface for vanilla options, and then to use arbitrary endogenous volatility 
dynamics for exotic options, as the calibration that gives effect to the transition to endogeneity for exotic options is only accurate 
up to a non-zero error metric.  A non-zero error for in-sample closeness-of-fit represents arbitrage from using exogeneity for 
vanillas and endogeneity for exotics.  Nevertheless, in commercial systems that use orthodox quantitative models, endogeneity 
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An extremely useful corollary of discovering that expected stopping time can be used to 

map the traded vanilla market supplement directly to the exotic market supplement, is the 

identification of the traded market hedge upon which the price is based.  At the moment, price-

makers struggle with the contradiction of hedging exotic options with variable duration with 

European vanilla options with fixed duration, but they do it anyway, as there are few practical 

alternatives.7

1.3.3. Improvement in market completeness 

  Orthodox quantitative models provide no risk management guidance for price-

makers, as these models price independently of a traded market hedge.  The model presented 

in this research, however, uniquely identifies and quantifies the market risk resulting from the 

lengthening and shortening of exotic option risk vis-à-vis the fixed duration of traded vanilla 

option hedges.  Expected stopping time seamlessly reconciles the temporal dimension of smile 

risk and skew risk sourced from both vanilla and exotic options, and hence, allows price-makers 

to trade the temporal dimension of exotic option risk explicitly and scientifically, in contrast to 

the implicit and ad hoc methods of contemporary practice.  Therefore, in this research, a simple 

and transparent model price is underwritten by a simple and transparent traded market hedge.  

Both contribute to lowering entry barriers and increasing competition, which improves market 

efficiency. 

Simplicity and transparency are also vital for making markets more complete.  As the 

market becomes more efficient, earnings sourced from first generation exotic options decline, 

requiring a compensating: (i) increase in first generation exotic option volume; and / or 

(ii) development beyond niche markets of second, third and higher generations of exotic 

options, to increase spreads and margins.  The former is part of the commoditisation process, 

and the latter makes niche payoffs widespread and / or develops new innovative payoffs.  In 

each case, markets are more complete because end-users gain access to payoffs that were 

hitherto limited, either by illiquidity or unavailability.  By reducing complex exotic option risk to 

simple combinations of traded European vanilla options, the model in this research promotes 

the evolution of exotics from commoditisation (of the ‘old’) to (‘new’) innovation.  In contrast, by 

using methodologies that are complex, opaque and inaccessible to most price-makers and end-

users, orthodoxy sustains the status quo and stifles innovation. 

1.3.4. Improvement in computational efficiency 

The model in this research is not dependent on calibration, simulation, optimisation or 

estimation.  Orthodox quantitative models, on the other hand, are dependent on at least one of 

these computationally expensive numerical procedures.  By having no need for computationally 

expensive numerical procedures, the model in this research makes one of the most significant 

contributions to improving computational efficiency in the exotic option literature.  This research 

makes redundant the protracted search for marginal computational efficiencies in intermediate 

calculations, with the resulting diminished explanatory power in final calculations, that Ayache et 

                                                                                                                                                         
for exotics coexists with exogeneity for vanillas.  The coexistence of inconsistent dynamics is tolerated because European vanilla 
option price-makers will not accept any error in vanilla pricing, and thus, reject outright orthodox quantitative models. 

7 In practice, exotic option risk is not only hedged with European vanilla options, but with exotic options too.  However, as shown 
in Chapter 3, franchise flows typically get price-makers long-the-barrier, and so initial hedging of unwanted imbalances in book 
high-order greeks is usually completed with liquid European vanilla options to avoid paying away to the interbank exotic option 
market spreads just earned from franchise flows.  That is, “although every [exotic] option is relatively illiquid, the market as a 
whole for the greeks is very liquid” (Taleb, 1997, p. 53).  Once severe imbalances are reduced, price-makers can then time their 
entry into the exotic option market to finesse the shape of their book when market conditions are more favourable. 
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el. (2004, p. 33) lament as “quantitative finance . . . wasting itself in sophisticated mathematical 

exercise”. 

In this thesis, computational efficiencies are material not marginal because complex, 

numerically expensive procedures like calibration are not required.  Calibration is a process of 

reverse-engineering European vanilla option prices under orthodox dynamics from European 

vanilla option prices traded in the market.8

Since calibration is not necessary, orthodoxy’s problems with under-fitting, over-fitting, 

non-stationarity of parameters, etc., are neutralised.  Even traditional model verification tests 

like in-sample closeness-of-fit are redundant.  In this thesis, the error metric is zero, and hence, 

in-sample closeness-of-fit is perfect, because the traded volatility surface is not modified in any 

way. 

  All calibrations have a non-zero error metric 

because fitting models to the market is not perfect.  However, a non-zero error metric means 

that orthodox models mis-price European vanilla options, even though the market they calibrate 

to does not.  Given that small errors in vanillas turn into large errors in exotics, it is surprising 

that exotic option price-makers tolerate errors in vanilla option prices.  European vanilla option 

price-makers do not tolerate errors.  That is why they still price under Garman-Kohlhagen 

dynamics and the exogenous volatility surface, not orthodox quantitative models.  Therefore, by 

not numerically modifying the traded volatility surface, the model in this thesis not only achieves 

significant computational efficiency savings, but also ensures that no mis-pricing is introduced. 

In essence, the model in this research achieves much greater computational efficiency 

savings than orthodox quantitative models because it follows Derman’s (2003, p. 13) advice 

that “one good strategy in attempting to value exotic options that are sensitive to the smile is to 

try to avoid modeling the dynamics of volatility as much as possible”.  Computational efficiency 

savings reduce the computation time required to calculate model prices and model sensitivities 

to factor inputs, especially for a large book of exotic options.  This is an obvious economic 

benefit for price-makers in practice. 

1.4. Structure of the research 

This thesis is structured as follows.  Chapter 2 reviews the theoretical and empirical 

literature on exotic options in general, and exotic FX options in particular.  Special attention is 

given to the contrast between the evolutionary progress of orthodox, quantitative exotic option 

models published in the literature, relative to the revolutionary attributes of the model described 

in Chapter 3.  The aims of the research and the research methodology, which includes the 

testing framework, price tests, performance criteria and data description, are also described in 

Chapter 3.  Chapter 4 presents the results of empirical testing, both absolutely and relative to a 

best practice competitor model.  Chapter 4 reports on coarse grade pricing performance, which 

is routinely performed in the published literature on exotic option pricing, as well as fine grade 

pricing performance, which is unique to this thesis, and which takes into account the known 

market microstructure of the interbank exotic FX option market.  The conclusion is in Chapter 5. 

                                                     
8 The European vanilla FX option market prices under Garman-Kohlhagen dynamics and the traded volatility surface. 



7 
 

CHAPTER 2 

LITERATURE REVIEW 

2.1. Introduction 

The pronounced trend in contemporary exotic option pricing research is to develop ever 

more intricate models in an attempt to make real world complexity endogenous.  Extensive and 

intensive numerical and / or empirical regimes are the norm, not the exception.  In this context, 

developing a model that achieves both pricing accuracy and computational efficiency is 

challenging.  There is a natural tension between accuracy, defined by the extremely fine pricing 

tolerances that are a prominent feature of the fiercely competitive and liquid foreign exchange 

option market,9

Most published research in exotic option pricing also introduces greater model risk than 

is necessary, making the identification, measurement and communication of market risk to 

market practitioners more opaque as a result.  All credible alternatives to the Black and 

Scholes (1973) and Merton (1973) theoretical paradigm require, in some form, calibration to the 

traded volatility surface.  The traded volatility surface is an exogenous correction to the BSM 

model to convert theoretical values for European vanilla options into market prices.

 and efficiency.  Since the minimum pricing tolerance is defined by the market, 

most researchers sacrifice computational efficiency and rely on technological brute-force to 

solve exotic option pricing problems mathematically.  In contrast, this research is guided by the 

fundamental financial economics of the problem, thereby avoiding the protracted search for 

marginal efficiencies in numerical routines which is currently popular in academia and industry, 

and concentrating instead on eliminating such routines altogether, making the prospect of 

substantial computational efficiency savings possible. 

10

The model developed in this research, hereafter referred to as the Trader Model, does 

not require calibration to the traded volatility surface.  The direct correspondence between the 

original highly specialised vanilla market correction and the exotic market correction is 

  These 

exogenous corrections are made in proportion to the ∂vega/∂vol and ∂delta/∂vol of European 

vanilla options.  However, when pricing exotic options to market it is popular to convert, through 

calibration, these highly specific exogenous corrections into arbitrary endogenous estimates.  

For example, Jex, Henderson and Wang (1999) and Lipton and McGhee (2002) calibrate to the 

traded volatility surface to estimate non-traded diffusion parameters such as volatility of 

variance, long-run variance, mean reversion speed, and relative jump heights.  These 

parameters are weakly related at best with the original correction, and have little to no practical 

relevance for price-makers hedging market risk with market-traded instruments.  The loss of 

correspondence between highly specific, BSM static market corrections and estimated dynamic 

model parameters increases model risk, and is a major reason why alternative models 

calibrated to the same traded volatility surface produce markedly different exotic option prices.  

Inferring model dynamics from market statics in the manner described above, is a routine 

practice in contemporary exotic option research which has dangerous repercussions in practice. 

                                                     
9 The market demands at least five digit (0.00001) accuracy for American binary FX options. 
10 The volatility surface is a matrix of volatilities with dimension tenor by delta (that is, Σ = σ(T, Δ)).  BSM has a single point 

estimate for all tenors and deltas for a specific currency pair (σ). 
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maintained.  The information contained in the traded volatility surface is not distorted or diluted 

by forcing it to estimate phenomena for which it is ill-equipped, namely arbitrary, model-specific 

diffusion parameters.  As a result, calibration empirics and numerics are redundant, significantly 

improving computational efficiency.11

2.2. Theoretical research 

  Furthermore, since there is a direct, one-to-one mapping 

between the original vanilla market correction, the exotic market correction and liquid market 

trading strategies, not only is model risk minimised but unique insights for hedging exotic 

options in practice are also obtained. 

2.2.1. Context 

It is now conventional in academia and industry for models of the market price of exotic 

FX options to be based on volatility dynamics which are local, stochastic or jump, or some 

arbitrary combination thereof.  Consequently, most recent research focuses on developing new 

specifications of the functional form of volatility dynamics and / or improving computational 

efficiency.  The Trader Model takes a diametrically opposed perspective.  Rather than 

developing incomplete endogenous models crucially dependent upon arbitrary volatility 

dynamics, the Trader Model instead proposes a simple exogenous procedure for converting 

theoretical values of exotic options into market prices which is analogous to, and internally 

consistent with, the universally accepted benchmark correction methodology practiced in the 

European vanilla option market. 

This general approach has been tried before but it has produced unsatisfactory results.  

Savery (2000), Famery and Cornu (2000), the heuristic model of Lipton and McGhee (2002) 

and Wystup (2003) all exogenously correct exotic option theoretical values for crucial 

convexities not priced by BSM.12  BSM price delta convexity to underlying spot asset prices, but 

do not price vega or delta convexity to volatility.  Since ∂vega/∂vol and ∂delta/∂vol are measures 

of these non-BSM convexities, and (vega neutral) butterflies13 and (delta neutral) risk 

reversals14 are their respective market prices, it appeared that a practical solution to a 

theoretical conundrum had been found.  However, the market prices of ∂vega/∂vol and 

∂delta/∂vol are for European vanilla options and the adjustment to theoretical value is for 

American exotic options.  To date, the ‘solution’ has been to scale convexity adjustments by 

empirics (Lipton and McGhee, 2002) or by touch probabilities (Wystup, 2003) to account for the 

possible early termination of American options.15

                                                     
11 Calibration is an inverse problem where cross-sectional fitting of time-dependent parameters to the strike structure is 

commonplace in the literature.  It is redundant in the proposed research. 

  Both methods are unsatisfactory.  Empirical 

scaling suffers from the same problems as other more complex methods, such as arbitrary 

choices of parameters, sample period and sample frequency; and instability of estimates.  

12 This approach is also a feature of interbank option pricing software, such as Fenics’ ∂Vega. 
13 A vega neutral butterfly is a liquid, commoditised European vanilla option strategy consisting of a long (short) strangle and a 

short (long) straddle, weighted such that net vega and delta is zero. 
14 A delta neutral risk reversal is: 1. A liquid European vanilla option strategy consisting of a long (short) OTM Call and a short 

(long) OTM Put, where the Call and Put have different strikes and identical delta.  Trades in the interbank FX option market with 
a delta hedge to make it delta-neutral.  2. Any option strategy where the slope of the risk changes sign.  This is consistent with 
Taleb’s (1997, p. 275) definition that “a risk reversal for a book manager is the switch in risk across one point”, such as “where 
the gamma and / or vegas flip from positive to negative across one point”. 

15 Savery (2000) and Famery and Cornu (2000) are silent on calculating the quantum of the convexity adjustments for American 
options. 
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Scaling by touch probability is more theoretically appealing, but it does not work for all American 

binary FX options.16

The Trader Model specifies an exogenous procedure for calculating the market price of 

all American binary FX options which is internally consistent with the underlying European 

vanilla FX option market.  It is widely known in relation to models of this class that the requisite 

adjustment to theoretical value is equivalent to the additional hedging costs, positive or 

negative, faced by a price-maker when volatility is variable.

 

17

For example, using EUR data from 7 March 2002, a double-no-touch (DNT) option with 

a theoretical value of 10% has a touch probability of 90%, and an expected stopping time of 

45%.

  However, it is identified for the 

first time in this research that these hedging costs are dependent upon when the touch level of 

the American binary FX option is expected to trade, not the probability of the touch level trading.  

It is this significant and unique departure from conventional wisdom which allows market prices 

to be obtained simply, efficiently and transparently. 

18  That is, whilst the DNT has an extremely high probability of touching, it is still expected 

to last nearly half of its nominal duration.  The Trader Model uniquely calculates the price of the 

DNT option as the cost of the hedge portfolio expiring at the expected stopping time of the DNT 

option. As a result, the traded volatility and interest rate data at the expected stopping time is 

important, not expiry data.19

The volatility surface is an exogenous correction which compromises the strict no-

arbitrage replication theory of BSM, but it is universally accepted as the market benchmark for 

European vanilla options owing to its simplicity, efficiency and transparency.  The market 

accepts sub-optimal volatility dynamics because the exogenous correction delivers both price 

discovery and hedging insights easily understood by price-makers in practice.

  Since the DNT option is highly likely to terminate prior to expiry, 

constructing a hedge portfolio consisting of European vanilla options which cannot terminate 

until expiry as per Lipton and McGhee’s heuristic model, and Wystup, creates a residual 

unhedged risk once a touch level trades.  This thesis shows that Lipton and McGhee and 

Wystup’s use of expiry dates in conjunction with arbitrary scaling factors is only required 

because the risk of early termination has not been correctly valued. 

20

                                                     
16 Wystup’s (2003) method is specific to American One Touch options (single touch level).  It fails for even the simple extension to 

two touch levels (American Double No Touch options).  Therefore, Wystup’s (2003) model prices a close proxy of, but not the 
‘true’ risk inherent in American One Touch options. 

  It is 

conspicuous then that advances in exotic option pricing are complex, inefficient and opaque.  

The recent preoccupation with volatility dynamics in the literature has resulted in interpretations 

of market risk which are unintuitive or counter-intuitive for hedging.  For example, most 

incomplete models define market risk as an arbitrary combination of non-traded parameters, 

which does not provide any insight to price-makers hedging market risk with market traded 

instruments.  In contrast, the Trader Model defines market risk as a simple portfolio of directly 

quoted, high-volume market trading strategies such as butterflies and risk reversals.  Therefore, 

17 Option prices have long been interpreted as accumulated hedging costs.  For example, dynamic delta hedging, which is 
synonymous with BSM, is a hedging strategy with an accumulated cost (value). 

18 Spot of 0.8750, ATM vol of 0.0865, domestic (foreign) interest rates of 0.0195 (0.0341).  A 3 month EUR DNT option with a 
theoretical value of 10%, has a touch probability of 90.02% and expected stopping time of 44.6%. 

19 Volatility data is for the period from today to the expected stopping time.  Interest rate data is for the period from the spot delivery 
date to the delivery date for the expected stopping time. 

20 Pricing and hedging are inextricably linked, as hedging is concerned with how option prices change given a change in one or 
more of the models’ arguments. 
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it is possible for a price-maker to understand market risk and to transact in the market to reduce 

those risks he or she is unwilling to take. 

It is not possible to find a single specification of volatility dynamics which will explain all 

past, present and future market prices of exotic options.  Instead there is an abundance of 

plausible volatility dynamics which produce different, model-specific prices.  Even if ‘true’ 

volatility dynamics were found, the plethora of non-traded parameters endemic to this class of 

models means that market risk is defined in a manner which cannot be translated into hedging 

strategies in the market.  If market risk is to be successfully intermediated by sell-side banks 

and transferred at economic value by their corporate and institutional clients, then accurate 

pricing and hedging insights cannot continue to be mutually exclusive.  Model mathematics and 

market economics must be in synch, not unconnected. 

Ayache et al. (2004, p. 36) conclude with the “disappearance of the model” because it is 

impossible to find “the absolutely true process and the absolute pricing algorithm”.  While being 

sympathetic with their conclusion, this thesis refutes their ‘solution’ of introducing even more 

calibration and parameterisation to infer market processes. Like Ayache et al. (2004), the 

Trader Model proposes less structure not more.  Unlike Ayache et al. (2004), pre-eminence is 

given to traded volatility surface statics, not smile dynamics.  Market prices of American binary 

FX options are dependent upon the shape and level of the volatility surface because price-

makers use European vanilla options to hedge unwanted net book risks.  This is the real direct 

economic relationship between the vanilla volatility surface and pricing exotic options to market.  

The artificially imposed mathematical relationship - calibrating arbitrary volatility dynamics to the 

surface - is not a close representation of this market activity.  Volatility surfaces are a static 

construct, and exotic option pricing problems exist because dynamics cannot be inferred from 

statics without introducing model specificity.  Ayache et al. (2004, p. 36) rely on numerical brute-

force to obtain smile dynamics from which a “hedging strategy should more or less impose itself 

naturally”.  The Trader Model, on the other hand, directly identifies a unique model-independent 

optimal hedging strategy consisting of a portfolio of liquid market-traded instruments, thereby 

rendering the unverifiable functional form of smile dynamics an unnecessary distraction.21

As attributed to Avellaneda in Ayache et al. (2004, p. 11), guessing the volatility process 

is the same as guessing the price.  For some reason, the former is acceptable in academia and 

industry, even though the latter is not.  In contrast, the approach taken in this research is to 

tackle the problem from the perspective of the price-maker who must ultimately hedge their 

book.  In the Trader Model, hedging is a real world concept, not a theoretical construct.  It is not 

restricted to completeness, where self-financed dynamic delta hedging with the underlying 

asset eliminates all option risk.  Instead, it recognises that hedging is a book, not individual 

option, phenomenon.  Price-makers do not hedge each option perfectly, they hedge books 

optimally, as “it is always preferable to be roughly hedged against a broad set of eventualities 

  

Using a common approach to value both sides of the book, that is, by valuing American exotic 

options and their European vanilla option hedges consistently, reduces model risk as one gains 

“insulation from the risks of the formula” (Taleb, 1997, p. 259). 

                                                     
21 In BSM, self-financed dynamic hedging with the underlying asset completely eliminates all risk.  In Ayache et. al (2004), 

‘optimal’ hedging does not eliminate all risk, but rather, minimises the variance of the profit and loss of the hedge portfolio. 
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than exactly hedged against a narrow parameter” (O’Connell cited in Taleb, 1997; p. 115).  

Therefore, in the Trader Model framework, the market price of an American binary FX option, 

just like the proposed optimal hedging strategy, is not perfect.  Rather, the Trader Model has a 

more modest, pragmatic ambition similar to Ayache et al.’s (2004, p. 36) search for the “right 

tool” to guide decision-making in practice.  However, instead of the hedging strategy being a 

byproduct which “very often corresponded to the trader’s, model-independent intuition”, the 

Trader Model explicitly constructs a hedging strategy based on traders’ model-independent 

intuition, which subsequently results in a unique market price (Fig. 2.1).22

 

 

2.2.2. Significance 

American binary options, both directly and indirectly through reverse barrier options, are 

amongst the most popular and risky of all exotic financial derivative products in the foreign 

exchange market.  Their riskiness poses significant problems for the sell-side financial 

institutions who offer exotic derivative products to corporate and institutional clients, as well as 

                                                     
22 All price-makers, irrespective of the modelling methodology they use to price, hedge net book risks with liquid, commoditised 

European vanilla option strategies like zero delta straddles, vega neutral butterflies and delta neutral risk reversals.  Hence, even 
though pricing is highly model-dependent, hedging is relatively model-independent.  Whilst it is preferable to trade on both sides 
of the exotic option market to minimise model risk, price-makers in the first instance at least hedge an unwanted accumulation of 
risk with European vanilla options, to avoid paying away as a price-taker in the interbank market, exotic option bid-ask spreads 
just earned as a price-maker from their franchise flows.  Once primary risks are smoothed, price-makers can then time their entry 
to the exotic option market to finesse their book hedge, when conditions are more favourable. 

In examples 3 and 4, bid-ask 
spreads (A-B) are identical, 
but bid (B) and ask (A) 
prices are different.  If the 
proxies imply that market 
prices should trade above 

    
    

   
    

     
    

    
     

   
  

 

No consensus on 
σ, and therefore S 
processes in 
academia and 
industry. 

S is the underlying asset price, σ is volatility, VS is the volatility surface, and HERO is hedging error at replicating 
optimum. 

Specify dynamic process 
 for S (affected by σ process) 

Specify dynamic process 
 for σ 

Obtain market price of the 
exotic option 

Devise optimal hedging 
strategy to min(HERO) 

Specify dynamic process 
 for S 

Construct and price the 
optimal hedge from VS 

Obtain market price of the 
exotic option 

Orthodox Trader Model 

Market agrees 
on process for 
S and VS for 
vanillas. 

Market hedge 
for market risk. 

Calibration is numerically 
extensive and intensive, 
and model-specific. 

Calibrate non-market traded 
parameters in σ process to 

VS using least squares 

Fig. 2.1.  Schematic summary of orthodox and Trader Model approaches. 
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the financial regulators responsible for their prudential supervision.  The problems stem from 

the lack of consensus in, and yet widespread application of, exotic option valuation models in 

the foreign exchange market.  For example, valuation models are used by sell-side financial 

institutions: 

• to price hedging and other strategies for corporate and institutional clients; 

• to price bank competitors directly or indirectly via brokers in the interbank 

market; 

• to manage market risk at book and bank levels; 

• to calculate regulatory capital under Basel II; 

• to report profits internally and externally; and 

• to review trader performance and award performance bonuses. 

Whereas the European vanilla option market has BSM and the exogenous traded 

volatility surface, there is no comparable market price benchmark for the most popular exotic 

options, by volume, in the foreign exchange market.  Therefore, it is not just possible but likely 

that two interbank counterparties to the same transaction report different profits, risk profiles 

and capital adequacy requirements. 

The BSM methodology was first applied to European vanilla FX options by Garman and 

Kohlhagen (1983) and Grabbe (1983), and was extended to American binary options by 

Rubinstein and Reiner (1991a), Kunitomo and Ikeda (1992) and Hui (1996).  The market refers 

to these extensions as the theoretical value of the American binary option.  Theoretical values 

are a key reference point for exotic option price-makers and interbank brokers.23  The 

widespread acceptance of the BSM inspired theoretical value allows for a significant and 

convenient reduction in the dimension of the market price problem. Theoretical values are 

derived under spot FX rate dynamics24

( )t d f t t tdS r r S dt S dWσ= − +

 described by Eq. (2.1), where St is the spot FX rate, rd 

(rf) is the domestic (foreign) interest rate, σ is the volatility, and dWt is a Wiener process.  

Theoretical values for European vanilla FX options, and American binary FX options with (i) a 

single continuously monitored barrier (B), and (ii) two continuously monitored barriers (U, L), are 

shown in Eq’s (2.2), (2.3) and (2.4), respectively.  In each case, T-t is the annualised term to 

maturity and N(·) is the cumulative normal distribution function. 

 (2.1) 

 

( ) ( ) ( ) ( ) ( )f dr T t r T t
t

TVVanilla S e N d Ke N dφ φ φ φ− − − −
+ −= −  (2.2) 

where 
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  
      

 ; 

and 1φ =  for a Call option; 1φ = −  for a Put option 

 

 

                                                     
23 The theoretical value of an exotic option must first be agreed between banks, or between banks and interbank brokers, before an 

exotic option can be priced to market. 
24 These dynamics are specified in domestic risk neutral measure terms. 
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and 1ω =  for payout at end; 0ω =  for payout at hit 
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It is well known that there is often a substantial difference between theoretical values for 

American binary FX options obtained under the BSM paradigm, and actual traded market 

prices.  The difference is called the market supplement and it can be positive or negative 

depending upon financial market conditions and exotic option contract specifications.  Table 2.1 

shows, by way of illustration, the variation in the size of the market supplement for American 

binary FX options in published research. 

Table 2.1 
Size of the market supplement for American binary FX options. 

Option (FX) Min. (Pct) Max. (Pct) Author 
One Touch (JPY) -5.0 +1.5 Jex, Henderson and Wang (1999) 
One Touch (EUR) -3.2 +2.0 Hakala and Wystup (2002) 
Double No Touch (EUR) +1.7 +5.7 Lipton and McGhee (2002) 

In all instances, option maturity was three months.  As an example, in Jex et al. (1999), a OT with a theoretical value of 
30% had a market value of 25%, with bid-ask prices of 23.75% and 26.25%, respectively. 
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The implications of a non-zero market supplement are profound for sell-side financial 

institutions who use orthodox BSM methodology in the foreign exchange market: 

• price-making in the FX option market is a low-margin, high-volume business, so 

pricing errors undermine the viability of the business as a going concern; 

• market risk is incorrectly measured and inefficiently transferred, leading to extra 

costs in the real economy; and 

• profitability, dealer bonuses and regulatory capital bear little relation to the 

actual market risk intermediated by the financial institution. 

The market supplement is non-zero because BSM methodology does not price vega 

convexity to volatility and delta convexity to volatility, which are crucial factors affecting 

American binary FX option prices in practice.  BSM only prices delta convexity to the underlying 

spot exchange rate.  There have been several attempts to model market prices of exotic 

options, with mixed success.  The following is a review of representative models.  The review 

starts from the simplest extension of BSM and ends with the most popular contemporary 

models used in academia and industry. 

2.2.3. Contemporary models 

Term structure of volatility models 

BSM’s assumption of constant volatility (σ) in the dynamics of the underlying asset 

resulted in a term structure of volatility equal to zero.  Merton (1973) generalised the BSM 

model to incorporate the non-zero term structure of volatility that was observed in the market by 

specifying volatility as σ = σt(t) instead.  However, Merton’s generalisation did not improve the 

pricing of out-of-the-money (OTM) Calls and OTM Puts to market. 

Local volatility models 

Local volatility models are one of the simplest extensions to BSM and were pioneered 

by Dupire (1994), Derman and Kani (1994) and Rubinstein (1994).  Instead of modelling the 

underlying asset price dynamics as a geometric Brownian motion with constant volatility (σ), it is 

generalised by specifying volatility as a deterministic function of underlying asset prices and 

time, σ = σL(St, t), per Eq. (2.5). 

( ) ( ) tttLtfdt dWSt,SdtSrrdS σ+−=  (2.5) 

The simplicity and transparency of the method are its major strengths.  However, there 

are several key weaknesses.  In a modelling context, the dynamics of volatility under this 

process are unrealistic in that smiles dissipate over time, whereas they persist in the market.  

Furthermore, (local) transition probabilities can be negative, which is counter-intuitive, and one 

must also interpolate and extrapolate sparse data to define the deterministic functional form of 

σL(St,t), which is known as an ill-posed inverse problem (Ayache et al., 2004).25

                                                     
25 Interpolations and extrapolations also require the financial engineer to make further assumptions as to the functional form of the 

smoothing equation, e.g. quadratic, cubic, polynomial, etc. Method choice is price sensitive for both European vanilla and 
American exotic options (e.g. in one simple ad hoc test conducted by the author on a EUR DNTTV = 0.10, the variation in the 
market supplement was 0.0034 between polynomial and cubic spline methods, ceteris paribus). 

  Even though 

market prices of European vanilla options are matched by construction, ∂vega/∂vol is typically 

underpriced by local volatility models, leading to significant discrepancies between model and 

market prices of American binary FX options (Jex, Henderson and Wang, 1999; Lipton and 
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McGhee, 2002).  Fig. 2.2 shows the magnitude of the problem for EUR DNT options in Lipton 

and McGhee (2002), where local volatility model prices are consistently well below market bid 

prices.  Model prices falling outside market bid-ask spreads is economically unsustainable for a 

low-margin, high-volume business such as exotic FX option price-making.26

 

 

 
Fig. 2.2.  Local volatility model prices versus market prices for DNT options reported in Lipton and 
McGhee (2002).  LV is the local volatility model price subtract the theoretical value (TV), and Mkt is 
the actual traded market price subtract the theoretical value.  If DNT options actually traded at 
theoretical value (i.e. the market supplement is zero), Mkt would plot on the x-axis. 

Static hedging models 

Static hedging models were pioneered by Derman, Ergener and Kani (1994), Bowie 

and Carr (1994), Chriss and Ong (1995), and Carr, Ellis and Gupta (1998).  The modus 

operandi of static hedging is to create a portfolio of European vanilla options whose value is 

identical to the payoffs of the exotic option along its temporal (expiry) and spacial (barrier price 

level(s)) boundaries.  Payoffs are the focus, not probabilities.  Unfortunately, one has to choose 

arbitrary discrete points in time to replicate the payoff at the barrier level(s), as theory provides 

no assistance in choosing replication points for continuously monitored American binary FX 

options.  Furthermore, the choice is price sensitive.  While a ‘set and forget’ static hedge is 

attractive, as a concept, because of the extreme instability of greek risks for American binary 

options, one “should be warned against the static replication of instruments that have a stopping 

time (i.e. an unstable duration) with instruments that have a constant duration” (Taleb, 1997, 

p. 256).  Also, in the presence of even minor transaction costs static hedging portfolios cost a 

lot to establish and unwind, such that “in most cases . . . the [static] replication will be 

impractical” in financial markets (Taleb, 1997, p. 256).  Static hedging with options is a 

significant departure from BSM’s dynamic hedging with the underlying asset.  Whereas dynamic 

replication under BSM is riskless and strictly no-arbitrage, static replication is not.  Static 

                                                     
26 Using the same bid-ask spreads as Lipton and McGhee (2002), for DNTTV = 0.10, a price-maker can lift a local volatility model 

ask price, and simultaneously give a market bid price, and earn a riskless immediate profit of €10,000 per €1,000,000 payout. 
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replication is more pragmatic, aiming for a portfolio loss distribution peaked at zero while 

minimising the transaction costs of replication.27

Heuristic models 

 

The theory underpinning heuristic models is that the traded volatility surface is an 

exogenous market price correction for ∂vega/∂vol and ∂delta/∂vol in European vanilla options 

which is not priced by BSM, and butterflies and risk reversals are the respective market prices 

of these convexities.  Therefore, it should be possible to obtain the market price of an American 

binary FX option by making an exogenous correction for its ∂vega/∂vol and ∂delta/∂vol.  A 

hedge portfolio is constructed with OTM Put and OTM Call options with the same expiry as the 

American binary FX option and arbitrary delta (15 delta in Lipton and McGhee, 25 delta in 

Wystup).28

W is a 2x1 column vector of European vanilla option weights; 

  If: 

M is a 2x2 matrix of European vanilla option ∂vega/∂vol and ∂delta/∂vol; and 

E is 2x1 column vector of American binary option ∂vega/∂vol and ∂delta/∂vol, 

then the hedge portfolio that eliminates (local) market risk is -1W=M E , and the exotic market 

supplement is calculated by multiplying the weights (W) of the OTM Put and OTM Call options 

by their respective market supplements (Lipton and McGhee, 2002, p. 82 has a complete 

description and worked example of this process). 

This intuitive approach was pioneered by market practitioners (Savery, 2000; Famery 

and Cornu, 2000) because it is internally consistent with the market price benchmark for 

European vanilla options which is universally accepted in practice, and it clearly expresses the 

hedge portfolio in terms of market-traded instruments.  However, to date, heuristic models have 

not lived up to their promise.  Reconciling the price of volatility convexities defined by European 

vanilla options with corrections required for American exotic options has not been possible 

without resorting to weighting schemes such as empirics (Lipton and McGhee, 2002), touch 

probabilities (Wystup, 2003), and arbitrary constants (Wystup, 2006).  To date, these published 

weighting schemes do not work for all American binary options.  ∂Vega is a commercial vendor 

system which weights the pure convexity correction by a reverse-engineered scaling factor, 

which is a curious response borne out of need rather than logic, especially for products which 

are multi-dimensionally unstable like exotic options.  In effect, ∂Vega needs a price to calculate 

the price.29

 

  Unlike its heuristic predecessors, the Trader Model solves this conundrum by 

defining market risk and the optimal hedge portfolio in terms of low- and high-order greeks at 

the expected stopping time of the American binary option, not at its expiry.  Furthermore, the 

Trader Model does not eliminate local risk, but instead focuses on the net contribution to book 

risk of the American binary option, and how price-makers smooth these global risks in practice. 

 

                                                     
27 It can be argued that transaction costs are transferred, rather than minimised, owing to the non-trivial establishment costs of the 

static hedge portfolio. 
28 15 delta means a Call option with a delta of 0.15 and a Put option with a delta of -0.15.  For FX options, the delta is usually the 

spot delta.  Longer-dated instruments use forward deltas by convention. 10 delta and 25 delta pillars are always quoted directly in 
the market. 15 delta is quoted on request, but is more usually obtained by interpolation, which makes that delta pillar subject to 
the interpolation constraints imposed by the financial engineer.  This is a source of model risk. 

29 ∂Vega is also undermined by the fact that it violates no-arbitrage boundaries, such that it is possible to extract riskless profits by 
trading exotic options with its users.  Therefore, it is not used as a pricing performance benchmark in this thesis. 
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Implied probability models 

It is possible to reverse-engineer market, as distinct from theoretic probability densities 

from option prices (Breeden and Litzenberger, 1979).  While it is possible to re-specify the 

underlying asset price diffusion to factor in the market inspired implied probability, it suffers from 

the same problem, namely, information from European option prices being used to make 

inferences about American option prices.  As noted in Jex et al. (1999, p. 5): 

“European option [market] prices depend only upon the expected 

distribution for the asset value at the maturity of the option, and as such 

provides information about how this distribution differs from the [BSM] 

lognormal distribution.  The smile does not directly provide information 

about the process that leads to this non-lognormal distribution . . . a 

number of different processes could be postulated which would match 

the observed volatility smile and yet give different values for the same 

path dependent [exotic] option”. 

Implied probability models use the probability structure for the nominal duration to re-

specify the underlying asset price dynamics.  Since smiles imply distributions, and smiles are 

different for each maturity, time dependent parameters are required to incorporate all the 

information in the volatility surface.  Brigo and Mercurio (2000, 2002) propose explicit asset 

price dynamics that are consistent with a given parametric risk-neutral (forward) distribution.  

While they offer some flexibility, it comes at the non-trivial cost of an arbitrarily large number of 

non-market traded parameters, potentially causing slow computation times and overfitting 

problems as well as providing no financial economic insights into hedging in the market. 

Stochastic volatility models 

Stochastic volatility models are the most popular in the literature for modelling the 

market price of exotic options (e.g. Hull and White, 1987; Melino and Turnbull, 1990; Stein and 

Stein, 1991; Heston, 1993; Derman, 1998; Papanicolaou and Sircar, 1999; Britten-Jones and 

Neuberger, 2000).  The principle of volatility varying stochastically is plausible, and the 

dynamics of stochastic volatility models are more realistic in that smiles persist.  But very little is 

known about volatility dynamics.  Hull and White’s (1987) process for the instantaneous 

variance of spot FX returns30

( ) tttfdt dWSdtSrrdS υ+−=

 follows a geometric Brownian motion to ensure that variance is 

strictly positive.  Stein and Stein’s (1991) mean-reverting Ornstein-Uhlenbeck process captures 

the important real-life characteristic that variance mean-reverts, but at the considerable cost of 

allowing variance to be negative, which is counter-intuitive.  Heston’s (1993) mean-reverting 

Feller (square-root) process ensures that variance not only mean-reverts but is also strictly 

positive (Eq. (2.6)). 

 

( ) dZdtd υευθκυ +−=  
(2.6) 

However, Heston (1993) is not unique or even optimal but one of a family of plausible 

stochastic volatility models.  This is problematic because: 

                                                     
30 Instantaneous variance equals the instantaneous volatility squared. 
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• Plausibility is measured by reference to time-series of historic spot FX rates 

and / or current European vanilla option prices, and both sources are unstable.  

For example, Derman (1999) shows that volatility regimes can be highly 

temporally unstable, such that the actual regime is unknown at present and can 

only be established with hindsight.  Since discovery only occurs when it is no 

longer useful, there is a real risk that prices obtained via a plausible process 

calibrated under one regime will become less plausible and possibly even 

implausible under another regime. 

• Different stochastic volatility dynamics return identical European vanilla option 

prices by construction, but different exotic option prices.  Theory cannot a priori 

offer guidance as to which dynamics are better for pricing an exotic option at 

present.  Given that prices calculated by stochastic volatility models are highly 

sensitive to the arbitrary choice of volatility dynamics, this problem has great 

economic significance, not just mathematical inconvenience. 

Non-traded parameters of the volatility process such as long-run variance (θ), mean 

reversion speed (κ) and volatility of variance (ε) are fitted to the traded volatility surface via 

numerically cumbersome and intensive calibration routines.  The volatility surface does not 

define these factors in the European vanilla option market, so it is tenuous at best to use the 

surface to define these parameters in the American exotic option market.31  While fitting is 

possible, Andersen and Andreasen (2000, p. 232) note that it often requires “unrealistically high 

negative correlation between the [underlying asset] and [its] volatility”.  This is because 

“stochastic volatility is modelled as a diffusion and hence only allowed to follow a continuous 

sample path, [therefore] its ability to internalize enough short-term kurtosis and thus to price 

short-term options properly is limited” (Bakshi, Cao and Chen, 1997, p. 2005).  Using statics in 

the present (volatility surface) to define dynamics in the future (arbitrary volatility diffusion) is 

questionable, and it is only really done because it is preferred to the alternative of using historic 

time series, even though “there are no obvious relationships between market and model 

parameters which makes estimation of model parameters difficult to verify” (Hakala and Kirch, 

2002, p. 249).  Stochastic volatility models typically over-price ∂vega/∂vol, causing exotic option 

model prices to diverge significantly from market prices (Jex, Henderson and Wang, 1999; 

Lipton and McGhee, 2002).  Fig. 2.3 shows the magnitude of this over-pricing for EUR DNT 

options.  In Fig. 2.3, the model price consistently exceeds the market’s ask price, which is 

unsustainable for a high volume, low margin exotic option price-making business.32

The price-maker’s risk is also not described in terms of market-based hedging 

strategies using market-traded instruments.  In fact, hedging is an afterthought, considered only 

after the price has already been calculated.  Given that there is no whole-of-volatility-surface 

hedge traded in the market, price-makers are by necessity forced to trade a subset of the 

surface to hedge risk.  Stochastic volatility models are silent on how to reconcile prices derived 

from a non-traded whole-of-volatility-surface, to the cost of hedging with a subset of traded 

 

                                                     
31 The volatility surface is defined by the term and strike structures of volatility, which are based on zero delta straddles, butterflies 

and risk reversals.  Price-makers do not consider θ, κ, ε or any other arbitrary non-traded parameter prior to making prices in 
straddles, butterflies or risk reversals. 

32 Using the same bid-ask spreads as Lipton and McGhee (2002), for DNTTV = 0.20, a price-maker can give a stochastic volatility 
model bid price, and simultaneously lift a market ask price, and earn a riskless immediate profit of $5,000 per $1,000,000 payout. 
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options.33

 

  Because volatility is stochastic and not perfectly correlated with the underlying asset 

price’s geometric Brownian motion, it is not possible to hedge perfectly all risk with the 

underlying asset alone, another option must be introduced. 

Fig. 2.3.  Stochastic volatility model prices versus market prices for DNT options reported in Lipton 
and McGhee (2002).  SV is the stochastic volatility model price subtract the theoretical value (TV), 
and Mkt is the actual traded market price subtract the theoretical value.  If DNT options actually 
traded at theoretical value (i.e. the market supplement is zero), Mkt would plot on the x-axis. 

Jump diffusion models 

Models based on jump diffusion processes for the underlying asset have been explored 

by Merton (1976), Andersen and Andreasen (2000), Martinez and Senge (2002), among others.  

Martinez and Senge’s (2002) jump diffusion process is shown in Eq. (2.7).  Discontinuous jump 

processes have some theoretical appeal and also some empirical support, for example, they 

model steep skews in short-dated European vanilla options particularly well.  However, “like 

stochastic volatility models, jump diffusion models are challenging to handle numerically” 

(Andersen and Andreasen, 2000, p. 232), since the calibration of non-traded jump diffusion 

parameters such as jump intensities (λ) to the volatility surface is notoriously difficult.  Jump 

models are incomplete, in that all risk cannot be eliminated by dynamic delta hedging with the 

underlying asset alone.  Like stochastic volatility models, jump models also do not give intuitive 

insights into how to hedge the resulting market risk. 

( ) ttttttfdt dNSdWSdtSrrdS γσλκ ++−−=  (2.7) 

Other authors, such as Matytsin (1999) and Duffie, Pan and Singleton (2000) propose 

dynamics which include jumps in volatility as well as jumps in asset price.  The main reason for 

adding this non-trivial layer of complexity is to achieve a closer degree of fit to the volatility 

surface through the introduction of additional free parameters.  In addition to the risk of over-

fitting, Duffie et al. (2000, p. 1365) shows that “adding jumps in volatility may attenuate . . . the 

overpricing for [European vanilla] options that are not too far out-of-the-money”, but “actually 

exacerbates the overpricing for far out-of-the-money [European vanilla options]”.  Unfortunately, 
                                                     
33 Whilst each option underlying the volatility surface is traded, it is not possible to trade them all at once in a way that locks-in the 

model calibration. 
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errors in the pricing of European vanilla options compound in the pricing of exotic options.  

Matytsin (1999) shows that adding volatility jumps leads to very different exotic option prices 

compared to other models calibrated to the same volatility surface. 

Universal volatility models 

Bates (1996), Jex et al. (1999), Blacher (2001) and Lipton and McGhee (2002) are 

examples of what are now called universal volatility models.  The Lipton and McGhee (2002) 

model is shown in Eq. (2.8). 

( ) ( ) ( )j
t d f t L t t t t tdS r r S dt S , t S dW e 1 S dNυσ= − + + −  

( ) dZdtd υευθκυ +−=  
(2.8) 

Universal volatility models are an arbitrary mix of local, stochastic and / or jump models.  

Mixing processes is theoretically questionable but appears to have some merit on pragmatic 

grounds, in that if local volatility underprices ∂vega/∂vol and stochastic volatility overprices 

∂vega/∂vol, then a combination of the two ought to generate more realistic exotic option prices.  

Fig. 2.4 shows that this is the case in Lipton and McGhee (2002).  Nevertheless, calibration and 

hedging difficulties remain, especially where jump diffusion is included, as there are now even 

more non-traded parameters in the diffusion, and “such a model would . . . be difficult to handle 

numerically and slow to calibrate accurately to traded prices” (Andersen and Andreasen, 2000, 

p. 233).  Taleb’s (1997, p. 109) counsel that “it is better to use a model with the smallest 

number of parameters to estimate” is ignored.  No matter how complex the guess of the 

volatility dynamics, it still remains a guess of the exotic option price because “smile models (e.g. 

local volatility, jump-diffusion, stochastic volatility, etc.) may agree on the vanilla prices and 

totally disagree on the exotic prices and the hedging strategies” (Ayache et al., 2004, p. 1).  

Theory gives us little to no guidance, especially given Derman’s (1999) unstable volatility 

regimes, as to how to differentiate from among the many competing volatility models which 

model will be best for pricing an exotic option at present. 

Universal volatility models, like their constituent local, stochastic and jump elements, 

are silent on the issue of hedging.  In fact, model prices are obtained independently of hedge 

construction.  Hedging is an afterthought in these models because hedging is by necessity 

conducted with traded instruments in the market, whereas universal volatility model risk is 

defined in terms of non-traded parameters.  This fundamental disconnect between model price 

and market hedging cost is a significant source of model risk which undermines both the quality 

of reported profits and their sustainability over the medium-term.34  Calibration to the volatility 

surface does not overcome this problem, because price-makers hedge with a small subset of 

European vanilla options, not the entire surface.35

Furthermore, calibration has a non-zero error metric.  That is, even though the traded 

volatility surface is arbitrage-free, the universal volatility model will mis-price European vanilla 

 

                                                     
34 Sell-side OTC exotic option trading desks report asymmetric profits.  Exotic options are marked-to-model, and the vanilla options 

used to hedge them are marked-to-market.  If exotic options are marked to the universal volatility model, then the profit and loss 
so calculated bears no relation to the cost of hedging them.  Price-makers hedge high-order greek risks with (vega neutral) 
butterflies and (delta neutral) risk reversals, irrespective of which model they use to price.  Jump intensity, mean-reversion speed, 
etc. do not quantify the costs of these hedges.  This is a significant problem as exotic option trading desks are a low-margin, high 
volume business. 

35 There is no whole-of-volatility-surface hedge traded in the market. Therefore, traders by necessity must use a subset of traded 
European vanilla options to hedge exotic options. 
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options because the calibration is not perfect.  This is one reason why the universal volatility 

model is not used by price-makers to price European vanilla options to market.  Given that 

errors in the vanilla surface compound into large errors in exotic option prices, it is curious that 

exotic option price-makers are prepared to use a model that cannot price European vanilla 

options without error. 

 

 
Fig. 2.4.  Universal volatility model prices versus market prices reported in Lipton and 
McGhee (2002).  UV is the universal volatility model price subtract the theoretical value (TV), and 
Mkt is the actual traded market price subtract the theoretical value.  If DNT options actually traded 
at theoretical value (i.e. the market supplement is zero), Mkt would plot on the x-axis. 

Lipton and McGhee (2002, p. 85) conclude that “while both local and stochastic volatility 

models produce price corrections in qualitative agreement with the market, only a universal 

volatility model is capable of matching the market properly”.  Jex et al. (1999) and Ayache et 

al. (2004) arrive at similar conclusions.  Table 2.2 is a summary of contemporary exotic option 

modelling methods. 
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Table 2.2 
Summary of contemporary exotic option modelling methods. 

Local Volatility Models 
Good 
Easy to implement.  Returns the market price of European vanilla options. 
Bad 
Ill-posed inverse problem.  Interpolate and extrapolate sparse data to define the deterministic 
functional form of σL.  Conditional probabilities can be negative. 
Severe 
Smile dynamics are incorrect.  Underprices the smile effect in exotic options. 
Stochastic Volatility, Jump Diffusion and Universal Volatility Models 
Good 
Plausible smile dynamics.  Returns the market price of European vanilla options up to a 
closeness-of-fit error metric. 
Bad 
Arbitrary guess of the functional form of the volatility process (there are entire families of 
stochastic vol, jump diffusion and universal vol models).  Calibrating to the volatility surface is 
theoretically tenuous and computationally inefficient.  Fitting is poor for short-maturity options 
(stochastic vol) and extremely cumbersome computationally (jump, universal). 
Severe 
Guessing the volatility process is the same as guessing the price.  The model price is highly 
sensitive to the arbitrary choice of the functional form of volatility process.  The model price is 
highly sensitive to the arbitrary choice of calibration method.  Stochastic vol overprices the 
smile effect in exotic options. 

 

2.3. Empirical research 

2.3.1. Introduction 

Empirical research in exotic options is constrained by the limited availability of traded 

market input and output data.  As a result of this binding constraint, there are few examples of 

market-grounded, empirical research in the literature.  In this thesis, published empirical 

research is classified according to the two central themes of (i) model pricing accuracy and 

(ii) the relative efficiency of computational methods.  Only pricing accuracy is directly relevant to 

this thesis.  The Trader Model does not employ computational methods synonymous with 

contemporary competitor approaches, namely parameter estimation and calibration, thereby 

making the conventional search for marginal computational efficiencies redundant. 

2.3.2. Pricing 

Jex, Henderson and Wang (1999) and Lipton and McGhee (2002) are two examples of 

published exotic option pricing research that are particularly relevant to this thesis, owing to 

their exclusive focus on American binary FX options and their empirical testing is grounded in 

market traded data.  Jex et al.’s and Lipton and McGhee’s empirical research have many 

similarities, in that model pricing performance is analysed against actual traded market prices 

as well as competitor model benchmarks for: 

• one option maturity; 

• one currency pair; 

• one binary option type; and 

• one valuation date. 
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Both of these papers are handicapped by small data sets, which means that they can 

conduct only a very simple analysis of model pricing performance.  Both papers graphically plot 

model price outputs against traded market prices and competitor model benchmark prices, they 

do not report any descriptive statistics or other performance measures.  The inference is that 

because their model prices plot closer to market prices than competitor model benchmarks, 

then their pricing performance is better. 

This inference may be misleading.  It is bad practice to generalise from very specific 

market scenarios.  If only one option maturity, one currency pair, one binary option type and 

one valuation date is analysed, one cannot ascertain whether pricing performance is robust to a 

change in maturity, currency, option type and / or valuation date. In addition, Jex et al. and 

Lipton and McGhee both chose competitor model benchmarks which were known in advance to 

be deficient.  Setting a low performance standard undermines the rigour of their analysis and, 

therefore, makes one less confident in the conclusions drawn. 

In contrast, the scale and scope of the data in this thesis is much more comprehensive 

than both Jex et al. and Lipton and McGhee (refer to section 3.5 ‘Data Description’), such that 

the analysis is more rigorous and the conclusions more robust.36

2.3.3. Computational methods 

  Furthermore, the competitor 

model benchmark chosen in this thesis is widely used in the financial markets, has won 

numerous industry based awards and, according to a prominent, high-profile financial engineer, 

has “become a standard reference for pricing exotic FX options up to the market” (Wystup, 

2003). 

Schoutens, Simons and Tistaert (2004) empirically tested, among other things, the 

impact of process choice on exotic option prices.  This is research with considerable economic 

significance given that, as noted by Avellaneda, “guessing the volatility process is the same as 

guessing the price” (cited in Ayache et al., 2004, p. 11).  Schoutens et al. found that the initial 

‘guess’ of the volatility process resulted in extraordinarily large price variation for exotic options 

relevant to this thesis (Table 2.3).  They additionally found that price variation owing to the 

arbitrary choice of calibration method was as much as 13%.  Given that American binary FX 

options are quoted to five decimal point accuracy in the interbank market, price variation of this 

magnitude is unacceptably large. 

 

 

 

 

 

 

                                                     
36 The quality of the data in this thesis also appears to be of higher quality than Jex et al. and Lipton and McGhee.  In this thesis, 

every exotic option market price actually traded in the interbank exotic FX option market.  In contrast, Jex et al. report the market 
prices for eight JPY up OT options, and eight JPY down OT options.  All 16 OT options had three month maturities.  It is 
extremely unusual for 16 JPY OT options with identical maturities to trade in the interbank market in the same day, let alone at 
the same time.  Hence, at best there is a non-synchronous data problem, and at worst, the ‘market’ prices did not actually trade but 
were merely quoted by different counterparties, which means they are only model prices not market traded prices.  Lipton and 
McGhee have the same issue, except for EUR DNT options.  It is not known how many data points were used in Lipton and 
McGhee, because output data were disclosed as continuous lines, not discrete points. 
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Table 2.3 
Process variation reported in Schoutens et al. (2004). 

 Percent Change in Price 
Exotic Option Min. (%) Max. (%) 
One Touch 4.0 16.2 
Reverse Knockout 34.2 512.5 
Reverse Knockin 0.6 14.7 

Percent change is defined as (Max-Min)/Min.  Reverse knockout and knockin options 
are barrier options which contain an implied OT option, and hence, are directly relevant 
for this thesis.  Schoutens et al. reported results for reverse barrier Call options only.  
Source: Schoutens et al. (2004). 

 

Detlefsen and Hardle (2006, p. 25) focused on calibration risk, and concluded that: 

“We have shown that different ways to measure the error between the 

model and the market in the calibration routine lead to significant price 

differences of exotic options in the sense that these differences often 

exceed the profit margins of the products”. 

These model price variations are already too great for the market, in that they exceed 

by a significant margin the fine pricing tolerances established by interbank convention.  Even 

worse, there are non-trivial computational risks which Schoutens et al. and Detlefsen et al. do 

not analyse.  For example, they do not quantify the risk of price variation from arbitrary choices 

of parameter constraints or discretisation methods.  It is unlikely that either of these sources of 

risk exceed process or calibration risk, however, they contribute to rather than offset model 

price variation.  Table 2.4 shows some of the computational methods underlying contemporary 

models.  This table is not meant to be exhaustive, but rather indicative of the arbitrary choices 

routinely made by financial engineers implementing stochastic volatility, universal volatility and 

jump diffusion models in practice.  Each choice contributes to the variation in model prices by 

artificially constraining the size of the solution space.  If the price variation were small, it would 

not matter that there are several arbitrary choices for each step of the model implementation.  

However, the first column alone is where Schoutens et al. (2004) found 200% variation in model 

prices, making prices highly model-dependent.  Theory cannot differentiate ex ante which 

model variant is ‘best’, and, given Derman’s (1999) unstable volatility regimes, what is ‘best’ in 

the past is unlikely to be ‘best’ in the present or remain ‘best’ in the future. 
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Table 2.4 
Summary of computational methods underlying contemporary models. 

Process Calibration 
Method 

Error 
Functional 

Minimisation 
Algorithm 

Parameter 
Constraints 

Discretisation 
Method 

Heston Historic Time 
Series 

Absolute 
Price 

Differential 
Evolution 

‘Hard’ Range Finite Element 

Blacher Vol Surface Relative 
Price 

Gradient 
Descent 

‘Soft’ Convex 
Penalty 

Finite 
Difference 

Hull Vol Surface 
& Exotics 

Absolute 
Volatility 

Levenberg-
Marquardt 

Time-
Dependent 

2D-Trinomial 

Lipton  Relative 
Volatility 

Simulated 
Annealing 

Time-
Independent 

Monte Carlo 

Bates   Method of 
Moments 

Piecewise 
Constant 

Quasi-Monte 
Carlo 

Stein and 
Stein 

  Maximum 
Likelihood 

Equal 
Weights 

Wavelets 

Merton   Downhill 
Simplex 

Vega 
Weights 

 

Each column contributes to the variation in model prices.  The first column is where Schoutens et al. (2004) found 200% 
variation in model prices. The table should be read as independent columns, the rows do not articulate.  This table is not 
meant to be exhaustive, but rather indicative of the arbitrary choices made by financial engineers implementing stochastic 
volatility, universal volatility and jump diffusion models in practice. 

 

2.4. Conclusion 

This research subscribes to the view that an imperfect but simple and transparent 

model is more useful for price-makers in practice than over-engineered opaque models, 

especially when markets are unstable and / or undergoing structural change.  This is consistent 

with the position taken by Taleb (1997) and Derman (2000) which favours pragmatism, flexibility 

and responsiveness to market conditions, rather than over-reliance on the mathematical 

methods of the physical sciences.  It is through the identification of unique optimal hedging 

portfolios consisting of market-traded instruments, that this research renders redundant both the 

traditional approach of ‘guessing’ plausible volatility dynamics and solving for exotic option 

prices numerically, with little to no regard for hedging; and the more modern approach of using 

hedging considerations to ‘guess’ the specification of the dynamic processes for the underlying 

asset and its volatility (Ayache et al., 2004; Blacher, 2001).  This research focuses on the 

financial economics of the problem because “financially relevant questions can only be 

answered by relevant financial theory”, and because “the need to go back to ‘basics’ is a very 

welcome conclusion, to say the least, at a time when quantitative finance seems to be wasting 

itself in sophisticated mathematical exercise” (Ayache et al., 2004, p. 33). 
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CHAPTER 3 

METHODOLOGY 

3.1. Introduction 

This chapter presents the aims of the research, the philosophical and methodological 

rationale underpinning the Trader Model, a description of and justification for the research 

methods used to test the Trader Model, and a description of the data obtained for empirical 

testing. 

3.2. Research aims 

The overall aim of the research is to develop a model for pricing exotic options to 

market which: (i) predicts actual traded market prices with sufficient accuracy to be a useful 

decision-making tool for price-makers in practice; (ii) identifies and quantifies market risk in a 

manner which provides unique insights into risk management of exotic options for price-makers 

in practice; and (iii) achieves real savings in computational efficiency relative to best practice 

quantitative models exemplified by the universal volatility models of Jex et al. (1999) and Lipton 

and McGhee (2002).37

• be accurate and independent of arbitrary specifications of volatility dynamics; 

  The model will specifically: 

• define the market risk of exotic options in a manner useful for hedging in the 

market in practice and which is also independent of arbitrary specifications of 

volatility dynamics; and 

• identify unique option-level hedging strategies which are simple portfolios of 

common, market-traded instruments. 

This research will be a significant and unique contribution to knowledge in exotic option 

pricing and hedging.  Just as Cox, Ross and Rubinstein (1979) provided an insightful 

interpretation of BSM which, in its day, demystified complex mathematical concepts for financial 

economic theorists and practitioners, it is expected that this research will likewise demystify the 

pricing of exotic options to market for a broader audience beyond financial engineers.  This 

research is positioned squarely at the nexus between theory and financial market practice and, 

like Bakshi, Cao and Chen (1997, p. 2004), it asks: 

“While the search for that perfect option pricing model can be endless 

. . . what do we gain from each generalized feature?  Is the gain, if any, 

from a more realistic feature worth the additional complexity or 

implementational costs”? 

The Trader Model which is developed and discussed in greater detail in Section 3.3., is 

not intended to be “that perfectly specified option pricing model [which] is bound to be too 

complex for applications” (Bakshi et al., 1997, p. 2004), but instead, to be a simple model 

specifically designed for application in the market by price-makers, where pragmatism and 

flexibility are preferred to the idealistic pursuit of perfection in imperfect markets.  The Trader 

Model will be tested to see how well it can explain market traded exotic option prices, and the 

                                                     
37 Ayache et al. (2004, p. 15) states that “only the universal volatility model . . . manages to fit the smile dynamics and at the same 

time to fit the barrier option prices”. 
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extent to which it can identify unique market traded optimal hedging strategies which reduce the 

market risk of running a book of exotic options. 

Contemporary exotic option pricing research in academia and industry is crucially 

dependent upon arbitrary specifications of volatility dynamics, non-market traded parameters 

and / or theoretically baseless constants, and, as a result, it introduces unnecessary complexity 

and inefficiency into solutions, as well as significant model risk.  In the Trader Model, market 

prices and optimal hedging strategies are dependent upon nothing other than market spot and 

deposit rates, European vanilla option volatilities and exotic option contract specifications.  

Therefore, intermediate calculations, such as numerically extensive and intensive calibration 

schemes that are a prominent feature of competitor methodologies, are redundant in the Trader 

Model.  As the theoretical basis of the Trader Model is internally consistent with the universally 

accepted benchmark methodology for pricing European vanilla options to market, model risk is 

also minimised. 

3.3. Trader Model 

3.3.1. Philosophy 

The Trader Model is a radical philosophical departure from contemporary exotic option 

pricing orthodoxy.  Contemporary methods, such as universal volatility models (Jex et al., 1999; 

Blacher, 2001; Lipton and McGhee, 2002), rely on and make a virtue of layer upon layer of 

advanced mathematics and technological brute-force to compute prices.  In contrast, the Trader 

Model builds on fundamental financial economic intuition and has modest computational 

requirements. 

The central tenet guiding the development of the Trader Model was Derman’s (2003, 

p. 13) claim that “all financial models are wrong”.  Bearing this in mind, along with the fact that 

price-makers in practice use model outputs as inputs in the price-making process, it follows that 

a simple approach with less structure and fewer binding and unverifiable assumptions would be 

intuitively appealing.  Price transparency is just as important as price discovery for a model to 

be the “right tool” for decision-making for price-makers in practice (Ayache et al., 2004, p. 36). 

The Black-Scholes-Merton (BSM) model and its exogenous volatility surface is a classic 

example of simplicity and pragmatism.  It is well known that it is wrong to use the BSM model 

outside of its original theoretical context.  Nevertheless, BSM is used in practice because price-

makers understand how to modify the BSM model with the volatility surface to price factors 

crucial to the market, and that is why BSM and its volatility surface together constitute the 

universally accepted benchmark for pricing European vanilla options to market, dominating 

stochastic, jump and universal volatility models.  “Traders . . . are comfortable with [the BSM 

model] because they have learned the necessary tricks to make it work” (Taleb, 1997, p. 109).  

The Trader Model is dependent upon the same structure as BSM, and it has a unique 

mechanism for applying the same trader-inspired ‘necessary tricks’ for European vanilla options 

to the computation of market prices for exotic options in general, and, in this thesis, for 

American binary FX options in particular.  In this sense, the Trader Model fills the void between 

heuristic financial economic approaches of the past and the mathematically laden style of 

orthodox methods. 
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The contrarian philosophy of focusing on the fundamental financial economics of exotic 

option pricing by explicitly taking into account price-makers’ pivotal role in price discovery in 

traded markets is gaining support, even among leading financial engineers.  For example, 

Ayache (2004b, p 29) advocates a new theoretical representation based on “the pair composed 

of the trader and his knowledge of the [model]”.38

In addition to this growing theoretical support, there is also compelling practical support.  

If market prices are obtained with one basis (arbitrary non-market traded parameters) and 

hedging is by necessity conducted with a different basis (a subset of traded instruments), then 

the fundamental economic link between market price and hedging cost is diluted, if not lost, 

crucially affecting business line profitability given the low-margin, high-volume nature of bank 

exotic FX option trading businesses. 

  Bates (2003, p. 400) expresses a desire for 

“a renewed focus on the explicit financial intermediation of the underlying risks by option market 

makers” and for “plausible models of market maker behaviour”.  And Derman (2002, p. 82) 

observes that “‘return’ and ‘volatility’ lie in the realm of quantitative finance, but ‘expected’ and 

‘implied’ lie in the domain of behaviour.  A future theory that married the quantitative to the 

behavioural would be a worthy goal”.  The Trader Model is not a theory, but it marries 

quantitative methods to actual trader behaviour more closely than any other exotic option 

pricing model. 

3.3.2. Method 

The Trader Model is dependent upon the same structure as implementing BSM in the 

market.  This thesis focuses on the FX market and the assumed dynamics for the underlying 

spot FX rate take the traditional functional form of Eq. (3.1), which is used in conjunction with 

the exogenous traded volatility surface for European vanilla options [ ]( ),Tσ σ= ∆ . 

( ) tttfdt dWSdtSrrdS σ+−=  (3.1) 

In academia and industry these dynamics are used to obtain theoretical values and 

market prices for European vanilla FX options.  Although they are also used for deriving the 

theoretical value of exotic FX options, they are considered by financial engineers to be 

inadequate for pricing exotic FX options to market.  This inconsistency is not explained by 

theory.  It is simply because: 

(i) to date, no one has been able to price exotic options to market with these 

parsimonious dynamics; and 

(ii) the existence of non-zero calibration error means that if an orthodox model is 

calibrated to BSM theoretical conditions (a flat volatility surface and flat yield 

curves), it will not return the BSM theoretical value, and hence, the market must 

use BSM dynamics to calculate the theoretical value.39

 

 

                                                     
38 The original quote uses the term “weapon”, not model, which is a reference to Haug’s two part series in Wilmott Magazine called 

“Know Your Weapon”, which was all about the Black-Scholes-Merton model. 
39 Price-makers will universally reject an exotic option pricing model that cannot return the theoretical value of an exotic option, 

because the theoretical value must be agreed between price-makers for all interbank exotic FX option trades, before market price 
negotiation between counterparties even commences.  The coexistence of two different processes to describe the dynamics of the 
same FX pair is theoretically questionable. 
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Therefore, to price exotic options to market, orthodox models introduce additional 

structure via increasingly more esoteric and complex assumptions about volatility dynamics 

which may improve in-sample quality of fit, but usually at the expense of divorcing the model 

from traded market reality.  In contrast, in rejecting the need for any additional structure, this 

thesis is consistent with Derman’s recommendation that “one good strategy in attempting to 

value exotic options that are sensitive to the smile is to try to avoid modeling the dynamics of 

volatility as much as possible” (2003, p. 13).40

The existence and uniqueness of exotic option theoretical values and their widespread 

use by interbank price-makers as a convenient and essential reference point for quoting market 

prices, reduces the dimension of the exotic option market pricing problem.  One only needs to 

price the difference between market price and theoretical value, known as the market 

supplement.  For FX options with expiries of twelve months or less, which is the focus of this 

thesis, volatility effects dominate interest rate effects (Taleb, 1997; Hakala and Wystup, 2002).  

Since the market supplement for European vanilla options is the set of smiles and skews for all 

expiries, the valuation of the market supplement for exotic options reduces to the problem of 

quantifying smile and skew effects. 

 

Unlike contemporary approaches, the Trader Model preserves the direct link between 

smiles and skews and the size of the market supplement for exotic options.  Smiles and skews 

are not used to define non-traded parameters like jump intensity and mean reversion speed in 

arbitrarily specified volatility dynamics.  The information contained in the volatility surface is 

static and specific, and it is theoretically tenuous to infer dynamics from statics and to 

generalise from specifics.  It is common in academia and industry to infer and generalise in this 

way because: 

• contemporary exotic option pricing research is evolutionary not revolutionary, 

because existing models dependent on volatility dynamics are refined rather 

than redefined; 

• the alternative of calibrating volatility diffusion parameters to historic time-series 

is discredited, even though the current practice of calibrating the dynamic 

evolution of future volatility in a model by fitting to static smiles and skews in the 

present is not any better (refer to Subection 2.2.1.); 

• Ayache et al.’s recommendation (2004, p. 11) to calibrate to the European 

vanilla volatility surface and exotic option prices is not practical for first 

generation exotic FX options,41 because one effectively needs exotic option 

prices to find an exotic option price, something which is difficult to achieve in 

the highly competitive interbank market where heterogeneous OTC exotic 

products are traded;42

                                                     
40 Derman’s reference to the smile also includes the skew.  A skew is simply an asymmetric smile. 

 and 

41 First generation exotic FX options include binary and barrier options, and they represent approximately 95% of traded volume. 
42 A model that is dependent on prices for exotic options traded between other banks is problematic for a price-maker because: 

(i) the trader is reduced to being a price-taker not a price-maker; and (ii) traded prices reflect the shape of the exotic option books 
of the banks that are counterparties to the trade, not the trader’s own book. 
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• modern computing power means it is possible to solve significant computational 

problems with advanced numerical techniques within a reasonable time frame, 

irrespective of whether it is optimal or even desirable to do so. 

In the European vanilla FX option market, smiles are priced by (vega neutral) butterflies 

and skews are priced by (delta neutral) risk reversals.  Table 3.1 shows that butterflies are 

essentially neutral to all exposure other than ∂vega/∂vol, and risk reversals are essentially 

neutral to all exposure other than ∂delta/∂vol.  Therefore, smiles price ∂vega/∂vol and skews 

price ∂delta/∂vol, and to use them to price anything else introduces model risk.43

Table 3.1 

  The Trader 

Model preserves the one-to-one mapping by valuing exotic option ∂vega/∂vol and ∂delta/∂vol 

with smiles and skews, respectively.  Hence, what is already done and universally accepted as 

the market pricing benchmark for European vanilla FX options is simply extended to the 

American binary FX option market.  Therefore, the Trader Model achieves what others’ have 

not, a unification of the market pricing and risk management framework for European vanilla 

and American exotic options.  This unification is crucial because “it’s safe to say that there is no 

area where model risk is more of an issue than in the modeling of the volatility smile” (Derman, 

2003, p. 4). 

The market risk of zero delta straddles, vega neutral butterflies and delta 
neutral risk reversals in the FX option market. 

Risk ZD Straddle VN Fly DN RR 
Delta 0 0 0 
Vega >> 0 0 ≈ 0 
Volga 0 >> 0 ≈ 0 
Vanna 0 ≈ 0 >> 0 

Zero delta straddles, vega neutral butterflies and delta neutral risk reversals are constituent elements of 
the traded volatility surface. These commoditised trading strategies have (almost) mutually exclusive 
market risks. A vega neutral butterfly is a source of volga, and in the market the vega neutral butterfly is 
quoted as the volatility spread between the OTM options and the ATM options, which is the smile. A delta 
neutral risk reversal is a source of vanna, and in the market, the delta neutral risk reversal is quoted as 
the volatility spread between the OTM Call option and the OTM Put option, which is the skew. Therefore, 
smiles price volga, and skews price vanna. Zero delta straddles, which have zero volga and zero vanna, 
also have zero smile and skew adjustment. Therefore, zero delta straddles define the level of volatility. 
The data is for illustrative purposes only, and it is for a long straddle, long butterfly and a risk reversal with 
a long Call / short Put. 

 

Extending the BSM and exogenous volatility surface market pricing benchmark to exotic 

options has been tried before by practitioners and has failed (Famery and Cornu, 2000; Savery, 

2000; Lipton and McGhee, 2002; Wystup, 2003 and 2006; and commercial vendor system 

∂Vega).  It failed because practitioners were unable to reconcile European volatility surfaces 

with American optionality.  Famery and Cornu, and Savery describe micro-mechanics but are 

silent on this crucial issue.  Lipton and McGhee attempted reconciliation by empirically scaling 

the convexity correction, Wystup scaled by touch probabilities and / or constants, and ∂Vega 

scaled by a reverse-engineered ‘theoretical value adjustment’ matrix supplied by the GFI broker 

desk.  All of these scaling methods are unsatisfactory: 

 

                                                     
43 Since OTC exotic FX options are contractually heterogeneous, they are marked-to-model not marked-to-market for profit and 

loss, bonus, limits and reporting purposes.  Model risk is a big focus of Basel II capital adequacy requirements. 
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• Empirical scaling.  Empirically derived scaling factors are dependent on the 

arbitrary choice of sample period and sample frequency.  A different sample 

period and / or sample frequency will produce a different scaling factor and 

hence, a different exotic option price.  Since theory cannot distinguish ex ante 

which sample period and frequency is best, and Derman (1999) has shown that 

volatility regimes change over time, empirical scaling is a poor choice for price-

makers in multi-dimensionally unstable markets like exotic FX options. 

• Scaling by touch probabilities.  Touch probabilities are theoretically more 

appealing as they are dependent only upon market and option contract inputs, 

and solutions for American binary touch probabilities are available analytically.  

While scaling by touch probabilities is presented by Wystup as a reasonable 

proxy for obtaining the market price of a binary option with a single barrier (OT), 

the method fails even for the modest extension of pricing to market binary 

options with two barriers (DNT).  Clearly, touch probabilities do not capture the 

essence of the market mechanism. 

• Reverse-engineering a scaling factor.  The ∂Vega commercial vendor system is 

dependent upon a matrix of ‘theoretical value adjustments’.44  Theoretical value 

adjustments are reverse-engineered from exotic option market prices traded 

through the GFI broker desk.  In other words, an adjustment factor is artificially 

changed until ∂Vega reproduces the actual traded market price for the exotic 

option.  This method is a poor alternative.  Firstly, a price must be quoted in the 

interbank broker market before a price-maker can obtain the adjustment 

coefficient and the price.  This is a luxury not available to price-makers in 

practice.45

                                                     
44 Refer to 

  Secondly, the adjustment coefficient is multi-dimensionally unstable, 

rendering it meaningless for options which differ contractually (a feature of 

heterogeneous OTC exotic FX options), and for markets which change over 

time (all markets).  Casual observation of Fig. 3.1 shows that for EUR DNT 

options, theoretical value adjustments are unstable.  For a TV of about 0.035, 

actual theoretical value adjustments ranged between 0.22-0.72, resulting in 

significantly different ∂Vega model prices.  This range is especially large when 

one considers that in the interbank market American binary FX options are 

priced to five decimal point accuracy.  Ex ante, a price-maker cannot know 

whether 0.22 or 0.72 or some other adjustment coefficient is accurate, as 

reverse-engineering is by construction ex post.  The theoretical value 

adjustment is unstable by theoretical value and by expiry days, for all exotic FX 

options.  There is no discernible pattern that can be exploited to produce 

reliable accurate market prices, which is why ∂Vega is unsuccessful and 

discredited in academia and industry.  The Trader Model is not tested 

www.gfigroup.com for details. 
45 Quoting speed and aggressive spreads are a measure of a price-maker’s professionalism in the interbank FX option market.  Delay 

of even a few minutes to obtain a recently reverse-engineered adjustment coefficient would be considered unprofessional and 
undermine the credibility of the business.  Furthermore, it is considered unprofessional to ask for reference prices without 
intending to deal.(Taleb, 1997, p. 57).  A model that requires reference exotic option traded prices before a price can be made 
essentially reduces the price-maker to a price-taker. 

http://www.gfigroup.com/�
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empirically against ∂Vega because ∂Vega also has many violations of no-

arbitrage boundaries, and produces prices which are mathematically 

impossible.  It is not known whether the reverse-engineered scaling factors 

cause or contribute to arbitrage violations, or whether there is some other flaw 

in ∂Vega. 

 

 
Fig. 3.1.  ∂Vega theoretical value adjustments (TVA) for EUR DNT options. TVA are reverse-
engineered scaling factors which ensure that the heuristic ∂Vega model price equals the actual 
traded market price.  TVA’s are derived ex post, but are required by price-makers ex ante.  The 
figure is based on actual traded exotic FX option prices for the period 7 January to 
29 September 2004.  TV is the acronym for theoretical value.  Source:  GFI Group Inc. 

• Scaling by constants.  Scaling by arbitrary and theoretically baseless constants 

is an obvious weakness and a source of model risk as exotic option prices are 

multi-dimensionally unstable (e.g., American binary FX option prices are non-

linear functions of, and hyper-sensitive to, changes in spatial, temporal and 

volatility dimensions).  It is reasonable to conclude that the mere existence of 

arbitrary and theoretically baseless constants is evidence of the failure of that 

model to capture adequately prices traded in the market.  An example of this 

overly simplistic approach is in Wystup (2006), where the recommended 

weighting for a DNT option is 0.5.  Wystup notes that this weighting has no 

theoretical justification.  As BSM contains no theoretically baseless constants, 

there is an immediate misalignment between exotic option model prices and 

their European vanilla option hedging costs, resulting in model risk. 

The Trader Model, in contrast, develops a unique method for reconciling European 

vanilla volatility surfaces and American exotic optionality.  Whilst American binary options have 

a known nominal duration, in most practical circumstances they are expected to terminate 

sometime prior.  It is possible to calculate this expected stopping time analytically, and the 

Trader Model uniquely uses expected stopping time to scale the size of the exotic option’s vega 

and delta convexities to volatility, to establish the expiry date of the relevant butterfly and risk 

reversal, and, as a result, to price American vega and delta convexities to volatility.  Scaling by 
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the expected stopping time is intuitive.  A six month DNT option with a theoretical value of 0.10, 

has a touch probability of approximately 0.90.46

( )T
H

h h h
E T N T

T
τ λ

λ λ
= + − −  

      

  This DNT option is extremely unlikely to survive 

until expiry and so any hedging strategy ought to have a duration which matches the expected 

termination date of the exotic option, otherwise the hedge portfolio will turn into an open position 

once the exotic option terminates.  Expected stopping time is independent of empirics, 

reference exotic option prices from brokers and ill-conceived constants, and it works for all 

binary options.  Expected stopping time is a function of option contract and market inputs only, 

and does not suffer from the rampant arbitrariness endemic to other scaling schemes. For 

example, Eq. (3.2) shows the expected stopping time for a single, continuously monitored 

option barrier derived in Taleb (1997, p. 476): 
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and St is the spot FX rate, rd (rf) is the domestic (foreign) interest rate, σ is the volatility, H is a 

continuously monitored barrier H > St; and T is the annualised term to maturity of the option. 

Appendix A contains schematic diagrams outlining how the Trader Model converts 

theoretical values into market prices for American binary FX options.  Fig. 3.2-3.5 inclusive, 

show vega and delta convexities to volatility for representative DNT options and OT options, for 

illustrative purposes only.  When an option has positive (negative) ∂vega/∂vol, it must trade at a 

premium (discount) to theoretical value, ceteris paribus, as its vega changes beneficially 

(detrimentally) with respect to volatility.  When an option has positive (negative) ∂delta/∂vol, it 

must trade at a premium (discount) when the skew is positive, ceteris paribus, as its delta 

changes beneficially (detrimentally) with respect to volatility.  This is common to Famery and 

Cornu (2000), Savery (2000), Lipton and McGhee’s (2002) heuristic model, Wystup (2003), and 

∂Vega.  However, the Trader Model uniquely: 

• Scales the size of the vega and delta convexities by the expected stopping time 

of the exotic option.  For example, if a DNT option has an expected stopping 

time which is 0.4 of its nominal duration, then the vega and delta convexities 

are scaled by 0.4.  If DNT option vega convexity to volatility is 200 points, then 

the vega convexity to volatility used in the Trader Model is 80 points.  In an 

intuitive way, the Trader Model accounts for the American optionality in the 

exotic option. 

 

 

                                                     
46 Assuming interest rates are zero, to illustrate the principle simply. 
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• Chooses the relevant unique butterfly and risk reversal to price the vega and 

delta convexities, respectively.  If the exotic option has an expected stopping 

time which is 0.4 of its nominal duration, then the Trader Model uses a butterfly 

and a risk reversal with expiries equal to the expected stopping time to price the 

convexity.  That is, if the DNT option has a nominal duration of 90 days, then 

the Trader Model will price vega and delta convexities with a butterfly and a risk 

reversal with expiries of 36 days.  As a result, the exotic option and its hedge 

terminate at the same time, there is no unwanted residual hedge as per other 

competitor models which use a butterfly and a risk reversal with expiries of 

90 days, even though the exotic option in most practical circumstances will 

terminate much earlier.  Again, in an intuitive way, the Trader Model reconciles 

European vanilla volatility surface information with American exotic option 

pricing.  This is essential, as all major markets exhibit pronounced term 

structures of vega and delta convexity to volatility.47

 

  All other models of this 

class implicitly assume that such term structures are equal to zero.  

Savery (2000) and Wystup (2003) show the mechanics of calculating the per 

unit price of vega and delta convexities to volatility. 

 
Fig. 3.2.  ∂vega/∂vol for a DNT option.  This figure shows how BSM-inspired vega for a DNT option 
with L=109.75 and U=116.25 changes when volatility changes.  For this DNT option, vega 
convexity to volatility is positive.  When volatility increases (σ+1%), vega gets longer.  When 
volatility decreases (σ-1%), vega gets shorter.  Since vega changes in a beneficial manner 
whenever volatility changes, the DNT option must trade at a premium to theoretical value, ceteris 
paribus.  This premium will be greatest when the spot FX rate is around 113. 

 

                                                     
47 Which is why contemporary orthodox quantitative modelling methods introduce even more degrees of freedom, namely time 

dependent parameters, to try to incorporate this phenomenon. 
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Fig. 3.3.  ∂vega/∂vol for a OT option.  This figure shows how BSM-inspired vega for a OT option 
with U=122.00 changes when volatility changes.  For this OT option, vega convexity to volatility is 
positive (negative) when the spot FX rate is less (greater) than approx. 115.00.  When the spot FX 
rate is less (greater) than 115, if volatility increases to σ+1%, vega gets longer (shorter); and if 
volatility decreases to σ-1%, vega gets shorter (longer).  Since vega changes in a beneficial 
(detrimental) manner whenever volatility changes, the OT option must trade at a premium 
(discount) to theoretical value, ceteris paribus. 

 

 
Fig. 3.4.  ∂delta/∂vol for a DNT option.  This figure shows how BSM-inspired delta for a DNT option 
with L=109.75 and U=116.25 changes when volatility changes.  For this DNT option, delta 
convexity to volatility is negative (positive) when the spot FX rate is less (greater) than 113.00.  
When volatility increases to σ+1%, delta gets shorter (longer).  When volatility decreases to σ-1%, 
delta gets longer (shorter).  If the skew is negative, delta changes in a beneficial (detrimental) 
manner when volatility changes, so the DNT option must trade at a premium (discount) to 
theoretical value, ceteris paribus.  If the skew is positive, delta changes in a detrimental (beneficial) 
manner when volatility changes, so the DNT option must trade at a discount (premium) to 
theoretical value, ceteris paribus.  DNT option’s with symmetric barriers have negligible local delta 
convexity to volatility. 
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Fig. 3.5.  ∂delta/∂vol for a OT option.  This figure shows how BSM-inspired delta for a OT option 
with U=122.00 changes when volatility changes.  For this OT option, delta convexity to volatility is 
positive (negative) when the spot FX rate is less (greater) than approx. 117.00.  When volatility 
increases to σ+1%, delta gets longer (shorter).  When volatility decreases to σ-1%, delta gets 
shorter (longer).  If the skew is negative, delta changes in a detrimental (beneficial) manner when 
volatility changes, so the OT option must trade at a discount (premium) to theoretical value, ceteris 
paribus.  If the skew is positive, delta changes in a beneficial (detrimental) manner when volatility 
changes, so the OT option must trade at a premium (discount) to theoretical value, ceteris paribus. 

Table 3.2 shows a worked example of the process outlined in Appendix A. 

Table: 3.2 
Trader Model numerical example for 1yr EUR/JPY DNT 120/140. 

Theoretical Value  0.1389 
Volga 0.02077  
Vanna 0.80412  
EST/Maturity 0.46435  
Fly Zeta p.u. 6.42834  
RR Zeta p.u. -0.04736  
Smile Adj 0.0620  
Skew Adj -0.0177  
Mkt Supplement  0.0443 
Market Value  0.1832 
Vega Spread 0.008137  
Volga Spread 0.026604  
Vanna Spread 0.004702  
Slippage 0.004816  
Model Bid  0.1635 
Model Ask  0.2077 
Mkt Trade  0.1875 

This table refers to a EUR/JPY DNT option with barrier FX rates of 120 and 140, with a maturity of 
one year.  EST is expected stopping time. Zeta per unit is the per unit price of volga (vanna) 
calculated from the butterfly (risk reversal). The smile (skew) adjustment is the product of volga 
(vanna), EST/Maturity and fly (RR) zeta p.u. The market supplement is the sum of smile and skew 
adjustments. Market value is the sum of theoretical value and the market supplement. Spreads 
are calculated by finding how many straddles are required to hedge the DNT option vega, and 
determining the cost of crossing the vanilla bid-ask spread to implement that trade. Ditto for volga 
and vanna. Slippage accounts for the discontinuity at the barrier, and for a DNT option, the 
asymmetric slippage applies to the Ask side. 
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The issue of early termination is pivotal, because American binary options are “options 

on time rather than options on the asset” (Taleb, 1997, p. 305).  All models except the Trader 

Model use smile and skew volatilities at the expiry date of the American binary option to value 

the market supplement to theoretical value.  For example, heuristic models like Wystup (2003) 

and ∂Vega use expiry smiles and skews exclusively; and even the most complex universal 

volatility models define diffusion parameters by calibrating to expiry smiles and skews, either 

exclusively (time-independent) or inclusively (time-dependent).  It is clear from Merton (1973, 

p. 256) that market-traded volatilities are volatilities of the forward, not volatilities of the spot.  In 

FX the volatility surface defines volatilities of the forward temporally (expiry) and spatially (delta) 

specific to the Garman and Kohlhagen (1983) extension of BSM.  However, the early 

termination condition for American binary options is spot dependent.  Early termination occurs if 

and only if the spot FX rate trades at or beyond the barrier FX rate.  The forward FX rate is 

irrelevant.  By using volatilities at the exotic option expiry, strong American optionality is valued 

with volatilities exhibiting the strongest European characteristics. 

The Trader Model reconciles American and European optionality uniquely and 

intuitively.  As the strength of the binary’s American optionality intensifies, such as low (high) 

theoretical value DNT (OT) options, the expected stopping time of the binary shortens.  The 

Trader Model uses volatilities at the expected stopping time to value the market supplement, 

not the much longer expiry date.  Volatilities of the forward at the expected stopping time closely 

resemble volatilities of the spot, as short-dated European vanilla FX options have low levels of 

interest rate risk (rho and phi are small).  As American optionality weakens, such as high (low) 

theoretical value DNT (OT) options, the expected stopping time lengthens.  Since in these 

cases American binary options more closely resemble European options, the Trader Model 

uses volatilities approaching the expiry date to value the market supplement to theoretical 

value. 

Tables 3.3-3.5 inclusive demonstrate the significance of this issue, using JPY as an 

example.  Table 3.3 shows a base case scenario, where JPY and USD interest rates both 

remain constant when the spot rate changes.  This is the same scenario as the BSM paradigm 

and, as expected, the change in the forward is symmetric to and of the same order of 

magnitude as the change in spot.  In contrast, if the change in spot is accompanied by a decline 

in JPY interest rates (Table 3.4) or by a decline in USD interest rates (Table 3.5), then the 

change in the forward is highly asymmetric and different in magnitude to the spot. 

Table 3.3 
Changes in the JPY forward FX rate when the spot FX rate changes, 

and JPY and USD interest rates are constant. 
Spot Change S-4.00 S S+4.00 
Spot (S) 100.50 104.50 108.50 
rd (JPY) 0.01 0.01 0.01 
rf (USD) 0.05 0.05 0.05 
1Yr Fwd (F) 96.56 100.40 104.25 
Fwd Change -3.84  3.84 

If JPY and USD interest rates remain constant when spot changes, the 1yr forward changes 
symmetrically by approximately the same magnitude as the spot.  i.e. spot declines (rises) by 4.00, 
the 1yr forward declines (rises) by 3.84, where F=Sexp[(rd-rf)(T-t)]. 
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Table 3.4 
Changes in the JPY forward FX rate when the spot FX rate changes, 

JPY interest rates decline by 0.01, and USD interest rates are constant. 
Spot Change S-4.00 S S+4.00 
Spot (S) 100.50 104.50 108.50 
rd (JPY) 0.00 0.01 0.00 
rf (USD) 0.05 0.05 0.05 
1Yr Fwd (F) 95.60 100.40 103.21 
Fwd Change -4.80  2.81 

If JPY interest rates decline when spot changes, the 1yr forward changes asymmetrically to the 
spot.  i.e. spot declines (rises) by 4.00, the 1yr forward declines (rises) by 4.80 (2.81) where 
F=Sexp[(rd-rf)(T-t)]. 

 

Table 3.5 
Changes in the JPY forward FX rate when the spot FX rate changes, 

USD interest rates decline by 0.01, and JPY interest rates are constant. 
Spot Change S-4.00 S S+4.00 
Spot (S) 100.50 104.50 108.50 
rd (JPY) 0.01 0.01 0.01 
rf (USD) 0.04 0.05 0.04 
1Yr Fwd (F) 97.53 100.40 105.29 
Fwd Change -2.87  4.89 

If USD interest rates decline when spot changes, the 1yr forward changes asymmetrically to the 
spot.  i.e. spot declines (rises) by 4.00, the 1yr forward declines (rises) by 2.87 (4.89) where 
F=Sexp[(rd-rf)(T-t)]. 

 

Tables 3.3-3.5 inclusive demonstrate that a policy of pricing American binary options 

with expiry volatility is flawed.  The volatility surface is a set of directly quoted European vanilla 

option price adjustments defined in terms of the volatility of the forward.  Tables 3.4 and 3.5 are 

plausible market scenarios where the volatility of the forward differs significantly from the 

volatility of the spot.  For example, the Bank of Japan’s quantitative easing policy48 reduced 

JPY interest rates as JPY was appreciating, consistent with Table 3.4.49  In contrast, in the nine 

months to May 2008 the Federal Reserve implemented an aggressive monetary easing policy 

reducing USD interest rates50 by 3.25% as JPY appreciated (Warsh, 2008), consistent with 

Table 3.5.51

 

  If long-dated American binary options are priced under a market scenario like 

Tables 3.4 or 3.5, then the volatilities of the forward are markedly different to the volatilities of 

the spot, and it is the latter which is relevant for the termination of American binary options.  

Volatilities of the forward and volatilities of the spot diverge for all maturities, though the effect is 

more pronounced as exotic option maturity lengthens.  By way of example, Table 3.6 shows 

JPY forward sensitivity to a decline in JPY interest rates, analogous to Table 3.4. 

 

                                                     
48 Commenced March 2001 and lifted in March 2006.  This stimulatory monetary policy was principally designed to reduce long-

term JPY interest rates (Spiegel, 2001 and Spiegel, 2006). 
49 JPY Call (Put) options increase (decrease) in value when spot JPY appreciates and JPY interest rates fall.  Therefore, JPY skew is 

strongly negative for options with significant exposure to the forward, that is, long-dated options. 
50 Fed funds rate. 
51 In this case, as JPY appreciates the volatility of the spot is greater than the volatility of the forward. 



39 
 

Table 3.6 
JPY forward FX rate sensitivity to a JPY interest rate decline of 0.01. 

Spot 1mo Fwd 3mo Fwd 1yr Fwd 3yr Fwd 5yr Fwd 10yr Fwd 
S – 4.00 -4.07 -4.21 -4.80 -6.18 -7.29 -9.09 
S + 4.00 3.90 3.69 2.81 0.70 -1.06 -4.24 

If the change in JPY spot FX rates is accompanied by a decline in JPY interest rates of 0.01, then the volatilities of the 
forward and the volatilities of the spot diverge in a more pronounced manner as option maturity lengthens.  Row one 
shows that a spot decline of 4.00 accompanied by a decline of 0.01 in JPY interest rates, causes the forward rate to fall 
by only 4.07 for 1mo, and 6.18 for 3yr maturity.  This table matches the scenario in Table 3.4.  Mo is the acronym for 
‘month’ and Yr is the acronym for ‘year’.  The results in zero-delta straddle terms, quoted as USD (FOR percent) strike 
is approximately the same, as expected.  The variation is from zero-delta straddle strike dependency upon the level of 
volatility, whereas the forward rate is independent of volatility.  If one sets volatility to zero, the zero delta straddle terms 
are identical to the forward FX rate terms.  Nevertheless, the conclusions are the same under both methods. 

 

Table 3.7 summarises the significant inconsistencies between instantaneous volatilities 

that are defined by arbitrary, quant-imposed dynamics like stochastic volatility, jump diffusion 

and universal volatility; and the actual market-traded volatilities comprising the European vanilla 

volatility surface. 

Table 3.7 
Inconsistencies between quant-imposed instantaneous volatilities 

and actual market-traded European vanilla volatility surfaces. 
Instantaneous Volatility Volatility Surface 
Dynamics. Statics. 
Arbitrary. BSM. 
Non-traded. Traded. 
Instantaneous. Forward. 
Path dependent. Path independent. 
Quant defined. Market defined. 
Continuous. Discrete. 

BSM is the acronym for Black-Scholes-Merton model.  Quant is a colloquial financial market 
term for financial engineer. 

 

It is clear from Table 3.7 that financial engineers, either explicitly or implicitly, make a 

substantial leap of faith when they calibrate instantaneous volatility diffusions to the volatility 

surface.  In effect, they rely on all the inconsistencies conveniently cancelling each other out so 

that only useful information remains.  However, empirical research shows that this is not the 

case, as there are significant pricing departures both within and between classes of exotic 

option pricing models calibrating to the same volatility surface (e.g. Schoutens et al., 2004; and 

Detlefsen et al., 2006).  Financial engineers calibrate their exotic option pricing models to the 

European vanilla volatility surface because it is the only credible alternative to get their models 

to price non-trivial economic factors crucial to the market.  However, Table 3.7 shows that this 

credibility is superficial, not theoretically sound. 

Fig. 3.6 and Fig. 3.7 are schematic representations of the main classes of existing 

American exotic option pricing models and the Trader Model, respectively.  The figures show 

how the Trader Model returns to the financial economic roots of American exotic option pricing 

by not imposing an artificial structure for volatility dynamics, and, thereby, simplifying the market 

pricing task both theoretically and computationally, without constraining the solution space like 

orthodox methods. 
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Fig. 3.7.  Schematic of the Trader Model.  The blue 
text box shows the pricing and hedging step unique to 
the Trader Model.  Crucially, the step is analytical, as 
the scaling is performed with the expected stopping 
time, which is dependent on market and option 
contract inputs only.  VS is the European vanilla 
option volatility surface. 

European 
Vanilla 

Options 

American 
Exotic  

Options 

Exogenous VS 

BSM dynamics BSM dynamics 

Exogenous VS Endogenous 
σ(St,t) 

Arbitrary 
‘American’ 

Scaling 

Market Price Heuristic Model 
Price 

Local Vol 
Model Price 

Arbitrary 
dynamics 

Poor dynamics, 
ill-posed 

inverse prob 

Endogenous 
Stochastic 

Vol 

Endogenous 
Jump 

Diffusion 

Guessed vol 
dynamics = 

guessed price 

Universal Vol 
Model Price 

Fig. 3.6.  Schematic of existing American exotic option pricing models.  The red text boxes succinctly describe the 
major problems with the existing American exotic option pricing models.  Model complexity, both theoretically and 
computationally, increases significantly from left to right.  VS is the European vanilla option volatility surface. 
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A key benefit of using this approach to price the market supplement is that the 

additional market risk is quantified directly and a unique portfolio consisting of liquid market-

traded options is identified to hedge that market risk.  Since the additional market risk is priced 

with butterflies and risk reversals that expire at the expected stopping time, it is logical for the 

hedge portfolio to consist of those European vanilla options.52

“In mathematical terms, the book, neutral in its lower moments, can 

easily lose its stability in the higher moments.  An option book, we will 

see, is not as ‘compact’ as mathematicians believe.  It will generally be 

neutral in the lower moments and exposed to various risks in the higher 

moments” (Taleb, 1997, p. 149).

  When an American binary FX 

option is first dealt, its main risk is the net contribution to the price-maker’s book of high-order 

greeks, such as vega and delta convexity to implied volatility: 

53

So butterflies and risk reversals are the obvious immediate hedging choice even for price-

makers with models based on arbitrary volatility dynamics.  This is a crucial point not only 

theoretically, but also from a practical economic perspective.  It is the price-makers’ hedging 

activity which binds the volatility surface to exotic option prices, not the dynamical behaviour of 

non-traded parameters imposed by a financial engineer.  Since price-makers must hedge in 

practice with market traded instruments, the fact that the Trader Model specifically preserves 

the direct link between price and hedging cost, and orthodox methods do not, has significant 

implications for the assessment of bank model risk under Basel II as well as trading desk 

profitability and sustainability. 

 

Fig. 3.8 and Table 3.8 show the errors which occur when using a European vanilla 

option hedge portfolio with expiry matching the expiry date of the American binary option.  As 

shown in Fig. 3.8, a hedge portfolio is only a hedge when it offsets the risk of something else.  If 

the American binary option terminates, the European vanilla option hedge must terminate too, 

to be considered a hedge.  The Trader Model hedge terminates at the expected stopping time 

(EST) of the American binary option it is hedging.  In contrast, Wystup’s (2003) hedge turns into 

an open position once the American binary option terminates.  For low (high) theoretical value 

DNT (OT) options, the length of the residual open position EST→T is significant. 

 

 

 

 

 

 

 

                                                     
52 In reality, price-makers will first attempt to warehouse market risk to exploit natural hedges within their book.  If that is 

insufficient because of their risk appetite or the bank’s (via trading limits), they will then try to avoid crossing interbank bid-ask 
spreads by aggressively pricing structured deals to lure franchise flows into flattening the exposures of concern.  If franchise 
flows are insufficient, price-makers will clear excess risk through the interbank market.  Usually via vanillas in the first instance, 
at least, to exploit their liquidity and tighter bid-ask spreads.  Since hedging trades are usually traded as price-takers, hedging with 
exotic options is timed to coincide with favourable market conditions. 

53 Higher moments are the skew (3rd), smile (4th) and their instabilities (5th, 6th, 7th) (Taleb, 1997, p. 202-3). 
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American binary option 
(t, EST) American binary option (EST, T) 

t EST  T 

Trader Model European 
vanilla hedge (t, EST) 

 

t EST  

Wystup (2003) European vanilla hedge (t, T) 

t  T 
 

Wystup (2003) Residual European vanilla position (EST, T) 

 EST  T 
Fig. 3.8.  The residual (European vanilla option) open position remaining once an American binary option 
terminates.  The American binary option trades at t and expires at T.  It has an expected stopping time equal 
to EST.  The Trader Model hedges the American binary with European vanilla options that expire at EST, 
leaving no residual position.  Wystup (2003) and ∂Vega use European vanilla options that expire at T, and 
therefore, leave a residual open position of length (EST, T). 

 

Table 3.8 shows that the term structures of convexity can be significantly different 

between expected stopping time and expiry.  Using the methodology in Savery (2000), for 

13 December 2007, JPY per unit price of vega convexity to volatility was $10.69 for three 

months, and $16.99 for twelve months.  Similarly, the per unit price of delta convexity to 

volatility was $0.1002 and $0.2068, for three and twelve month expiries, respectively.  These 

prices of convexity will result in significantly different prices for American binary options. 

Table 3.8 
Term Structures of Convexity for JPY. 

 Term 0d Straddle 10d Fly 10d RR 
est 3m 10.25 1.75 -5.75 
T 12m 9.10 3.00 -7.50 

JPY traded volatility data from 13 December 2007 in percent.  For an American binary 
option with EST = 0.25(T), using expiry data to price convexity will grossly overstate the 
impact of both the (vega neutral) butterfly and the (delta neutral) risk reversal. 

 

Furthermore, price-makers do not construct option risk eliminating hedges for vega, and 

vega and delta convexities to volatility as per Lipton and McGhee (2002, p. 82) and Ayache et 

al. (2004, p. 12), because the excess risk is net book, not gross option, in nature.  Price-makers 

use butterflies and risk reversals to smooth book smile and skew risk optimally, they do not 

construct hedge portfolios to eliminate a single exotic option’s risk.54

                                                     
54 The economics which underpin sell-side price-making desks is to charge end-user clients the gross cost of hedging options via 

their price, but then only have to incur the much smaller cost of hedging net book risk, by exploiting warehousing.  For example, 
a price-maker charges an exporter and an importer the gross cost of hedging implicitly in their option prices, but the exporter and 
importer options offset each other to some extent, significantly reducing the price-maker’s net hedging cost.  There are some 
wrinkles in the market.  E.g. if market conditions make exporter hedging attractive, importer hedging will be unattractive.  Hence, 
risk typically accrues asymmetrically, requiring price-makers in the first instance to smooth unwanted book imbalances in the 
liquid, European vanilla option market using commoditised strategies with tight bid-ask spreads. 

  They explicitly take into 

account the term risk caused by the lengthening and shortening of American exotic option 

expected stopping time versus the constant duration of the European vanilla option hedge 

portfolio.  Since price-makers do not use the entire set of all European vanilla options spanning 

the volatility surface to hedge their net book risk, it is illogical to calibrate exotic option pricing 
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models to the entire volatility surface.  As time elapses, the main risk transfers to discontinuity 

risk, where the smoothing of gap deltas becomes paramount.  This is achieved best with 

opposing binary or barrier trades, but one can also use European vanilla option spreads and 

spot delta unwinds. 

3.3.3. Attributes of the Trader Model 

The Trader Model exhibits the following characteristic qualities: 

1. Internal consistency with the universally accepted benchmark BSM / exogenous 

volatility surface model for pricing European vanilla options.  Instead of unnecessarily and sub-

optimally complicating the European vanilla pricing environment in order to price exotics to 

market, as per contemporary research (e.g. Jex et al., 1999; Lipton and McGhee, 2002), the 

Trader Model instead retains the universally accepted vanilla benchmark paradigm and 

simplifies the exotic option pricing environment.  Since no additional structure is required, model 

risk is significantly reduced.  Model risk is reduced because the Trader Model does not suffer 

from a crucial weakness that undermines all local, stochastic, jump and universal volatility 

models:  where all “agree on the vanilla prices [by construction] and totally disagree on the 

exotic prices and the hedging strategies” (Ayache et al. (2004, p. 1).  The coexistence of a large 

number of models of this type with radically divergent prices, is a clear indication that no single 

model dominates all others.  The Trader Model instead prices the cost of hedging smile (skew) 

risk with a butterfly (risk reversal) with expiry equal to the expected stopping time of the exotic 

option. 

2. Does not require arbitrary specifications of volatility dynamics.  Derman (1999) has 

shown that the same asset can exhibit different volatility regimes in different time periods, thus 

making the choice of ‘correct’ volatility dynamics, when that approach is used, both critical and 

impossible ex ante.  This contradiction is at the core of Taleb’s (1997, p. 383) observation that 

financial engineers prefer “a flawless model based on imperfect assumptions”, whereas traders 

prefer “an imperfect model based on flawless assumptions”.  The Trader Model is imperfect, but 

it is based upon the fewest and universally accepted, if not flawless, assumptions.  Since the 

Trader Model is independent of arbitrary specifications of volatility dynamics, the significant 

model risk associated with defining arbitrary volatility diffusion parameters with the volatility 

surface is avoided.  Statics in the present (volatility surface) are not used to define dynamics in 

the future (arbitrary volatility diffusion). 

3. Quantifies the time effect of American optionality.  The impact of time is so critical 

that Taleb (1997, p. 305) describes American binary options as “options on time rather than 

options on the asset”.  The Trader Model is the only model which prices vega and delta 

convexities to volatility at the expected stopping time of the exotic option.  Models of the same 

class (Famery and Cornu, 2000; the heuristic model of Lipton and McGhee, 2002; Wystup, 

2003; and commercial vendor system ∂Vega) price these convexities at the nominal duration of 

the option, and contemporary approaches such as universal volatility models try a brute-force 

approach of introducing time-dependency for arbitrary volatility diffusion parameters.  Both 

methods are sub-optimal on theoretical and computational grounds because they introduce 

term risk.  American binary options are, in most practical circumstances, expected to terminate 

much sooner than the nominal duration, and so convexity prices at the nominal duration are 
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irrelevant.55

“In practice the smile is not well matched over all option maturities by a 

single volatility process.  For markets where the bid-offer spreads for 

European options are at the basis point level any best-fit approach with a 

limited number of free parameters is likely to be outside the spread for 

most options” (Jex et al., 1999, p. 5). 

  Time-dependent parameters are equivalent to using a computational 

sledgehammer to crack a financial economic walnut.  Not only are parameters selected 

arbitrarily, but they are also allowed to float freely over time with the only condition being to 

minimise a mathematical optimisation algorithm.  Attempting to improve computational 

efficiency by calibrating with few free parameters fails because: 

It is precisely because contemporary methods ignore the fundamental economic relationships 

underpinning the volatility surface, that they are left with the computational problem of 

manipulating large matrices and optimisation algorithms to approximate prices.  In contrast, the 

Trader Model uniquely focuses on a vector of information at the expected stopping time only, 

and this information is not corrupted by passing it through an algorithm to force it to define 

something for which it is ill-suited.  It is used to price effects common to European vanilla and 

American exotic options. 

4. Market risk is defined in terms of unique, liquid, market-traded hedging strategies.  In 

the Trader Model, the market price of the exotic option is actually the cost of its unique market 

hedge, which corresponds to price-makers’ model-independent financial economic intuition.  In 

contrast to the pre-eminent role given to the hedging of market risk in the Trader Model, local, 

stochastic, jump and universal volatility models neglect hedging considerations until after the 

price has been obtained, and find that “having accomplished a good fit of a proposed model to 

market data does not tell anything about how to hedge” (Hakala and Wystup, 2002, p. 276).  

Even if price-makers use local, stochastic, jump or universal volatility models in practice, they 

can still only use hedging strategies which are available in the market.  Except in this case, the 

cost of the hedging strategy is not overtly taken into account, rather it is the opaque interaction 

of arbitrarily chosen dynamics and non-traded parameters with little to no concession to real-life 

financial market practicalities.  Pricing with one philosophy and hedging with another introduces 

model risk, since, to-date, there is no way to reconcile their differences.  These differences 

strike at the core of price-maker desk sustainability and profitability over the medium-term. 

5. Mathematically simple and computationally efficient.  The Trader Model is dependent 

on the simplest most parsimonious dynamics of all exotic option pricing models.  As a result, it 

renders intermediate calculations like extensive and intensive numerical calibration redundant, 

thereby achieving significant computational efficiency savings.  This contrasts markedly with the 

popular pursuit of marginal efficiency gains by tinkering with ever more elaborate computational 

routines, a prime example of “quantitative finance . . . wasting itself in sophisticated 

mathematical exercise” (Ayache et al., 2004, p. 33).  The Trader Model is not only a whole-of-

[volatility]-surface model, it is also a term structure of interest rates model.  However, instead of 

trying to identify dynamics which cover stochastic spot, volatility and interest rates for all assets, 

                                                     
55 The economics underpinning the heuristic method is to value the European vanilla option portfolio used to hedge the risks of the 

exotic option.  It does not make sense to choose a hedge portfolio which remains after the exotic option is expected to terminate. 
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time periods and regime changes, the Trader Model uniquely focuses on the relevant vector of 

volatility, and the relevant elements of interest rates, to make significant computational savings.  

The relevant information is at the expected stopping time of the American exotic option. 

The Trader Model does not attempt to forecast the real distribution of future volatility, it 

simply takes as given the benchmark conditions universally accepted by the European vanilla 

FX option market, and prices exotic options in an internally consistent manner.  Contemporary 

orthodox methods like universal volatility models, cannot justifiably claim the high ground on 

distributional issues.  The distributional assumptions of Jex et al. (1999), Blacher (2001) and 

Lipton and McGhee (2002) do not dominate others in terms of pricing performance, otherwise 

there would be a single benchmark model and not a family of models.  Furthermore, trading 

applications of universal volatility models perform intra-day re-calibration of numerous time-

dependent free parameters56 in order to obtain the requisite in-sample closeness of fit.  Intra-

day re-calibration is tacit recognition that advocates of universal volatility models do not have 

any insight as to the real distribution of future instantaneous volatility.57

6. Price Transparency.  Price transparency is just as important as price discovery.  

Transparency has three real economic benefits.  Firstly, it allows exotic option price-makers to 

understand their true risk and modify prices and hedges consistently, even when markets are 

unstable or undergoing structural change.  Secondly, it promotes the commoditisation of price-

maker spreads and the reduction of internal distribution margins for the benefit of end-users in 

the real economy.  Thirdly, commoditisation also forces sell-side financial institutions to 

innovate in order to maintain and grow profits, which helps to make markets more complete. 

  It remains a fact that 

price-makers using universal volatility models still hedge market risk by analysing book 

sensitivity to high-order greeks such as ∂vega/∂vol and ∂delta/∂vol.  They do not hedge by 

analysing exposure to model-specific non-traded parameter sensitivities. 

Despite the obvious benefits of price transparency, other models are deliberately 

opaque.  For example, Gershon, CEO of SuperDerivatives, a high-profile exotic option pricing 

model used in the financial markets claims that: 

“The typical options user / hedger doesn’t worry about the mathematical 

detail of the price if the outcome is reliable.  We drive safely with our cars 

but never bother to learn how their engine works.  We use electric 

machines and don’t know the mechanism behind them” (cited in Wystup, 

2006, p. 304). 

Contrary to Gershon’s claim, price-makers do need to understand how model prices are 

obtained if they are to add value in an environment where daily profit and loss is calculated as 

mark-to-model for exotic options and mark-to-market for the vanilla options used to hedge 

them.58

                                                     
56 Parameters also usually have additional artificial constraints imposed by financial engineers to avoid modelling complications, 

like an error functional minimisation calibration which yields a negative ‘volatility of volatility’ parameter. 

  Similarly, bank internal middle-office risk managers and external regulators must 

57 If model dynamics closely represented the market, then only an initial calibration would be required, as thereafter, model 
dynamics would follow market changes closely.  If frequent re-calibration is required, it is required because model dynamics do 
not closely follow market changes. 

58 The FX market is dominated by OTC markets.  OTC exotic option markets are heterogeneous owing to franchise flows 
structuring unique hedging or speculative positions (contrast with a futures exchange with standardised products).  Therefore, 
there is no end of day closing price for every exotic option traded OTC.  As a result, banks calculate profits asymmetrically 
(exotics mark-to-model and vanillas mark-to-market), which can lead to reversals in profitability once unrealised exotic option 
P&L turns to realised P&L. 
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understand pricing mechanics in order to establish the correct amount of regulatory capital to 

retain under Basel II economic capital.  Furthermore, given the requirement by new accounting 

standards such as IAS 39, which provides rules on how to include derivatives in the balance 

sheet and the profit and loss of companies, even price-takers must understand how prices are 

formed.  The analogy with cars and electric machines is nonsensical, because both cars and 

electric machines must be manufactured according to minimum safety standards imposed and 

enforced by regulatory authorities, effectively relieving end-users of the need to know detail.  

Since SuperDerivatives models have not been verified and validated by external regulatory 

authorities, end-users cannot take comfort in opacity. 

By virtue of its financial economic simplicity, pricing and hedging with the Trader Model 

is much easier to understand and more inclusive of the broader finance community than 

contemporary models whose high-level financial mathematics restricts their application to the 

exclusive domain of financial engineering specialists.  Table 3.9 is a summary of comments 

from high-profile financial engineering specialists outlining (i) major problems with the prevailing 

mathematical orthodoxy for pricing and hedging exotic options; and (ii) recommended solutions.  

The final column shows that the Trader Model not only does not suffer from the problems, but 

also already incorporates the recommendations. 
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Table 3.9 
Major financial engineering issues and Trader Model solutions. 

Quant Model Issue Trader Model 
Quant Imposed Model Processes and Dynamics 
Avellaneda  “Guessing the volatility process is the same as guessing the 

price”. Cited in Ayache et al., 2004, p. 11. 
TM does not constrain the 
solution space by imposing 
arbitrary volatility dynamics. 
 

Jex et al. “A number of different [volatility] processes could be postulated 
which would match the observed volatility smile and yet give 
different values for the same path dependent [exotic] option”. 
1999, p. 5. 
 

“In practice the smile is not well matched over all option 
maturities by a single volatility process”. 1999, p. 5. 
 

TM does not constrain the 
solution space by imposing an 
arbitrary volatility process. 
 

Ayache et 
al. 

“Nobody should be in a position to decide which particular smile 
dynamics will prevail”. 2004, p. 11. 
 

“Your wrong guess about the smile dynamics can generate an 
immediate arbitrage opportunity against you”. 2004, p. 11. 
 

TM solutions are arbitrage-free 
and independent of smile 
guesses. 
 

Quant Imposed Model Estimation, Numerics and Calibration Techniques 
Andersen 
& 
Andreasen 

“Stochastic volatility and jump diffusion models . . . [are] difficult 
to handle numerically and slow to calibrate accurately to traded 
prices”. 2000, p. 233. 
 

TM does not calibrate. 

Hakala & 
Kirsch 

“There are no obvious relationships between market and model 
parameters which makes estimation of model parameters 
difficult to verify”. 2002, p 249. 
 

TM does not estimate 
parameters. 

Andersen 
& 
Andreasen 

While fitting of stochastic volatility models is possible it often 
requires “unrealistically high negative correlation between the 
[underlying asset] and [its] volatility”. 2000, p. 232. 
 

TM does not distort or dilute 
information by modifying input 
data via ‘fitting’. 
 

Lack of Hedging Insights 
Hakala & 
Wystup 

“Having accomplished a good fit of a proposed model to market 
data does not automatically tell anything about how to hedge”. 
2002, p. 276. 

TM identifies a unique traded 
hedge and ensures that option 
price equals hedging cost. 
 

Ayache et 
al. 

“Local volatility, jump-diffusion, stochastic volatility etc. may 
agree on the vanilla prices and totally disagree on the exotic 
prices and the hedging strategies”. 2004, p. 1. 
 

TM hedge is consistent with how 
traders actually hedge in the 
market. 

Quant Recommendations to Improve Exotic Option Pricing Models 
Derman “One good strategy in attempting to value exotic options that are 

sensitive to the smile is to try to avoid modeling the dynamics of 
volatility as much as possible”. 2003, p. 13. 
 

TM does not model the dynamics 
of volatility. 

Taleb “It is better to use a model with the smallest number of 
parameters to estimate”. 1997, p. 109. 
 

TM has no parameters to 
estimate. 

Ayache et 
al. 

“The need to go back to ‘basics’ is a very welcome conclusion, 
. . . , at a time when quantitative finance seems to be wasting 
itself in sophisticated mathematical exercise”. 2004, p. 33. 
 

TM is about the ‘basics’.  i.e. 
economic pragmatism not 
mathematical idealism. 

Taleb “It is better to improve on a simple but seasoned model than 
operate with a more advanced but newer model”. 1997, p. 109. 
 

TM uses the simplest exotic 
option pricing methodology. 

Taleb “Traders . . . are comfortable with [the BSM model] because they 
have learned the necessary tricks to make it work”. 1997, p. 109. 
 

TM prices smile, skew and term 
risks consistently with BSM. 
 

Ayache et 
al. 

“Financially relevant questions can only be answered by relevant 
financial theory”. 2004, p. 33. 

TM is based on financial 
economics not mathematics. 
 

Bates Recommends “a renewed focus on the explicit financial 
intermediation of the underlying risks by option market makers” 
and “plausible models of market maker behaviour”. 2003, p. 400. 
 

TM explicitly prices how price-
makers actually trade in the 
market in practice. 

Derman “A future theory that married the quantitative to the behavioural 
would be a worthy goal”. (2002, p. 82) 

TM marries quantitative methods 
to actual trader behaviour more 
closely than any other model. 

‘TM’ is the acronym for Trader Model. 
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3.4. Testing the Trader Model 

3.4.1. Scope and Scale 

Even though the Trader Model can be applied in general to all instruments and markets, 

the focus of the empirical analysis in this thesis is first generation binary options in the foreign 

exchange (FX) market with maturities of one year or less.  The rationale for this focus is 

explained below. 

First generation binary options.  Published papers of high-profile competitor models use 

binary options to explain their research.  For example, Lipton and McGhee (2002) use double-

no-touch (DNT) options, while Jex et al. (1999) and Wystup (2003) use one touch (OT) options.  

Authors choose these options because they are highly sensitive to the shape of the volatility 

surface and because they are “smallest decomposable fragments” (Taleb, 1997, p. vi), thereby 

avoiding redundancy.  Other binary option prices are determined by simple parity 

relationships,59

“Your wrong guess about the smile dynamics can generate an 

immediate arbitrage opportunity against you, if somebody picks the right 

security to trade against you.  As a matter of fact, all FX option traders 

are aware of the existence of such a security.  It is the barrier option, the 

simplest instance of which is the one touch”. 

 and the prices of other popular (by traded volume) first generation exotic 

options, such as reverse barrier options, are primarily explained by the discontinuity priced by 

OT options because “typically a barrier option will be dynamically hedged with a combination of 

the underlying, a vanilla option, and a one-touch” (Ayache et al., 2004, p. 34).  As well as the 

aforementioned reasons, Ayache et al. (2004, p. 11) note that: 

To be precise, the focus of the empirical analysis in this research is continuously 

monitored American binary FX options with one (OT) and two (DNT) barriers.  In a foreign 

exchange context, a OT option obliges the seller to pay a fixed cash amount to the buyer if the 

spot FX rate trades in the market at or beyond the barrier FX rate, prior to expiration.60  While 

the liability is crystallised immediately, physical payment occurs on the delivery date of the 

option.61

                                                     
59 Letting NT be the acronym for No Touch options, and R the cash payout received on the delivery day of the option, then 

OT + NT = Rexp(-rd(T-t)).  Similarly for two barriers, where D stands for double, DOT + DNT = Rexp(-rd(T-t)). 

  A DNT option obliges the seller to pay a fixed cash amount to the buyer if the spot FX 

rate trades in the market without ever touching or exceeding either barrier FX rate prior to 

expiration.  The liability can only be crystallised at expiration, and physical payment occurs on 

the delivery date of the option.  For illustration, expiry payoffs of OT and DNT options are shown 

in Fig. 3.9.  It is self-evident that, ceteris paribus, the price of a OT (DNT) option increases 

(decreases) when the distance between the barrier(s) and the current spot FX rate diminishes.  

In the interbank exotic FX option market, the convention is to price OT and DNT options as a 

percentage of the fixed cash payment (e.g. a price of 10% is equivalent to a premium of 

60 For a FX binary option to be considered ‘touched’, transactions at or beyond the barrier FX rate must trade in commercial size 
(USD3 million) between 5:00am Sydney time on Monday, to 5:00pm New York time on Friday (Wystup, 2003, p. 1). 

61 Each exchange rate has its own settling instructions.  However, for options on the major exchange rates the delivery date is 
usually two good business days after the expiry date.  Public holidays and weekends cause delivery dates to extend beyond two 
calendar days. 
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$1 million if the payout is $10 million).  OT and DNT options are the binary options with greatest 

traded volume in the FX market.62

 

 

Foreign Exchange Market.  Published papers of high-profile competitor models, such as 

Jex et al. (1999), Lipton and McGhee (2002) and Wystup(2003), all focus on the FX market.  

Having the same market focus for empirical analysis as competitor models facilitates ready 

comparison between this research and the research of others.  The exotic FX option market is 

also priced to extremely fine tolerances63 and has a liquid, actively quoted volatility surface,64 

making tests of pricing accuracy more rigorous and robust vis-à-vis equity and commodity 

markets, which are characterised by significant market frictions,65

Maturities of one year or less.  Most traded volume in the OTC FX option market is in 

relatively short maturities of one year or less.  This short maturity structure also coincides with 

the perception and practice of FX option price-makers being “volatility managers” (Wystup, 

2002, p. 16).  While it is possible to extend the unique pricing and hedging method of the Trader 

Model to long maturities, that is not the focus of this thesis.

 ill-posed inverse problems 

owing to sparse data, and non-synchronous data.  Insofar as exotic options are concerned, FX 

markets are also much bigger and more sophisticated than their equity and commodity 

counterparts. 

66

 

 

 

 

 

 
                                                     
62 In the exotic option pricing database used in this thesis (Jan-Sep 2004 inclusive), NT and DOT options did not trade through the 

interbank GFI broker market.  It is common in the interbank exotic FX option market for OT and DNT option trading to be liquid, 
and NT and DOT trading to be illiquid. 

63 Five decimal point accuracy for American binary FX options. 
64 The Trader Model methodology still works even in the absence of a liquid volatility surface.  The entire volatility surface can be 

propagated from sparse data without the current methods of extrapolation or interpolation which undermines existing theory, via 
the method in Smith (2006). 

65 Market frictions include bid-ask spreads, non-continuous trading, stamp duty, brokerage etc.  Equity and commodity market 
frictions are significantly larger than FX markets, resulting in much wider bid-ask spreads for exotic option prices. 

66 The author has not been able to obtain much traded data for long-dated maturities, owing to the relatively infrequent traded 
volume.  In the exotic option pricing database in this thesis, only nine binary options (4.9%) had maturities greater than one year. 

R 

Cash 
Payment 

Cash 
Payment 

Spot FX Spot FX L U S 

R 

S U 

‘Up’ One Touch Option Double No Touch Option 

Fig. 3.9.  Expiration payoff profiles for OT and DNT options.  S is the spot FX rate.  L(ower) and U(pper) are spot 
FX barrier rates.  R is the fixed cash payment amount.  An ‘up’ (‘down’) OT option approaches the barrier from 
below (above).  For DNT options, L <S < U is a starting condition, and barrier prices L and U may be symmetric 
or asymmetric about S. 
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3.4.2. Testing Framework 

Introduction 

It is customary in contemporary published research to test the empirical performance of 

new exotic option pricing models against:  (i) actual traded market prices and (ii) established 

best practice competitor models.  For example, Jex et al. (1999) and Lipton and McGhee (2002) 

empirically tested the predictive power of their universal volatility model prices against both 

actual traded market prices and the prices of other models.  The models chosen as comparative 

benchmarks were local volatility (Jex et al.), and local and stochastic volatility (Lipton and 

McGhee).  In both cases, there were no statistics or diagnostics only visual representations of 

model prices relative to actual traded market prices.  The inferences drawn from these 

observations were that the universal volatility model was more accurate because its prices were 

closest to the actual traded market prices; and sufficiently accurate because its prices traded 

within the proxy for the actual traded market bid-ask spread. 

Hakala and Wystup (2002) took a less rigorous approach by assuming that the trader’s 

rule-of-thumb model price (Wystup, 2003) was a de facto market price, and tested empirically 

an implementation of Heston’s (1993) stochastic volatility model against it.  Again, there were 

no statistics or diagnostics, just a visual representation with the inference that since the prices 

from Heston’s model were “fairly close to the prices the trader’s rule of thumb method yields” 

(p. 279), that a properly calibrated Heston model can “match prices quoted by traders” (p. 267).  

Testing model prices against model prices without reference to actual traded market prices is 

not only sub-optimal it is insufficient.  Given its inability to explain market prices of other options 

in the same class, selecting the ‘trader’s-rule-of-thumb’ model as a benchmark appears to be 

motivated more by convenience than relevance. 

This thesis follows the same format as Jex et al. (1999) and Lipton and McGhee (2002), 

but with major modifications to improve the rigour and robustness of the empirical testing.  

Table 3.10 shows that the empirical research in this thesis is much more comprehensive as the 

Trader Model is tested with an extensive database of actual traded exotic FX option market 

prices which is significantly larger in scale and scope than any other published research.  It is 

also tested against a competitor model which has gained considerable support among both 

academics and practitioners as a de facto benchmark for exotic FX option pricing.  Therefore, to 

be considered a success, the Trader Model must achieve a much higher performance standard, 

under actual market conditions, than any other model proposed in published research. 
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Table 3.10 
Summary of the scale and scope of empirical testing of models pricing American 

binary FX options to market. 
 Trader Model Jex et al. Lipton & McGhee 
Currency Pairs 8 1 1 
Expiry Days 90 1 1 
Spot FX Rates 159 1 1 
Number of Deals 183 1667 Not reported. 68

Exotic Option Class 
 

OT & DNT OT DNT 
Volatility Skews Positive & Negative Negative Positive 
Vol Term Structures Normal & Inverse Normal Normal 

For example, in this thesis, the database of traded market prices consisted of 90 unique exotic option expiry days 
and 159 unique spot FX rates.  Collectively, this represents a diverse range of different exotic options being priced 
in an absolute sense, as well as relatively vis-à-vis Jex et al. (1999) and Lipton and McGhee (2002). 

 

In this research, if the Trader Model performs strongly against the market, it is prima 

facie evidence that the model has explanatory power and is accurate, as it identifies and 

quantifies factors crucial to the formation of exotic option prices.  However, whilst it is necessary 

to test against the market, it is not sufficient.  Pricing models are the start of the price-making 

process not the end, and so any price formed in the market is a complex combination of 

mathematical and behavioural elements, some of which simply cannot be modelled.  For 

example, price-makers with a trading view on the market, an asymmetric inventory or an 

opinion on the counterparty’s trading intention, will aggressively lean model prices to the right or 

left to obtain the desired exposure and to optimise bid-ask spread income.69

Fig. 3.10 is a schematic diagram outlining the price-making process in the interbank 

exotic FX option market.  The Trader Model, or any other model, is located at step 3.  Models 

return the price of risk given market

  Price-makers lean 

model prices to the right (left) when they have a preference to buy (sell) the option.  That is, if 

the model price is 0.06-0.08, a price-maker may show a preference to buy the option by making 

the counterparty a price of 0.07-0.09.  If the counterparty lifts the price-maker’s ask, the actual 

traded price in the market is 0.09, or a full 0.01 outside the pure model price without trader 

intervention.  This does not mean that the model’s price performance is poor, just that there are 

real economic factors affecting market prices other than market risk at present.  Testing the 

model’s pricing performance against competing models helps to ‘level the playing field’ by 

removing the effect of price-makers’ unique trading intervention(s) on the price. 

70 and contract inputs71

                                                     
67 Jex et al. (1999) do not disclose model inputs. 

 at present.  Traders use model bid 

and ask prices as the starting point of their value-add in the price-making process.  To compare 

68 Lipton and McGhee (2002) present results as solid continuous lines, not discrete points.  As a result, it is not possible to identify 
the underlying discrete deals at source. 

69 Wystup (2003, p. 3) also notes that “other prices for one-touch options can be caused by different vega profiles in the trader’s 
portfolio, a marketing campaign or a hidden additional sales margin”.  References to ‘marketing campaign’ and ‘sales margin’ 
only apply to bank clients, not interbank counterparties.  However, it is clear that there are many reasons why market prices can 
trade away from model prices. 

70 Market inputs are unique to each bank.  For example, volatilities used in the model are those quoted by the vanilla option desk of 
the exotic option price-maker’s bank, not the broker’s amalgamated average of many banks’ bid-ask volatilities.  Similarly, 
deposit rates and forward swap points are quoted by the bank’s interest rate and FX forward desks, respectively, not amalgamated 
broker averages.  Different ‘market’ inputs is another source for variation between bank exotic option prices.  This is one reason 
why interbank exotic FX option markets agree the theoretical value before pricing to market.  Any material disagreement in 
market input will be captured in the theoretical value. 

71 Contract inputs are face value, barrier FX rate(s), expiry and delivery dates etc.  Face value is usually only disclosed for pricing 
purposes as a professional courtesy, if it is unusually large or small relative to interbank exotic FX option pricing convention.  
Obviously, face value is crucial to the settlement of a dealt option, and its hedging. 



52 
 

model bid and ask prices (step 3) directly against broker collated prices (step 9) or actual traded 

market prices (step 10) is not sufficient by itself, as one is actually comparing inputs (model 

prices) to outputs (collated or traded prices), which is both internally inconsistent and illogical.  

Price-maker trading interventions like steps 4, 5 and 6 undermine the effectiveness of the 

analysis because they drive a wedge between the model and the market.  The need for these 

trading interventions is a key reason why banks remunerate price-makers extremely well, 

otherwise, if models were enough, they would employ unskilled operators at much lower cost.  

In the interbank FX option market trading interventions are both common and crucial, and they 

are also behavioural not mathematical, and as such, cannot be modelled. 

 
 

 

 

 

Fig. 3.10.  The interbank price-making process for exotic FX options.  Model bid and ask prices are inputs 
in the price-making process, not outputs.  The trader’s market view (step 4), current inventory (step 5) and 
view of the counterparty’s trading intention (step 6) have a significant impact on the price shown to the 
broker (step 7).  Steps 4, 5, and 6 drive a wedge between model and market prices for options executed in 
the OTC interbank exotic FX option market.  Sometimes banks deal direct without a broker. 

Market Inputs (1) 
[S, rd, rf, σ(Δ,T)]* 

Contract Inputs (2) 
[Class, L, U, T]** 

Model bid and ask 
prices (3) 

Trader’s market view of 
future prices (4) 

State of the trader’s 
inventory now (5) 

Trader’s view of 
whether the 

counterparty is a buyer 
or seller (6) 

Trader’s bid and ask 
prices (7) 

Broker collated best bid 
and ask prices (9) 

Other traders’ bid and 
ask prices (8) 

Actual traded market 
price (10) 

* S is the spot FX rate, rd (rf ) is the domestic 
(foreign) deposit rate, and σ(Δ, T) is the 
European vanilla volatility surface. 

** Class is OT or DNT, L (U) is the lower 
(upper) barrier rate and T is the expiry date. 
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Price Tests and Performance Criteria 

There have been some references to ‘explanatory power’ and ‘accuracy’ in relation to 

the measurement of the Trader Model’s pricing performance.  Price tests and their performance 

criteria are designed to remove ambiguity from these generic terms and put empirical results on 

a firm objective footing. 

Price tests and their performance criteria will be of two main types: 

• Trader Model prices versus actual traded market prices; and 

• Trader Model prices versus benchmark competitor model prices. 

Trader Model Versus Actual Traded Market Prices 

Given the prevalence of trading interventions in the interbank exotic FX option market, 

to analyse pricing performance effectively model prices must be tested against:  (i) actual 

traded market prices, explicitly taking into account the impact of trading interventions; and (ii) a 

competitor model, to neutralise the impact of trading interventions.72

To take into account the impact of trading interventions we focus not just on model 

prices but the market within which the model is being used, in order to replicate the price-

maker’s role as closely as possible.  It is possible to develop reasonable proxies for the current 

state of price-makers’ inventory (step 5) and for establishing the price-maker’s view of the 

counterparty’s trading intention (step 6), which make the analysis of model and market prices 

more realistic.  It is not possible to develop a reasonable proxy for price-makers’ trading views 

(step 4) without more information.  The empirical testing process for analysing Trader Model 

prices against actual traded market prices is shown in Fig. 3.11. 

 

 
Test 1 

Test 1 compares the Trader Model bid price and the Trader Model ask price to the 

actual traded market price for each OT option and DNT option in the sample.  If test 1 shows 

that actual traded market prices consistently fall within Trader Model bid-ask spreads, then that 

is regarded as prima facie evidence of good pricing performance.  However, test 1 has limited 

effectiveness on its own because of the non-trivial impact of trading interventions in the 

interbank exotic FX option market.  If actual traded market prices do not trade within [TMBid, 

                                                     
72 If behavioural elements like steps 4, 5 and 6 cannot be modelled, then testing a model against another model has the effect of 

‘levelling the playing field’. 

Trader Model Bid-
Ask Price Spread 

Actual Traded 
Market Price 

Proxy for state of 
inventory (step 5) 

Actual Traded 
Market Price 

Proxy for c/party 
trading intention 

(step 6) 

 
Test 1 

Trader Model 
Mid Price 

 
Test 2 

Fig. 3.11.  The process for testing Trader Model prices versus actual traded market prices. 
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TMAsk], it would be premature to conclude that the Trader Model is not a good decision-making 

tool.  Further analysis is required. 

It is common in the exotic option literature to reverse test 1 (Jex et al., 1999; Lipton and 

McGhee, 2002).  That is, to place an arbitrary constant bid-ask spread symmetrically about the 

actual traded market price, and test whether the model mid-price falls within that range.  Jex et 

al. (Lipton and McGhee) used an arbitrary constant spread of 0.025 (0.03) to test JPY OT (EUR 

DNT) options empirically.  This approach is sub-optimal.  Firstly, bid-ask spreads for American 

binary options are not symmetric.  Market risk is asymmetric and so market bid-ask spreads, as 

distinct from constant spreads, are also asymmetric.  Secondly, the database in this thesis 

consists of American binary option market prices traded in the interbank exotic FX option 

market.  Pricing the interbank market (competitors) is very different from pricing corporate and 

institutional franchise flows (customers).  In the interbank market, it is much more likely that 

options actually trade close to or even outside model bid and ask prices, because price-makers 

routinely try to extract the maximum initial revaluation profit via steps 4, 5 and 6 of Fig. 3.11.73

Since test 1 is dependent upon Trader Model bid-ask spreads, it is important that the 

width of those spreads is realistic, otherwise, at the extreme, model bid-ask spreads could be 

made arbitrarily wide to ensure all market prices traded within the model generated spread.  

SuperDerivatives is a commercial vendor system which has gained a reputation for being “the 

standard reference for pricing exotic options up to market” (Wystup, 2003), winning academic 

accolades and numerous industry awards in the process.  Trader Model bid-ask spreads will be 

analysed against those generated by SuperDerivatives as a test of their market credibility 

(test 4). 

  

This is much less likely when pricing franchise flows, as price-makers are pressured by senior 

management to make keen prices free of trading interventions to support the sales and 

distribution desk in growing the franchise business.  Therefore, it is much better theoretically to 

develop model bid-ask spreads based on market risk, and test whether actual traded prices fall 

within that range.  This approach also has a worthwhile corollary of ascertaining whether the 

model is a useful decision-making tool for price-makers in the market in practice, that is, 

whether the market trades in accordance with a priori expectations (e.g. whether the market 

trades less than or greater than model mid prices [test 2]). 

Test 2 

Test 2 also analyses Trader Model prices against actual traded market prices, but this 

time by explicitly taking into account the impact of trading interventions.  Since the database of 

traded exotic option prices used in this research was obtained from the interbank market, one 

would expect the frequency and size of trading interventions to be high.  To implement test 2 in 

practice, one must develop reasonable proxies for price-maker trading interventions and then 

hypothesize ex ante whether the actual market price should trade below or above the Trader 

Model mid price (i.e. closer to model bid or ask prices, respectively).  The proxies and 

hypotheses developed for this thesis are presented below. 

                                                     
73 The only obligation on a price-maker making a market to a competitor bank in the interbank market, is to quote a professional 

bid-ask spread width shortly after being asked for a price.  The price-maker has no obligation with respect to the level of the bid-
ask spread, and so tries to ‘squeeze’ bank counterparty’s for more re-valuation profit. 
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Proxy for the state of traders’ inventory.  Franchise flows, either directly or indirectly 

through reverse barrier options,74 typically get price-makers net long OT options and net short 

DNT options (Taleb, 1997, p. 347; UBS).  This is because of the prevalence of American binary 

options in exotic structured products, primarily to make the structured product ‘zero cost’75

Table 3.11 

 and 

thereby cost competitive with forward contracts (Topper, 2002, p. 97).  Table 3.11 shows 

structured products that are popular with franchise flows, and the resulting American binary 

position warehoused by the sell-side bank.  Therefore, price-makers approaching the interbank 

market are more likely, ceteris paribus, to sell OT options and buy DNT options to alleviate 

asymmetric inventories caused by franchise flows.  This is expected to result in actual interbank 

market prices for OT (DNT) options trading below (above) Trader Model mid prices. 

Franchise flow impact on sell-side bank exotic option books. 
Franchise Product Client Position Bank Binary Position 
KO Forward RKO(Φ) - KO(-Φ) Long OT Option 
Shark Forward Fwd + RKO Long OT Option 
Range Forward Fwd + DNT Short DNT Option 
Range Accrual 
Forward Fwd + DNTs Short DNT Options 

Boomerang 
Forward 

KO(K1,Φ) – RKI(K2,-Φ) + 
KI(K2,Φ) Long OT Option 

Double Shark 
Forward Vanilla(Φ) - RKI(-Φ) Long OT Option 

Range Deposit Depo(r<mkt) + DNT Short DNT Option 
Tower Deposit Depo(r<mkt) + DNTs Short DNT Options 
Hanseatic Cross- 
Currency Swap 

Swap – RKI(H1,-Φ) + 
RKO(H2,Φ) Long OT Options 

DNT-Linked Swap Swap + 2 x DNT Short DNT Options 
Source:  ‘Franchise product’ and ‘client position’ columns are from Wystup (2006).  Φ represents whether 
the option is a Call (Φ = 1) or a Put (Φ = -1).  K, H and r represent strike prices, barrier FX rates and 
deposit rates, respectively.  Fwd is a FX forward contract, RKO (RKI) is a reverse knockout (knockin) 
barrier option; and KO (KI) is a regular knockout (knockin) barrier option. 

 

Proxy for the trader’s view of the counterparty’s trading intention.  This proxy operates 

on two levels:  (i) the risk-reward ratio reflected in the theoretical value (TV) of the exotic option; 

and (ii) the physical location of the American binary’s barrier FX rate(s).  The exotic option TV is 

the starting reference point when quoting prices to banks and interbank brokers.  The TV of the 

binary option can proxy for the trading intent of the counterparty because if the TV is low, such 

as 0.1, the buyer is risking only 0.1 for the maximum reward of 1.0, making it an attractive 

(unattractive) risk-reward ratio for the buyer (seller).  In contrast, if the TV is 0.8, the buyer is 

risking 0.8 for a maximum reward of 1.0.  Therefore, it is reasonable to conclude that, ceteris 

paribus, low TV American binary options are more likely to be bid than offered, such that low 

(high) TV American binary options are expected to trade in the market above (below) Trader 

Model mid prices. 

Taleb (1997, p. 375) refers to barrier FX rates located outside the one year traded high 

and low in spot FX rates as a “densely mined market”, owing to the extreme “buildup of gap 
                                                     
74 Ayache et al. (2004, p. 34) supports the ‘indirect’ claim, by noting that “typically a barrier option will be dynamically hedged 

with a combination of the underlying, a vanilla option, and a one-touch”. 
75 ‘Zero cost’ refers to a strategy with a net premium outlay of zero.  This is achieved by a customer selling an option to finance the 

purchase of an option. 
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delta orders below the low and above the high”.76  In the event of a breach in the one year 

traded spot FX rate high or low, one would expect volatile movements in the spot FX rate as 

significant stop orders are filled in illiquid spot markets.77

To illustrate the application of Taleb’s “densely mined market range” in this research, 

consider JPY binary options.  For JPY binary options in this thesis, barrier FX rates located 

outside the range [100, 125] will be considered to be in a “densely mined market” and thus 

relatively unattractive to buyers (sellers) of OT (DNT) options.  If the spot FX rate trades at or 

beyond the barrier FX rate before expiry, interbank buyers of OT options with barrier FX rates 

outside the range [100, 125] will have to unwind gap deltas in the same direction as the 

underlying spot market by buying (selling) spot FX in rising (falling) spot FX markets, thereby 

exacerbating losses.

  He goes on to conclude that “the 

expected slippage costs of gap deltas need to be increased when the risk manager has 

adequate information to conclude that their level is located in a densely mined market range”.  

For OT (DNT) options, slippage cost is subtracted from (added to) the bid (ask) price of the 

option, as slippage costs and hence bid-ask spreads, are asymmetric. 

78  In contrast, interbank sellers of OT options unwind gap deltas against 

the spot market direction, making the problem less acute.  Therefore, a JPY OT option with a 

barrier FX rate less (more) than 100 (125) will be expected to trade below the Trader Model mid 

price.79

In this thesis, Taleb’s “densely mined market” is defined as a barrier FX rate located 

outside of the range [Low Barrier, High Barrier] in Table 3.12.  For example, a JPY binary option 

with barrier FX rate less than 100 is considered to be in a “densely mined market”, thereby 

  The same argument applies for DNT options, except that the asymmetric risk is 

reversed.  That is, the gap delta unwind is now pronounced for sellers of DNT options and less 

acute for buyers of DNT options.  Hence, for JPY DNT options with barrier(s) outside the range 

[100, 125], one would expect market prices to trade above Trader Model mid prices.  Whilst gap 

delta unwinds do affect DNT options, their impact is less than for OT options.  This is because it 

is obvious that if a customer wants to trade a OT option with a barrier below (above) the one 

year spot minimum (maximum) as part of a structured product, they signal a sell interest, as 

they are hoping to sell an option that never pays off.  Given that DNT options have another 

barrier in the opposite direction, the placement of a single barrier is less critical to whether the 

payoff occurs, and the strength of the signal is diluted accordingly. 

                                                     
76 A wider range in spot FX rates than the one year traded high and low is even more conservative, in that the gap deltas will be 

even more significant for those levels. 
77 A OT (DNT) option dynamically delta hedged by a price-maker will become an open spot delta position if the spot FX rate trades 

at or beyond a barrier FX rate. 
78 There is the facility in the interbank market for counterparties to agree to clear gap deltas with each other if the barrier FX rate 

trades in the spot FX market before expiry.  This facility does not undermine Taleb’s “densely mined market” theory or the proxy 
for counterparty trading intention, because in the vast majority of cases, price-makers are trading OT options interbank with the 
express intention of clearing excessive discontinuity risk from gap deltas caused by franchise flows trading in reverse barrier 
options.  Franchise flows do not delta hedge as they are price-takers with natural market exposure.  Banks are price-makers with 
neutral market exposure.  Therefore, price-makers trade interbank to clear asymmetric gap delta exposure, and this cannot occur if 
the interbank trade neutralises gap delta. 

79 The effect of large gap deltas is to dilute the impact of the European vanilla skew on the price of a JPY up OT option with barrier 
level sub-100 (market convention is to refer to these options as JPY up rather than USD down).  This is because the gamma of a 
European vanilla OTM JPY Call option with strike rate sub-100 benefits from the expected volatility of the spot FX rate until 
expiry.  In contrast, the gamma of a JPY up OT option with barrier FX rate sub-100 benefits from the expected volatility of the 
spot FX rate only until the spot FX rate trades at or beyond the barrier FX rate, which could be much sooner than the OT option’s 
expiry. 
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leading to expectations that OT (DNT) option prices will trade closer to model bid (ask) prices, 

ceteris paribus.80

Table 3.12 

 

The level of barrier FX rates as a proxy of counterparty trading intention. 
Spot FX Rate Low Barrier High Barrier 
EUR 1.0400 1.3000 
JPY 100.00 125.00 
EUR/JPY 110.00 140.00 
GBP 1.5000 1.9100 
AUD 0.6500 0.8000 
CAD 1.2620 1.5635 
EUR/GBP 0.6485 0.7250 
EUR/CHF 1.4500 1.6000 

In this thesis, Taleb’s (1997, p. 375) “densely mined market” is defined as a barrier FX rate located 
outside of the range [Low Barrier, High Barrier].  For example, a JPY binary option with barrier FX 
rate less than 100 is considered to be in a “densely mined market”, thereby leading to expectations 
that OT (DNT) option prices will trade closer to model bid (ask) prices, ceteris paribus. 

 

Table 3.13 shows that the impact of proxies can conflict for OT (DNT) options with low 

(high) theoretical values.  Since banks only fund price-making businesses to support and grow 

franchise flows, it is reasonable to assume that the franchise flow effect is always prevalent and 

dominant.  Ranking the subordinate risk-reward and gap delta effects is subjective.  To reduce 

the impact of subjectivity, testing will be conducted across strata defined as strong (dominant 

proxies align) and medium (dominant proxies conflict).  For OT options, since there is only one 

barrier, it is much easier for flow sell interests to place the barrier outside of the one year spot 

range to reduce the probability that the liability will be crystallised.  Therefore, gap deltas 

dominate risk / reward effects for OT options.  For DNT options, since there are two barriers, it 

is much harder for flow buy interests to place barriers outside the one year spot range and still 

have attractive terms in the exotic structured product.81

Table 3.13 

  Therefore, risk / reward considerations 

dominate gap deltas when flows consider structured products containing DNT options. 

Summary of Expected Proxy Impact. 
 Inventory Proxy Counterparty Intention Proxies 
 Franchise Flows TV Risk-Reward Gap Deltas 
OT Bid Low (High) = Ask (Bid) Bid 
DNT Ask Low (High) = Ask (Bid) Ask 

By way of illustration, a low theoretical value (TV) DNT option is expected to trade in the market closer 
to the Trader Model ask price.  The results of this analysis will be reported in the ‘strong’ stratum.  A 
low TV OT option is expected to trade in the market closer to the Trader Model bid price, because 
franchise flows dominate other proxies.  The results of this analysis would be reported in the ‘strong’ 
(‘medium’) stratum if the barrier is outside (within) the range specified in Table 3.12. 

 

Fig. 3.12 shows a practical application of the additional performance criterion in test 2.  

Using the extra information contained in bid-ask spreads, which is lost by using mid-points only, 

allows one to infer whether the model’s pricing performance is good under actual traded market 

                                                     
80 The UBS exotic option trading desk refers to a “densely mined market” as a “bad neighbourhood”, and bad neighbourhood risk is 

accounted for by modifying model prices asymmetrically as described above. 
81 As barrier width increases, the DNT option theoretical value increases.  Thus, the buyer of a DNT option with widely placed 

barriers will have to dilute their risk / reward ratio (risk more for the same reward). 
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conditions and thus, whether it is a useful tool for price-makers in practice.  In Fig. 3.12, 

example 1 and example 2 bid-ask spreads (A-B) are identical, but bid (B) and ask (A) prices are 

different.  The market actually trades (X) within both bid-ask spreads, and test 1 takes this as 

prima facie evidence of good pricing performance.  Test 2’s additional criterion for distinguishing 

the level of performance within these ‘good’ results is to use proxies for franchise flows and 

counterparty trading intention to hypothesize ex ante whether X should trade below or above 

the mid (M) price (i.e. closer to B or A, respectively).  If the proxies indicate the market price 

should trade below the Trader Model mid price, and it does, then this strengthens the claim that 

the model’s pricing performance is good.  Using test 1 only ignores this additional crucial 

information about the interbank exotic FX option market microstructure, and may result in a 

model with systematic pricing bias rating well if the magnitude of the bias is within the bounds of 

the bid-ask spread. 

 
If the proxies imply that the market should trade above the Trader Model mid price, then 

under test 2, example 3’s performance is better than example 4, even though the market price 

traded outside the bid-ask spread in the former, and within the latter.  Whilst this may appear 

counter-intuitive, example 4 is more likely to indicate significant over-pricing which only by good 

fortune did not exceed the bid-ask spread.  It is not uncommon for bid (offered) options to trade 

outside model ask (bid) prices in the interbank market.  Price-makers usually know the 

counterparty’s interest, as they typically share the same direction if not the same size of 

B 

A B 

A B 

Fig. 3.12.  Performance criterion for the analysis of Trader Model prices versus actual traded market prices, 
taking into account the impact of price-maker trading interventions.  It is because of the impact of price-maker 
trading interventions that the position of the actual traded market price relative to the Trader Model mid-price 
(test 2) is as important as its position relative to the Trader Model bid-ask spread (test 1). 

A B 

A 

X 

X 

Example 2: 
 

Example 1: 

In examples 1 and 2, bid-ask spreads (A-B) are identical, but bid (B) and ask (A) prices are different.  The 
market actually trades (X) within both bid-ask spreads, which is prima face evidence of ‘good’ performance in 
test 1.  If the proxies imply that market prices should trade below model mid prices, then under test 2’s 
additional criterion, example 1 performance is better than example 2. 

M 
 

M 

M 

Example 3: 

Example 4: 

M X 

M  

In examples 3 and 4, bid-ask spreads (A-B) are identical, but bid (B) and ask (A) prices are different.  If the 
proxies imply that market prices should trade above model mid prices, then under test 2’s additional criterion, 
example 3 performance is better than example 4, even though the market price trades outside the bid-ask 
spread of example 3 and within the bid-ask spread of example 4. 

X 
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asymmetric inventories caused by franchise flows.82  So if the price-maker prefers to buy (sell) 

an exotic option to clear some market risk, it is highly likely that the counterparty will as well.  

The price-maker’s response will be to move model prices to the right (left) when quoting the 

counterparty, such that if their ask (bid) is paid (given) it will be to the right (left) of the model 

ask (bid) price.  This is the very essence of interbank price-making and the wholesale 

intermediation of market risk:  if you must increase rather than decrease market risk via an 

interbank trade, at least ensure that you extract a large initial revaluation profit to offset the cost 

of clearing risk by crossing spreads in another transaction.83

Trader Model vs Benchmark Competitor Model Prices 

 

As well as testing the accuracy of the Trader Model against actual traded market prices, 

the Trader Model also will be tested against a competitor model in order to neutralise the impact 

of trading interventions.  Inter-model analysis neutralises the impact of trading interventions 

because trading interventions are behavioural not mathematical, and, as such, all models are 

unable to price these effects from market and contract input data alone. 

The choice of competitor model is paramount.  In order to set a challenging ‘best 

practice’ pricing performance standard for the Trader Model, it must be tested empirically 

against a reputable, high-profile competitor model which represents the pinnacle of 

contemporary achievement in the exotic FX option market.  However, as noted in the review of 

published literature, unlike the European vanilla FX option market, there is no universally 

accepted benchmark pricing methodology in the exotic FX option market.  The plethora of 

published papers proposing alternate stochastic, jump and universal volatility dynamics is 

evidence of that.  Nonetheless, there is a model that is widely used in industry called 

SuperDerivatives, which has clearly gained strong support among academics and financial 

market practitioners alike for its outstanding pricing performance: 

• A leading academic financial engineer specialising in exotic FX option pricing 

stated that “SuperDerivatives has become a standard reference for pricing 

exotic FX options up to the market” (Wystup, 2003, 2006).  Wystup has a 

strong publishing record in exotic FX option pricing, and he also has experience 

in investment banking, both as an employee and as a consultant, primarily in 

building exotic FX option pricing models.  He is currently the Professor of 

Quantitative Finance at the Frankfurt School of Finance and Management and 

he is also the Managing Director of MathFinance Ag. 

• Risk, the leading industry publication for derivative dealers and financial 

engineers claimed that “SuperDerivatives established its foreign exchange 

options pricing product SD-FX as something of a de facto standard globally”;84

• SuperDerivatives was awarded “Best Pricing Technology” for two consecutive 

years by Risk; 

  

                                                     
82 Sell-side price-making desks typically see the same type of franchise flows at the same time, as corporate and institutional 

customers try to exploit favourable market conditions to their advantage.  If market conditions make an exotic structured product 
attractive, salesforces from different banks compete for flow business by pushing these products aggressively. 

83 Revaluation profits are calculated daily.  On the trade date, revaluation profit for exotic options are equal to the difference 
between traded price and model mid price.  Therefore, if a price-maker buys (sells) on their bid (ask) from (to) another price-
maker, then they earn positive revaluation profits equal to mid-bid (ask-mid).  If a price-maker wants to clear risk by acting as a 
price-taker in the interbank market, then they incur negative revaluation profits. 

84 Coping with complexity, 2005, 18, 12, p. 26-30. 
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• SuperDerivatives was awarded “Best Risk Management and Options Vendor” 

for three consecutive years by FX Week, an industry publication for the 

professional FX dealer market; 

• SuperDerivatives was awarded “Best FX Option Pricing System” for two 

consecutive years by Euromoney, an industry publication for the professional 

dealer market;  

• SuperDerivatives was also awarded “Best Overall System in FX” and “Most 

Used System in FX” in 2005 by Euromoney; and 

• SuperDerivatives was commended for its sell-side innovation in the The Banker 

Technology Awards 2007 (a Financial Times Publication). 

No other model has gained such strong support in academia and industry, and so 

SuperDerivatives is chosen as the benchmark competitor model for analysing the performance 

of the Trader Model in this research.  The inter-model testing process for the Trader Model vis-

à-vis SuperDerivatives is outlined schematically in Fig. 3.13.  The Trader Model is not tested 

against SuperDerivatives for computational efficiency.  The Trader Model calculates prices 

more quickly than SuperDerivatives, but it is not possible to separate whether SuperDerivatives’ 

slower calculation speed is attributable to computational inefficiency or the relative inefficiency 

of their internet delivery mechanism. 

 
Test 3 

Test 3 counts the number of occurrences where actual market prices traded within 

model bid-ask spreads.  Therefore, it is essential that both models have identical bid-ask spread 

width, otherwise comparative pricing performance can be artificially improved by simply 

widening the spread of one model.  Given that SuperDerivatives has an established reputation 

Fig. 3.13.  The testing process for Trader Model prices versus SuperDerivatives model prices. 
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in the interbank exotic FX option market, its bid-ask spread width will be used as the benchmark 

for test 3.  That is, Trader Model bid-ask spread width will be modified to match 

SuperDerivatives bid-ask spread width, as per Eq. (3.3) and Eq. (3.4):  

 

( )−
= − × −

−

 
 
 

SD Mid Bid
Bid Mid Ask Bid

Ask Bid

TM TM
TM TM SD SD

TM TM
 (3.3) 

 

( )−
= + × −

−

 
 
 

SD Ask Mid
Ask Mid Ask Bid

Ask Bid

TM TM
TM TM SD SD

TM TM
 (3.4) 

 
Test 3 is analogous to test 1, with the additional step of inter-model analysis.  Inter-

model analysis helps to neutralise the impact of price-maker trading interventions on the 

analysis, because trading interventions are behavioural not mathematical, and, as such, all 

models struggle to price these effects from market and contract input data alone.  The Trader 

Model’s performance will be deemed better than SuperDerivatives if: 

• actual market prices trade within   
SD SD
Bid AskTM ,TM  with greater frequency than 

[SDBid, SDAsk]; and 

• if actual market prices trade outside   
SD SD
Bid AskTM ,TM , then the departures are of 

smaller magnitude than the departures from [SDBid, SDAsk]. 

Test 4 

Test 4 analyses the relative width of bid-ask spreads generated by the Trader Model 

and SuperDerivatives.  It is essential that model bid-ask spreads are relevant and realistic in the 

context of the fiercely competitive interbank exotic FX option market, otherwise spreads could 

be made arbitrarily wide just to improve model pricing performance outcomes.  Since 

SuperDerivatives is an industry system widely used in, and highly regarded by the interbank 

exotic FX option market, it is reasonable to conclude that their bid-ask spreads are relevant, 

realistic and competitive, and, as such, may serve as an appropriate performance benchmark. 

In the extremely competitive interbank exotic FX option market, there is a natural 

tension between ensuring bid-ask spreads are sufficiently wide to reflect market risk accurately, 

but are narrow enough to compete and project professionalism.  For the Trader Model to 

outperform under these constraints, its bid-ask spreads must be similar in magnitude to, but 

narrower on average than SuperDerivatives’.  Since the frequency with which actual market 

prices trade within model-generated bid-ask spreads is a key performance criterion in test 1 and 

test 2, the results of test 4 will also provide additional information to interpret the results of these 

earlier tests. 

Test 5 

Test 5 is analogous to test 2, except that there is also comparative analysis between 

models to differentiate their relative pricing performance.  Proxies of trading intervention are 

used to establish whether exotic options should trade below or above model mid prices.  For 

example, if it is the former, the Trader Model outperforms SuperDerivatives if the market trades 

below TMMid more frequently than SDMid.  Fig. 3.14 illustrates the application of test 5. 
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Traditional Tests Not Conducted in this Thesis 

Traditional empirical tests of in-sample closeness-of-fit and out-of-sample pricing and 

hedging performance, such as Belledin and Schlag (1999) are not relevant for this thesis.  The 

Trader Model is dependent upon BSM dynamics and the exogenous volatility surface 

correction, and is independent of arbitrary specifications of volatility dynamics.  Therefore, 

computationally inefficient in-sample fitting of arbitrary and possibly time-dependent free 

parameters to historic time series or present day cross-sectional exchange rate or option data is 

redundant.  The non-trivial problems of over- or under-fitting, instability of estimates over time 

and lack of hedging insights are also redundant.  As a result, we do not need to perform 

efficiency tests as is common in published literature, as we already know that the Trader Model 

is computationally much more efficient than contemporary orthodox models. 

3.5. Data 

3.5.1. Introduction 

The data in this research was obtained from two global financial institutions that are an 

integral part of the interbank FX option market.  It consists of time-series and cross-sectional 

data that is significantly larger in scale and scope than the data in any other published exotic 

option research.  The comprehensiveness of the data provides a special opportunity to test not 

only the accuracy and usefulness of the Trader Model as a decision-making tool for price-

B 

A B 

Fig. 3.14.  Performance criterion for the analysis of Trader Model prices versus SuperDerivatives Model Prices, 
taking into account the impact of price-maker trading interventions.  It is because of the impact of price-maker 
trading interventions that the position of the actual traded market price relative to model mid-prices (test 5) is as 
important as its position relative to the model bid-ask spreads (test 3). 
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X 

SuperDerivatives 

In this example, both models generate the same bid-ask spread (A-B), but have different bid (B) and ask (A) prices.  
The market actually trades (X) within both bid-ask spreads.  A criterion for establishing better performance is to use 
the proxies for trading intervention to establish whether X should trade below or above the model mid price (M).  If 
the proxies imply the market should trade below (above) the model mid price, then in this example the Trader 
Model (SuperDerivatives) performs best. 

Trader Model Trader Model 

M 

M 

Trader Model 

SuperDerivatives 

X M 
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M X 

In this example, both models generate the same bid-ask spread (A-B), but have different bid (B) and ask (A) prices.  
The market actually trades (X) outside the Trader Model spread and within SuperDerivatives spread.  If the proxies 
imply the market should trade above (below) the model mid price, then in this example the Trader Model 
(SuperDerivatives) performs best. 



63 
 

makers, but also to test the robustness of the Trader Model’s unique innovation under a diverse 

range of actual market traded scenarios. 

In this research, sample input (section 3.5.2) and output (section 3.5.3) data spans an 

eight currency pair cross-section for the time-series 7 January 2004 to 29 September 2004, 

inclusive.85  The dimensions of the cross-section and time-series were randomly chosen by the 

suppliers, and all data supplied was used in the empirical testing except for the exclusions 

described later in this chapter (specifically Table 3.24).86

 

 

3.5.2. Input Data 

The Trader Model’s structure is identical to that which is universally accepted as the 

benchmark for pricing European vanilla options to market.  That is, in a foreign exchange 

context, Trader Model dynamics are identical to the Garman and Kohlhagen (1983) version of 

the BSM model, and the market supplement to theoretical value is priced exogenously by the 

volatility surface.  Therefore, Trader Model prices for American binary FX options, 

[ ]( )d fTM S,r ,r , t,T, ,T ,L,U,σ ϕ∆ , are dependent on actual traded market prices [ ]( )d fS,r ,r , ,Tσ ∆  and 

option contract parameters ( )L,U, , t,Tϕ  only.87  Since the Trader Model imposes no additional 

structure to obtain exotic option prices, such as arbitrary assumptions about the functional form 

of volatility dynamics, there is no requirement to process raw input data into modified input data 

via extensive and intensive intermediate calibrations as per contemporary orthodox models.  In 

addition to achieving significant computational efficiency savings, making calibration redundant 

also ensures that information contained in raw input data is not distorted or diluted by arbitrary 

price-dependent model choices for calibration numerics, smoothness criteria, minimisation 

algorithms etc.88

Input data is dependent on the trade date of the exotic option.  It is not uncommon for 

an option maturity pillar,

 

89

                                                     
85 The data is classified as input or output data.  These classifications are referenced to the Trader Model, and should not be 

confused with the financial market practice of traders using model outputs as inputs in the price-making process (Section 3.4.2 
and Fig. 3.11). 

 such as the three month maturity, to have a range of possible trade 

date dependent term lengths for volatilities and deposit rates.  Volatilities are defined over 

expiry days (trade date to expiry date) and deposit rates are defined over delivery days (spot 

delivery date to option delivery date).  As a result, a three month option maturity pillar may have 

variations like those depicted in Table 3.14 which undermine the accuracy of model calculations 

if not overtly taken into account.  Model pricing errors from this source are eliminated in this 

thesis.  The Trader Model was programmed into the commercial vendor system Fenics, which is 

owned by GFI Group Inc., so as to ensure historical day count conventions were accounted for 

86 The data was from the present to as far back as the providers were prepared to supply at the time the thesis first commenced 
(October 2004). 

87 S is the spot FX rate, rd (rf) is the domestic (foreign) deposit rate, t is calendar time, T is the option expiry date, σ(Δ,T) is the 
volatility surface, L (U) is the lower (upper) barrier rate, and φ is a binary variable where 1 (-1) represents a European vanilla Call 
(Put) option. 

88 Even if one assumes identical functional form for volatility dynamics and calibrates to the same volatility surface, using different 
calibration techniques will result in different exotic option model prices. 

89 OTC FX option markets have fixed maturity pillars that are routinely quoted to define the volatility surface in the maturity 
dimension. These pillars are overnight, one week, two week, one month, etc.  A full specification of maturity pillars for EUR is 
shown in Table 3.19. 
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in empirical testing.90

Table 3.14 

  Furthermore, the data obtained for this thesis is already in Fenics format, 

eliminating compatibility conflicts and additional conversion processing. 

Example of the variation in the three month maturity pillar for EUR. 
T = 3m / t 6 Jan 04 7 Jan 04 8 Jan 04 9 Jan 04 
Expiry Days 91 91 90 89 
Delivery Days 91 95 92 91 

Volatilities are defined for expiry days, and deposit rates are defined for delivery days.  These types of 
variations are common and must be explicitly taken into account in the pricing model, otherwise the 
accuracy of exotic option theoretical values will be undermined.  By way of illustration, for the trade date 
7 January 2004, a three month EUR option had expiry days of length 91 days, and delivery days of length 
95 days. 

 

Spot FX Rates (S) 

It is convention in the interbank exotic FX option market to trade a spot delta hedge with 

the exotic option.91

Table 3.15 

  A delta hedge eliminates the tic-by-tic spot FX rate sensitivity of the price-

maker’s exotic option quote.  It also conveniently establishes the reference spot FX rate specific 

to the actual traded market price of the exotic FX option.  Therefore, the spot FX rates in this 

thesis are all market traded, deal-specific point estimates of which there are 183 in total, 

covering the currency pairs in Table 3.15.  Table 3.15 shows the significant variation in spot FX 

rates over the sample period, making this sample an excellent vehicle for testing the robustness 

of the Trader Model’s pricing performance.  Deal-specific spot FX rate data was supplied by GFI 

Group Inc., one of the largest interbank OTC FX option brokers. 

Minimum and maximum values of spot FX rates for the 
period 7 January 2004 to 29 September 2004 inclusive. 

Currency Max Min 
EUR 1.2890 1.1940 
JPY 114.45 105.45 
EUR/JPY 136.40 131.85 
GBP 1.8970 1.7670 
AUD 0.7795 0.6865 
EUR/CHF 1.5695 1.5080 
EUR/GBP 0.6655 0.6655 
CAD 1.3965 1.2920 

EUR/GBP has zero variation because there was only one American binary FX 
option for this pair in the traded exotic option database.  Source:  GFI Group 
Inc. 

 

Deposit Rates (rd, rf) 

There are two sources for the deposit rates used in this thesis.  GFI Group Inc. provided 

domestic and foreign deposit rate data specific to the delivery date of the traded exotic option 

as confirmed by the counterparties to the transaction.  However, the Trader Model requires a 

term structure of deposit rates, not point estimates in order to price the impact of time on exotic 
                                                     
90 Fenics stores historical day count conventions which take into account the impact of public holidays and weekends etc. on expiry 

and delivery days.  Therefore, to value a historical transaction, one only needs to set the Fenics system date to the trade date of the 
transaction and set the maturity for the option, and Fenics ensures the correct expiry and delivery days are used according to 
interbank FX option market convention (which varies by currency pair).  These system-generated dates were then cross-checked 
against the database of actual traded exotic option prices for accuracy. 

91 Sometimes, a vega hedge is transacted as well. 
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options.  Vectors of deposit rates for conventional maturity pillars were obtained from 

Reuters LLC, one of the largest global financial service providers to the FX option markets, to 

supplement the deposit rate data from GFI Group Inc.  Table 3.16 shows an example of the 

deposit rate data used in this thesis for EUR options traded on 20 January 2004.  In total, there 

were over 9,200 deposit rate data points used in this research. 

Table 3.16 
Structure of deposit rate input data for EUR 20 January 2004. 

 Deposit Rate Maturity Pillars 
Currency 1w 1m 2m 3m 6m 1y 
EUR 1.975 2.04 2.05 2.06 2.09 2.11 
USD 1.015 1.03 1.06 1.08 1.095 1.30 

The one month EUR (USD) deposit rate is 2.04 (1.03) % p.a.  There are two sources for deposit rates in this thesis, 
GFI Group Inc. and Reuters LLC.  The former supplies deposit rates for the delivery date of the exotic option as 
agreed in the confirmation of the actual traded deal ticket.  The latter supplies the vector of deposit rates for generic 
maturity pillars to complete the term structure.  For exotic option contracts with maturity T > 1y, the deposit rates 
recorded in the GFI exotic option database for that maturity will be used to supplement the 1w – 1y dataset obtained 
from Reuters LLC. 

 

Table 3.17 shows descriptive statistics for EUR deposit rates in this research.  It is clear 

that there was variation in deposit rate levels and slopes during the period of empirical testing.  

Even though the focus in this thesis is exotic options with a maturity of one year or less, which 

means volatility risk is expected to dominate interest rate risk, the diversity in the range of actual 

traded deposit rate scenarios provides an excellent opportunity to measure the robustness of 

the Trader Model’s pricing performance as well.  Tables of descriptive statistics for the deposit 

rates of other currencies in this thesis are presented in Appendix B. 

Table 3.17 
EUR deposit rate input data description. 

EUR Max Min Diff 
1w 2.080 1.960 0.120 
1m 2.110 1.945 0.165 
2m 2.110 1.895 0.215 
3m 2.175 1.875 0.300 
6m 2.285 1.805 0.480 
12m 2.475 1.825 0.650 
12m-1w 0.440 -0.245 0.685 
12m-1m 0.410 -0.120 0.530 

Minimum and maximum EUR-denominated deposit rates for the period 
7 January 2004 to 29 September 2004, inclusive.  All rates are in percent 
per annum.  The last two rows show the slope of the term structure of 
deposit rates.  For example, the term structure between twelve month (12m) 
and one week (1w) deposit rates ranged from a normal curve with slope of 
44 basis points, to an inverse curve with slope of -24.5 basis points.  
Source:  Reuters LLC. 

 

Table 3.18 summarises the variation in level and slope for deposit rate term structures 

in this research.  Again, there is evidence of a sufficiently wide range of values for both the level 

(-0.09% to 5.53%) and slope (-0.27% to 1.37%), such that it is reasonable to conclude that the 

actual traded market deposit rate input data supports a test of the Trader Model’s robustness. 
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Table 3.18 
Level and slope of deposit rate term structures. 

 Level Slope 
Currency Max Min Max Min 
EUR 2.175 1.875 0.440 -0.245 
USD 2.000 1.040 1.370 0.190 
JPY 0.000 -0.090 0.155 0.005 
AUD 5.530 5.300 0.620 0.115 
GBP 4.970 3.940 1.015 -0.010 
CHF 0.645 0.160 0.925 0.160 
CAD 2.570 1.975 0.830 -0.270 

‘Level’ is the size of the three month deposit rate in percent per annum, and ‘slope’ is the 
difference between the twelve month and one week deposit rates (12m-1w) in percent 
per annum.  Three month deposit rates were chosen for illustration only. 

 

European Vanilla FX Option Volatilities (σ[Δ,T]) 

In the interbank European vanilla FX option market volatility is traded directly as a price, 

it is not implied via an inversion of the BSM model.92

The European vanilla FX option volatility data in this research is supplied by GFI Group 

Inc.  The data consists of high frequency intraday volatilities amounting to 2,592,021 traded 

data points.  The procedure to obtain the relevant volatility surface information per exotic option 

transaction is as follows: 

  Volatility is the input which is entered into 

the Garman and Kohlhagen (1983) version of the BSM model to find the amount of premium the 

buyer pays to the seller.  Trading volatility directly is a convenient ‘shorthand’ because:  

(i) volatility is the only non-observable input, so it is the only variable which requires negotiation 

between counterparties; and (ii) interbank trading strategies are delta neutral by construction, 

hence spot direction is subordinated and volatility is elevated by this market practice. 

• the GFI Group Inc. exotic FX option database contains the at-the-money (ATM) 

volatility used to establish the reference theoretical value (TV) of the exotic 

option at the time of the actual market trade; 

• the GFI Group Inc. European vanilla FX option volatility database is scanned to 

match the trade date, currency pair, term and ATM volatility for the TV of the 

exotic option, so that the volatility surface data is synchronised with the actual 

market trade; and 

• all of the European vanilla FX option volatilities which match the trade date, 

currency pair and time of the particular exotic option trade are collected and 

recorded in the format shown in Table 3.19, and illustrated in Fig. 3.15. 

 

 

 

 

 

                                                     
92 Nevertheless, it is still commonly referred to as the implied volatility surface by market practitioners and academics alike. 
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Table 3.19 
Structure of implied volatility input data for EUR 20 January 2004. 

 0Δ 25Δ 10Δ 
Term Bid Ask Fly RR Fly RR 
ONT 13.50 15.00 0.225 -0.400 0.500 -0.700 
01W 11.00 11.80 0.225 -0.400 0.500 -0.700 
02W 11.00 11.75 0.215 0.000 0.600 0.000 
01M 11.00 11.20 0.250 0.100 0.625 0.175 
02M 10.95 11.05 0.250 0.250 0.700 0.400 
03M 10.75 10.95 0.250 0.450 0.800 0.850 
06M 10.70 10.90 0.250 0.550 0.825 0.950 
09M 10.55 10.70 0.250 0.600 0.850 1.000 
01Y 10.65 10.75 0.250 0.700 0.875 1.100 
02Y 10.55 10.85 0.275 0.700 0.900 1.200 
03Y 10.60 10.90 0.300 0.650 0.950 1.100 
04Y 10.50 10.85 0.325 0.625 1.050 1.050 
05Y 10.40 10.80 0.350 0.600 1.150 1.000 

ONT is overnight.  0Δ is zero delta straddle, which defines the at-the-money volatility.  Fly and RR are (vega neutral) 
butterfly and (delta neutral) risk reversal, respectively.  Fly and RR are available for 25 delta (i.e. European vanilla 
Call [Put] options with a delta of 0.25 [-0.25]) and 10 delta pillars.  Together, term and delta pillars define the 
volatility surface.  Source:  GFI Group Inc. 

 

 
Fig. 3.15.  EUR volatility surface input data 20 January 2004.  A Call delta of 0.9 is 
equivalent to an OTM Put option.  A Call delta of 0.1 is equivalent to an OTM Call option.  
This figure illustrates the volatility surface data in Table 3.19 from one week to five year 
maturities, inclusive.  In contrast, the volatility surface implicit in BSM is a horizontal plane 
parallel to the x- and y-axes. 

The depth of the volatility surface data varies by currency pair.  Major units like JPY and 

EUR, and the cross EUR/JPY have term structure of volatility information out to 10 years, 

5 years and 5 years, respectively.  All other currencies have term structure of volatility 

information out to two years only.  This was not a constraint for the exotic FX options in this 

thesis, as only JPY, EUR and EUR/JPY had option maturities greater than two years (the 

maximum option maturity was three years in length). 

Table 3.20 shows maxima and minima for actual market traded volatility surface data by 

currency pair.  It is clear insofar as the key defining characteristics of the surface are 

concerned, namely level, smile and skew, that volatility input data in this research was unstable 
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and thereby offers an excellent test of robustness as well as accuracy of the Trader Model 

under extremely diverse, actual traded market scenarios.  Appendix C shows the level, smile 

and skew of the volatility surface for DNT options and OT options by currency pair. 

Table 3.20 
Level, smile and skew of the volatility surface input data. 

 Level Smile Skew 
FX Max Min Max Min Max Min 
EUR 19.50 6.00 0.950 0.500 1.70 -1.75 
JPY 18.00 5.00 2.300 0.750 1.75 -6.30 
EUR/JPY 14.50 8.80 1.525 0.800 0.40 -2.90 
GBP 17.50 9.00 0.725 0.500 2.50 -1.60 
AUD 19.50 9.90 0.900 0.725 0.48 -3.20 
EUR/CHF 5.90 3.40 0.770 0.385 0.45 -1.055 
EUR/GBP 7.55 6.50 0.625 0.550 -0.05 -0.550 
CAD 10.60 8.50 0.750 0.500 1.00 -0.600 

‘Level’ is the size of ATM volatility in percent per annum.  ‘Smile’ is the volatility premium for a 10 delta vega 
neutral butterfly in percent per annum.  ‘Skew’ is the volatility premium for a 10 delta delta neutral risk 
reversal in percent per annum.  10 delta refers to OTM European vanilla options with spot deltas of 0.1 for 
the Call and -0.1 for the Put. 

 

Exotic Option Contract Parameters 

Exotic option contract parameters L, U, t, T are recorded in the GFI Group Inc. exotic 

FX option database.  For example, Table 3.21 shows contract parameter inputs for American 

binary FX options that traded on 8 January 2004.  Delivery dates automatically defined by 

FENICS by setting the system date to the trade date, were verified against those recorded in 

the exotic option database as a cross-check for accuracy. 

Table 3.21 
Example of American binary FX option contract parameter inputs. 

FX 1 FX 2 Term Style Strategy U L Trade Expiry 
USD JPY 2 Yrs DNT Range 116.5 94 1/8/2004 1/11/2006 
EUR USD 9 Mo OT Up 1.4  1/8/2004 10/8/2004 

Strategy refers to a range because the traded spot FX rate for the JPY DNT option was 106.15, which was within 
the range established by the lower (L) and upper (U) barrier rate levels.  Similarly, the strategy was referred to as 
up because the traded spot FX rate for the EUR OT option was 1.2605, which was less than the upper barrier rate 
level.  Source:  GFI Group Inc. 

 

3.5.3 Output Data 

The output data consists of the set of all actual traded market prices for each American 

binary FX option in the database, expressed as a percent of payout.  Tables 3.22 and 3.23 

summarise by currency pair and by maturity the structure of output data for American binary FX 

options tested in this thesis.  This data is representative of the interbank exotic FX option 

market in general, in that most trades are in EUR (37.7%) and JPY (38.8%); and in relatively 

short maturities (95% of maturities are one year or less).  Nevertheless, there is a mix of FX 

pairs and maturities which ensures that the empirical testing in this thesis is much larger in 

breadth and depth than any other published research.  For example, Jex et al. (1999) only 

tested their model with sixteen JPY OT options with three month maturities.  Similarly, Lipton 
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and McGhee (2002) only tested their model with EUR DNT options with three month 

maturities.93

Table 3.22 

 

American binary FX option contract by currency. 
FX OT DNT Total 
EUR  39  30  69 
JPY  37  34  71 
EUR/JPY  1  10  11 
GBP  6  9  15 
AUD  3  2  5 
EUR/CHF  3  1  4 
EUR/GBP  0  1  1 
CAD  1  5  6 
NZD  1  0  1 
Total  91  92  183 

OT is One Touch option, and DNT is Double-No-Touch option.  Source:  GFI 
Group Inc. 

 

Table 3.23 
American binary FX option contract by maturity (days). 

Term OT DNT Total 
T ≤ 35  14  16  30 
35 < T ≤ 95  28  27  55 
95 < T ≤ 185  21  14  35 
185 < T ≤ 275  7  10  17 
275 < T ≤ 370  17  20  37 
T > 370  4  5  9 
Total  91  92  183 

OT is One Touch option, and DNT is Double-No-Touch option.  In the second row, 
there are 28 OT options with a maturity (T) 35 days < T ≤ 95 days.  Rows approximate 
the maturity pillars of 1m, 3m, 6m, 9m, 1y and 1y+.  Source:  GFI Group Inc. 

 

The output data of nine American binary FX options were excluded from the empirical 

testing in this research.  Table 3.24 identifies the excluded options and the reason for their 

exclusion.  Essentially, two exotic options did not have the corresponding complete input data, 

and seven exotic options had database recording errors.  Fig. 3.16 and Fig. 3.17 provide a 

visual justification for the exclusion of the six outliers. 

 

 

 

 

 

 

 

                                                     
93 The number of EUR DNT options tested by Lipton and McGhee is unknown, as outputs were recorded diagrammatically as solid, 

continuous lines, not discrete points. 
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Table 3.24 
American binary FX option deals excluded from empirical testing. 

FX Style Term Barrier(s) Reason for Exclusion 
EUR DNT* 35d 1.2490/ 

1.1910 
Duplicated deal with an incorrectly recorded 
traded market price of 0.0165 (other is 0.165). 

EUR DNT* 6m 1.3500/ 
1.1950 

Option length is unknown. Term is recorded as 
6m but the expiry date is consistent with 12m. 

JPY DNT* 15m 126.25/ 
106.25 

Option length is unknown. Term is recorded as 
15m but the expiry date is consistent with1m. 

CAD DNT 11m 1.365/1.215 No CAD volatility data for this deal. 
EUR OT* 2m 1.3500 Incorrectly recorded traded market price (a TV 

of 0.2987 cannot trade at 0.0047). 
NZD OT 6m 0.6575 No NZD volatility data for this deal. 
JPY OT 9m 97.00 Recording error in option expiry / maturity 

database field caused error in benchmark 
competitor model pricing. 

EUR OT* 6m 1.2450 Incorrectly recorded traded market price (a TV 
of 0.8428 cannot trade at 0.464). 

JPY OT* 95d 117.00 Incorrectly recorded traded market price (a TV 
of 0.1669 cannot trade at 0.0105). 

* denotes options regarded as outliers in this research.  Other exclusions are owing to a lack of volatility input data.  d 
is days, and m is months.  OT is One Touch option, and DNT is Double-No-Touch option. 

 

 
Fig. 3.16.  DNT option outliers excluded from empirical testing.  The green x-axis represents the 
set of all outputs if the market price actually traded at theoretical value (TV).  The red dot-points are 
the three excluded DNT outliers recorded with an asterix in the option column in Table 3.24.  The 
two data points at a theoretical value of 0.7415 and 0.7589 are not outliers.  It is reasonable that 
high TV American binary FX options trade at a small discount to TV owing to the reversal of the 
risk-reward effect, as well as their high-order greeks.  The data-point (0.1473, 0.1652) is not an 
outlier.  This data-point is for a two year JPY DNT option, so it is reasonable that its market 
supplement can be larger than other options with much shorter maturities. 

Fig. 3.16 and Fig. 3.17 show the market supplement for all American binary FX options 

in the exotic option database supplied by GFI Group Inc.  It is clear that the sign and / or 

quantum of the market supplement is too extreme in the excluded cases, which are coloured 

red.  Taking DNT options first, low theoretical value DNT options typically trade at a premium to 

theoretical value, resulting in a positive market supplement.  Not only do the DNT data-points 

(0.0345, -0.0229) and (0.1232, -0.1067) have negative supplements, but, relative to their 
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theoretical value, the negative supplements are significant in size.  This is counter-intuitive.  The 

market supplement for the data-point at (0.6891, -0.2554) is more likely to be negative because 

its high theoretical value reverses risk-reward effects, however, the quantum is clearly incorrect, 

and can only be explained by recording error.  The next largest market supplement (0.1473, 

0.1652) is not an outlier.  This data-point is for a two year JPY DNT option, and it is reasonable 

that the market supplement for this option can be significantly larger than the market 

supplement for options with much shorter maturities. 

 

 
Fig. 3.17.  OT option outliers excluded from the empirical testing.  The green x-axis represents the 
set of all outputs if the market price actually traded at theoretical value (TV).  The red dot-points are 
the three excluded OT outliers recorded in the option column in Table 3.24 with an asterix.  Whilst 
its market supplement is larger than others’, the data-point (0.2376, -0.0914) is not an outlier.  This 
data-point is for a three year JPY option, which is the longest maturity in the database.  It is 
reasonable that its market supplement can be significantly larger than other options with much 
shorter maturities. 

The market supplements for the three excluded outliers for OT options have plausible 

sign, but implausible quantums.  For comparison, the data-point (0.2376, -0.0914) is not an 

outlier.  This data-point is a three year JPY OT option, which is the longest maturity in the exotic 

option database.  Therefore, it is reasonable that the market supplement for this option can be 

significantly larger than the market supplement for options with much shorter maturities. 

Table 3.25 summarises the composition of the American binary FX option database for 

empirical testing, by reconciling information provided separately in Tables 3.22, 3.23 and 3.24. 

Table 3.25 
Composition of the American binary FX option database for 

empirical testing. 
Option Inclusions Exclusions Total 
OT 86 5 91 
DNT 88 4 92 
Total 174 9 183 

This table reconciles information provided separately in Tables 3.22, 3.23 and 3.24. 
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3.6. Conclusion 

This chapter presented the aims of the research, the philosophical and methodological 

rationale underpinning the model, a description of and justification for the research methods 

used to test the model, and a description of the data obtained for empirical testing. 

The attributes of the Trader Model outlined in Section 3.3.3 add real economic value in 

the exotic option market.  Unlike orthodox models, the Trader Model gives hedging insights, 

reduces model risk and improves computational efficiency, all of which contribute to making the 

Trader Model attractive as a decision-making tool for price-makers in practice.  Chapter 4 will 

establish whether the Trader Model’s performance substantiates this early promise. 
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CHAPTER 4 

RESULTS 

4.1. Introduction 

The primary purpose of the empirical research in this chapter is to test the performance 

of the Trader Model.  Since the data in this thesis is much more extensive than any other 

published research on pricing exotic options to market, the empirical results will be more 

rigorous and robust, and hence, a lot less susceptible to the spatial and temporal limitations of 

financial market data that undermine other research. 

Section 4.2 analyses the performance of the Trader Model by comparing its prices 

against actual traded market prices, and Section 4.3 compares Trader Model prices against a 

best practice competitor model.  Section 4.4 concludes the analysis. 

4.2. Trader Model prices versus actual traded market prices 

Two tests are applied in the analysis of Trader Model prices versus actual traded 

market prices.  The first examines the number of times the actual market price traded within the 

Trader Model bid-ask spread [TMBid, TMAsk].94

The second test incorporates the essential market microstructure of the price-making 

process by taking into account the non-trivial impact of franchise flows and other sources of 

trading interventions on interbank market prices, consistent with how prices are actually formed 

in wholesale financial markets in practice.  This test is an empirical analogue of Bates’ (2003, 

p. 400) and Derman’s (2002, p. 82) argument that pricing models should reflect actual price-

making behaviour.  That is, to establish model usefulness to a price-maker, one must carry out 

the analysis of model pricing performance under the same realistic price-making conditions 

Bates and Derman advocate for price formation. 

  It is a ‘raw’ test in the sense that price-maker 

trading interventions, which are common in the interbank exotic FX option market, are ignored, 

just like Jex et al. (1999), Lipton and McGhee (2002), and Wystup (2003).  It is also implicitly 

assumed for now (to be verified or refuted in Section 4.3), that Trader Model bid-ask spreads 

are competitive and professional in an interbank exotic FX option context. 

Table 4.1 shows the number of times the actual market price traded within the Trader 

Model bid-ask spread for OT options and DNT options.  Appendix D (Appendix E) shows in 

figure-form the pricing results for all OT (DNT) options in this research.  These appendices 

provide a visual representation of the overall pricing performance of the Trader Model by 

currency pair against both theoretical value and expiry days. 

 

 

 

 

 

 

                                                     
94 Appendix A shows a schematic diagram of the bid-ask generation process for the Trader Model. 
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Table 4.1 
Number of American binary options trading within the Trader Model bid-ask spread. 
Option TMBid ≤ Mkt ≤ TMAsk Total Percent 
OT 79 86 91.9 
DNT 79 88 89.8 
Total 158 174 90.8 

For OT options 79 actual market prices traded within the Trader Model bid-ask spread, representing 91.9% of the 
total database of OT options traded in the interbank market.  These are raw results, i.e. not including considerations 
for price-maker trading interventions.  Mkt is the acronym for market price, and TMBid and TMAsk represent Trader 
Model bid price and Trader Model ask price, respectively. 

One must take care in interpreting the results of Table 4.1.  On face value, the Trader 

Model appears to have merit as a decision-making tool in practice, as most American binary 

option market prices traded within [TMBid, TMAsk].  Table 4.2, Fig. 4.1 and Fig. 4.2 give additional 

support to these raw results, as the size of the exceptions (where the market price trades 

outside [TMBid, TMAsk]), are extremely small in most cases.  The size of the mean exceptions 

shown in Table 4.2 are calculated as follows: 

Bid AskMkt TM ,TM∀ ∉     

( )Defined
Bid BidMkt TM Lower Exception LE TM Mkt  < → = −  (4.1) 

( )Defined
Ask AskMkt TM Upper Exception UE Mkt TM   > → = −  (4.2) 

+
=
∑ ∑LE UE

Mean Exception
No. of Exceptions

 (4.3) 

 

Table 4.2 
American binary options trading outside the Trader Model bid-ask spread. 
Option Mean Exception Percent of Spread 
OT 0.0060 16.79 
DNT 0.0066 17.46 
Total 0.0063 17.17 

For OT options where actual market prices traded outside of the Trader Model bid-ask spread, the 
mean size of the exception was 0.0060, or 16.79% of the bid-ask spread. 

Table 4.2 shows that for American binary options that traded outside [TMBid, TMAsk], the 

mean exception size was only a small proportion of the Trader Model bid-ask spread.  To put 

these results in context, price-maker trading interventions can be as much as 50% of model bid-

ask spreads before initial revaluation losses occur.95

                                                     
95 For example, if a price-maker believes a bank counterparty wants to buy a DNT option with model bid-ask prices equal to 0.08-

0.12, then the price-maker can show a price of 0.10-0.14 without initial revaluation loss.  That is, if the bank counterparty does 
not behave as expected and gives the price-maker’s bid (0.10), then the initial revaluation profit equals zero (trade price [0.10] 
minus mid [0.10] price).  However, the price-maker acquires considerable benefit (volga) for zero revaluation cost (they do not 
pay away any spread to acquire the benefit). 

  It is clear from Fig. 4.1 and Fig. 4.2 that 

most exceptions traded very close to TMBid or TMAsk, hence most of the exception size is 

actually concentrated in a few isolated cases.  For example, if the worst exception (out of a total 

of 9) is eliminated from the DNT option analysis, the mean exception size falls significantly to 

only 0.0038 or 9.43% of the bid-ask spread.  Since price-maker trading interventions are 

common in the interbank exotic FX option market, the fact that most trades fall within or very 

close to the Trader Model bid-ask spread is prima facie evidence of strong pricing performance. 
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Fig. 4.1.  OT option exceptions by theoretical value.  OT option exceptions are when Mkt < TMBid or 
Mkt > TMAsk, where TMBid and TMAsk are Trader Model bid price and Trader Model ask price, 
respectively.  Mkt is the acronym for market price, and TV is the acronym for theoretical value.  All 
OT option exceptions are small, in that actual market prices trade very close to TMBid or TMAsk. 
 

 
Fig. 4.2.  DNT option exceptions by theoretical value.  Exceptions are when Mkt < TMBid or 
Mkt > TMAsk, where TMBid and TMAsk are Trader Model bid price and Trader Model ask price, 
respectively.  Mkt is the acronym for market price, and TV is the acronym for theoretical value.  
Most DNT option exceptions are small, in that actual market prices trade very close to TMBid or 
TMAsk.  The bid and ask price pair shown in red is the largest exception.  The bid-ask prices 
denoted in green are to assist the reader in identifying matching groups of bid, ask and market 
prices, only. 
 

Tables 4.3 and 4.4 show the breakdown of exceptions across currency pairs for OT 

options and DNT options, respectively.  Given the much larger smiles and skews in JPY, and 

the larger variation in JPY smiles and skews across option maturity, it is not surprising that 

there are more exceptions for JPY denominated American binary options.96

 

 

                                                     
96 This claim is supported by the results from testing SuperDerivatives’ model prices in Section 4.3.  For example, Superderivatives 

had seven JPY DNT option exceptions, which was 21.21% of the total JPY DNT option sample.  Of SuperDerivatives three OT 
Option exceptions, two were JPY OT options. 
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Table 4.3 
Breakdown of OT option exceptions by FX pair. 

 Up Down   
OT Exceptions Total Percent Exceptions Total Percent Total Pct 
JPY 5 23 21.74 1 12 8.33 35 17.14 
EUR 1 24 4.17 0 13 0.00 37 2.70 
Total 6 47 12.77 1 25 4.00 72 9.72 

OT option exceptions are when Mkt < TMBid or Mkt > TMAsk, where TMBid and TMAsk are Trader Model bid price and 
Trader Model ask price, respectively; and Mkt is the acronym for market price.  There were five JPY up OT options out 
of 23 (21.74%) in the database whose market price traded outside [TMBid, TMAsk].  Overall, there were six JPY OT 
option exceptions representing 17.14% of JPY OT options in the database. 

 

Table 4.4 
Breakdown of DNT option exceptions by FX pair. 

DNT Exceptions Total Percent 
JPY 8 33 24.24 
EUR 0 28 0.00 
EUR/JPY 0 10 0.00 
GBP 0 9 0.00 
AUD 0 2 0.00 
CAD 1 4 25.00 
EUR/CHF 0 1 0.00 
EUR/GBP 0 1 0.00 
Total 9 88 10.23 

DNT option exceptions are when Mkt < TMBid or Mkt > TMAsk, where TMBid and TMAsk are 
Trader Model bid price and Trader Model ask price, respectively; and Mkt is the acronym for 
market price.  There were eight JPY DNT options whose market price traded outside [TMBid, 
TMAsk].  This amounted to 24.24% of the total number of JPY DNT options in the database. 

 

Fig. 4.3 and Fig. 4.4 show that exceptions are spread across the spectrum of possible 

expiry days.  In fact, both figures show that some of the exceptions are in very short-dated (less 

than one month expiry) and very long-dated (greater than one year expiry) options, where 

prices are affected by factors outside of volatility hedging.97

                                                     
97 Whilst the scope of this thesis is restricted to American binary FX options with maturity less than or equal to one year, it is 

interesting to note the pricing performance of the Trader Model for all options in the database.  Pricing performance was strong 
for long-dated options.  Of the seven DNT options with maturity greater than one year, five traded within the Trader Model’s bid-
ask spread; and neither of the exceptions was large.  Of the four OT options with maturity greater than one year, all four traded 
within the Trader Model’s bid-ask spread. 

  Very short-dated options are 

dominated by the issue of whether the spot rate will trade at or beyond a barrier price, owing to 

the severity of the discontinuity risk associated with unwinding gap deltas; and long-dated 

options are, to a much greater extent than otherwise, influenced by interest rate risks.  For OT 

options, two of the seven exceptions (28.6%) had expiry days less than one month.  For DNT 

options, three of the nine exceptions (33.3%) had expiry days less than one month or greater 

than one year.  Therefore, it is reasonable to conclude that 28.6% (33.3%) of the OT (DNT) 

option exceptions could be classed as extreme cases.  Fig. 4.4 also shows in red the bid-ask 

prices for the largest DNT option exception. 
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Fig. 4.3.  OT option exceptions by expiry days.  OT option exceptions are when Mkt < TMBid or 
Mkt > TMAsk, where TMBid and TMAsk are Trader Model bid price and Trader Model ask price, 
respectively; and Mkt is the acronym for market price.  The prices denoted in green are to assist 
the reader in identifying matching groups of bid, ask and market prices, only. 
 

 
Fig. 4.4.  DNT option exceptions by expiry days.  DNT option exceptions are when Mkt < TMBid or 
Mkt > TMAsk, where TMBid and TMAsk are Trader Model bid price and Trader Model ask price, 
respectively; and Mkt is the acronym for market price.  The red bid-ask price series is the largest 
exception. 
 

Whilst these initial results are positive, further testing under actual market conditions is 

required to gain more confidence in the pricing performance of the Trader Model as a useful 

decision-making tool in practice.  Table 4.5 introduces actual market conditions into the analysis 

of pricing performance by stratifying empirical results according to the relative impact of trading 

interventions on OT option prices.  Table 4.5 shows that the relationships between Trader 

Model prices and actual traded market prices for OT options are consistent with hypotheses 

presented in Section 3.3.2.  Market prices traded below Trader Model mid prices for 65.1% of 

OT options, which is consistent with the hypothesis that price-makers typically approach the 

interbank market with a sell interest to clear net long OT option positions from franchise flows.  
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Table 4.5 also shows that for the 40 OT options where trading interventions were expected to 

have strong to very strong intensity, actual market prices traded below Trader Model mid prices 

in 77.5% of cases.  For the 46 OT options where trading interventions were expected to have 

only medium intensity, the result was a much more balanced 54.3%. 

Table 4.5 
Results for the impact of trading interventions on OT option prices. 

Franchise Risk / Reward Gap Delta Impact 

Flow Low TV High TV 1yr 1yr
maxminU,L S ,S ∉    1yr 1yr

maxminU,L S ,S ∈    Intensity No. < 
(≥) Mid 

< Mid  < Mid < Mid (BN)  VS  1 (1) 
< Mid > Mid  < Mid (BN)  St  30 (8) 
< Mid  < Mid  < Mid M  5 (6) 
< Mid > Mid   < Mid M  20 (15) 

U is an upper barrier price, and L a lower barrier price.  S is the minimum or maximum spot rate over a one year 
horizon.  VS is the acronym for ‘very strong’; St is the acronym for ‘strong’; and M stands for ‘medium’, impact intensity.  
Low TV is defined as OTTV < 0.30, high TV is OTTV ≥ 0.30.  BN is the acronym for ‘bad neighbourhood’, a term coined 
for when losses from gap delta unwinds are likely to be significant.  The results reported in the last column refer to the 
number of OT options trading in the market at a price less (more) than the Trader Model mid price.  Franchise flow 
effects are dominant (refer to the Methodology chapter for details).  Most flows are short the barrier, and so prefer to 
place barriers in a bad neighbourhood to reduce the probability that they will be touched.  Therefore, gap deltas 
dominate risk / reward for OT options.  Accordingly, where flow and ‘bad neighbourhood’ align, this will have stronger 
intensity than where they do not.  As expected, most OT options trade in the market at a price which is less than the 
Trader Model mid price.  Also consistent with expectations, this effect is more pronounced as trading interventions 
intensify. 

 

The empirical results for DNT options are similar to, but even more pronounced than 

those for OT options.  This relative strength is consistent with expectations, as DNT option 

franchise flow and risk / reward effects compound in the strong to very strong intensities, 

whereas the same effects can offset for OT options.  For example, low-TV DNT options are 

nearly always bid by franchise flows, not just corporates but also institutions like hedge funds.  

In contrast, low-TV OT options are usually offered by corporates, but hedge funds will 

sometimes take bid positions as a low risk / high reward speculative strategy.  Fig. 4.5 and 

Table 4.6 show that the impact of franchise flows for DNT options is opposite to OT options.  

This is consistent with the hypothesis that price-makers typically approach the interbank market 

with a buy interest to clear net short DNT option positions from franchise flows, as 78.4% of 

DNT options traded at a market price above the Trader Model mid price.  Table 4.6 confirms 

that for the 82 DNT options where trading interventions were expected to have strong to very 

strong intensity, 78.0% of the market prices for DNT options traded above the Trader Model mid 

price.  Unlike OT options, there were not enough DNT options that traded with medium intensity 

to draw robust conclusions.  However, in the very small sample of medium intensity DNT 

options, five of the six (83.3%) options traded above TMMid. 
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Fig. 4.5.  American binary option traded prices versus Trader Model mid prices.  The blue 
(burgundy) bars show the number of OT (DNT) options in each category.  For OT options, actual 
market prices traded below (above) Trader Model mid-prices 56 (30) times.  Fig. 4.5 shows that the 
Trader Model indicates that OT options are generally offered, and DNT options are generally bid, in 
the interbank exotic FX option market, consistent with expectations outlined in hypotheses in 
Section 3.4.2.  The effect is stronger for DNT options, also as expected. 
 

Table 4.6 
Results for the impact of trading interventions on DNT option prices. 

Franchise Risk / Reward Gap Delta Impact 

Flow Low TV High TV 1yr 1yr
maxminU,L S ,S ∉    1yr 1yr

maxminU,L S ,S ∈    Intensity No. < 
(≥) Mid 

> Mid > Mid  > Mid (BN)  VS  7 (18) 
> Mid > Mid   > Mid St  11 (46) 
> Mid  < Mid > Mid (BN)  M  0 (2) 
> Mid  < Mid  > Mid M  1 (3) 

U is an upper barrier price, and L a lower barrier price.  S is the minimum or maximum spot rate over a one year 
horizon.  VS is the acronym for ‘very strong’; St is the acronym for ‘strong’; and M stands for ‘medium’, impact intensity.  
Low TV is defined as DNTTV < 0.30, high TV is DNTTV ≥ 0.30.  BN is the acronym for ‘bad neighbourhood’, a term 
coined for when losses from gap delta unwinds are likely to be significant.  The results reported in the last column refer 
to the number of DNT options trading in the market at a price less (more) than the Trader Model mid price.  Franchise 
flow effects are dominant (refer to the Methodology chapter for details).  Most flows are short the barrier, but because 
there are two barriers, it is often not possible to place barriers in a bad neighbourhood to reduce the probability that 
they will be touched.  Therefore, risk / reward dominates gap delta for DNT options.  Accordingly, where flow and risk / 
reward align, this will have stronger intensity than where they do not.  As expected, most DNT options trade in the 
market at a price which is greater than the Trader Model mid price.  Too few DNT options trade in the medium intensity 
categories to draw robust conclusions.  However, prima facie, DNT options are less affected by the intensity of trading 
interventions than OT options. 

 

Therefore, the empirical results of the second test reinforce the claim that the Trader 

Model is a useful decision-making tool for price-makers in practice.  Where market prices for OT 

(DNT) options were expected to trade below (above) the Trader Model mid price, they did in 

most cases, and especially in those cases with strong to very strong impact intensity.  As a 

result, one can conclude that Trader Model not only generates an accurate bid-ask spread vis-

à-vis the traded market price, it also positions that spread, via the mid price, in a manner which 

is free from bias and consistent with market expectations.  To put that another way, the Trader 

Model does not exhibit systematic over- or under-pricing which is otherwise obscured by a wide 

bid-ask spread.  Price-makers can be confident that the Trader Model is pricing the underlying 
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economics of price-making, because “the fact that the model agrees to such a degree with the 

market prices provides confirmation that the assumptions behind the model are close to the 

actual market mechanism” (Jex et al., 1999, p. 12). 

4.3. Trader Model prices versus benchmark competitor model prices 

Since the market price data in this thesis is from the interbank exotic FX option market, 

it will be affected by price-maker trading interventions.  Whereas Section 4.2 tested Trader 

Model pricing performance against actual traded market prices, explicitly taking into account the 

impact of trading interventions; this section tests the Trader Model against a benchmark 

competitor model to neutralise the impact of trading interventions.  That is, as no model 

endogenously prices price-maker trading interventions, inter-model comparisons can be 

conducted ‘on a level playing field’. 

In this section, the Trader Model is tested against SuperDerivatives, a model widely 

used in the interbank exotic FX option market.  Given its reputation for excellence in both 

academia and industry, benchmarking against SuperDerivatives is a challenging, best practice 

pricing performance standard for testing Trader Model’s usefulness to price-makers in practice. 

There are three tests for comparing the Trader Model’s pricing performance against the 

competitor benchmark SuperDerivatives.  Analogous to Section 4.2, there is a ‘raw’ test which 

examines the number of times market prices for American binary options traded within the 

normalised bid-ask spread of the Trader Model compared to the number of times for 

SuperDerivatives, where normalisation is defined by Eq. (3.3) and Eq. (3.4).  The second test in 

this section compares the bid-ask spread width of the Trader Model against SuperDerivatives’ 

bid-ask spread width; and the final test compares Trader Model prices against SuperDerivatives 

prices once price-maker trading interventions are taken into account. 

In the first test, the Trader Model’s ‘raw’ pricing performance will be regarded as better 

than SuperDerivatives if: 

(i) actual market prices trade within the Trader Model’s normalised bid-ask 

spread with greater frequency than they trade within SuperDerivatives’ bid-

ask spread, i.e. [ ]SD SD
Bid Ask Bid AskMkt TM ,TM Mkt SD ,SD∈ > ∈   ; and 

(ii) where actual market prices trade outside the bid-ask spread, then the mean 

exceptions from SD SD
Bid AskTM ,TM    are of smaller magnitude than the mean 

exceptions from [ ]Bid AskSD ,SD . 

As discussed in detail in the Methodology chapter, normalisation ensures that pricing 

performance is not artificially enhanced by making model bid-ask spreads unrealistically wide.  

In this test, the Trader Model’s normalised bid-ask spread width is equal to SuperDerivatives’ 

bid-ask spread width by construction.98

SD SD
Ask Bid Ask BidTM TM SD SD− ≡ −

  However, for all American binary options in this thesis, 

bid and ask prices for both models differ.  That is, even though , 

in all cases SD
Bid BidTM SD≠  and SD

Ask AskTM SD≠ .  As per Section 4.1, exceptions are defined as: 

                                                     
98 Normalisation is defined by Eq. (3.3) and Eq. (3.4).  Since SuperDerivatives has an established reputation in the interbank exotic 

FX option market, it is logical to make the Trader Model bid-ask spread width match SuperDerivatives’ bid-ask spread width, 
rather than the other way round. 
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Bid AskMkt Model ,Model∀ ∉     

( )Defined
Bid BidMkt Model Lower Exception LE Model Mkt  < → = −  (4.4) 

( )Defined
Ask AskMkt Model Upper Exception UE Mkt Model   > → = −  (4.5) 

+
=
∑ ∑LE UE

Mean Exception
No. of Exceptions

 (4.6) 

 

Tables 4.7 and 4.8 show the results for criteria (i) and (ii), respectively.  Table 4.7 

shows that actual market prices traded within the Trader Model’s normalised bid-ask spread 

with marginally less frequency than SuperDerivatives (91% versus 92%).  Table 4.8 shows that 

when actual market prices traded outside of the bid-ask spread, the mean exception size for the 

Trader Model was much smaller in magnitude for both OT options and DNT options than the 

exceptions of SuperDerivatives. 

Table 4.7 
Number of American binary options trading within SuperDerivatives’ bid-ask spread. 
Option TMSD SD Total 
OT 81 83 86 
DNT 77 77 88 
Total 158 160 174 

For OT options, 81 actual market prices traded within the normalised Trader Model bid-ask spread, and 83 actual 
market prices traded within the SuperDerivatives bid-ask spread.  Normalisation is where Trader Model bid-ask 
spread width is equated to SuperDerivatives bid-ask spread width as per Eq. (3.3) and Eq. (3.4), and it is denoted 
TMSD.  SD is the acronym for SuperDerivatives.  These are raw results, i.e. not including considerations for price-
maker trading interventions. 

 

Table 4.8 
American binary options trading outside SuperDerivatives’ bid-ask spread. 

 Trader ModelSD SuperDerivatives 
Option Mean Exception Pct of SD Spread Mean Exception Pct of SD Spread 
OT 0.00297 7.92 0.01208 31.79 
DNT 0.00823 20.59 0.01023 25.53 

For OT options where the market price trades outside of the normalised Trader Model bid-ask spread, the mean 
exception size was 0.00297, representing 7.92% of SuperDerivatives’ spread.  For SuperDerivatives, the mean 
exception size for OT options was 0.01208, representing 31.79% of SuperDerivatives spread.  Normalisation is 
where Trader Model bid-ask spread width is equated to SuperDerivatives spread width as per Eq. (3.3) and 
Eq. (3.4).  These are raw results, i.e. not including considerations for price-maker trading interventions. 

 

Therefore, without taking into account price-maker trading interventions, it is difficult to 

distinguish the pricing performance of the Trader Model from SuperDerivatives.  The number of 

American binary options trading within the bid-ask spread marginally favours SuperDerivatives; 

whereas the mean exception size for OT and DNT options strongly favours the Trader Model.  

However, these results are not completely free from bias.  The widespread use of 

SuperDerivatives by price-makers in the interbank exotic FX option market makes it an 

excellent benchmark, but it also means that actual traded market prices are not independent 

from SuperDerivatives’ model prices.  When price-makers use SuperDerivatives for price 

discovery, this model price dependency is directly transferred to actual traded market prices.  In 
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this context, it is remarkable that the empirical results of ‘raw’ pricing performance are 

indistinguishable.  It is remarkable that SuperDerivatives’ significant advantage of being a 

widely used, incumbent model in the interbank market has not translated, prima facie, into 

significantly better raw pricing performance than the Trader Model.  
The second test in this section analyses the relative width of bid-ask spreads generated 

by the Trader Model and SuperDerivatives.  In the extremely competitive interbank exotic FX 

option market, there is a natural tension between ensuring bid-ask spreads are sufficiently wide 

to reflect market risk accurately, but are narrow enough to compete and project professionalism.  

For the Trader Model to outperform under these constraints, its bid-ask spreads must be similar 

in magnitude to, but narrower on average than SuperDerivatives’.  Table 4.9 shows that Trader 

Model spreads are of similar magnitude to, but narrower than SuperDerivatives, for both OT 

options and DNT options. 

Table 4.9 
Mean model bid-ask spread width. 

Option Trader Model SuperDerivatives 
OT 0.0314 0.0386 
DNT 0.0403 0.0410 

For OT options, the mean bid-ask spread width for the Trader Model is 
0.0314, and for SuperDerivatives, it is 0.0386. 

 

Since SuperDerivatives is widely used in the interbank market in practice, the fact that 

Trader Model bid-ask spreads are similar to, but tighter on average than SuperDerivatives, 

means that on this measure the Trader Model outperforms SuperDerivatives.  The results in 

Table 4.9 also support the results of the first test in Section 4.2, which relied on the Trader 

Model’s bid-ask spreads being competitive and professional in an interbank exotic FX option 

market setting to provide a challenging pricing performance standard.  As a consequence, the 

results in Table 4.9 support the claim that the Trader Model’s absolute ‘raw’ pricing performance 

is strong. 

The final test in this section compares the relative pricing performance of the Trader 

Model against SuperDerivatives, after taking into account the impact of price-maker trading 

interventions on model prices.  As hypothesised in Section 3.4.2, it is expected that OT (DNT) 

options trading through the interbank exotic FX option market typically reflect a sell (buy) 

interest, such that actual market prices are expected to trade below (above) model mid-prices.  

That is, for this test, the Trader Model will outperform SuperDerivatives if: 

• OT
MidMkt TM<  with greater frequency than OT

MidMkt SD< ; and 

• DNT
MidMkt TM>  with greater frequency than DNT

MidMkt SD> . 

Tables 4.10 and 4.11 show the results for OT options and DNT options, respectively.  

For both OT options and DNT options, Trader Model prices are consistent with expectations 

outlined in Section 3.4.2, whereas SuperDerivatives prices are contrary to expectations.  That 

is, the market traded below Trader Model mid-prices for 65.1% of OT options, compared to only 

23.3% for SuperDerivatives.  This effect is even more pronounced for those OT options where 

price-maker trading interventions are expected to be more frequent and of greater magnitude.  
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That is, for OT options with strong to very strong impact intensity, the market price traded below 

Trader Model mid-prices 77.5% of the time, compared to only 20% for SuperDerivatives. 

Table 4.10 
Inter-model comparison of pricing performance for OT options taking into 

account the impact of price-maker trading interventions. 
 Trader Model SuperDerivatives 
Intensity Mkt < TMMid Mkt > TMMid Mkt < SDMid Mkt > SDMid 
VS 1 1 0 2 
St 30 8 8 30 
M 25 21 12 34 
Total 56 30 20 66 

Mkt is the actual traded market price of the OT option.  TMMid and SDMid are the mid-prices from the Trader 
Model and SuperDerivatives, respectively.  VS is the acronym for ‘very strong’; St is the acronym for ‘strong’; 
and M is the acronym for ‘medium’, impact intensity.  For the 40 OT options with strong to very strong impact 
intensity, the market price was less than the Trader Model (SuperDerivatives) mid-price 77.5% (20%) of the 
time, consistent with (contrary to) hypotheses in Section 3.4.2. 

 

As expected, DNT option results are the reverse of OT options.  The market price 

traded above Trader Model mid-prices for 78.4% of DNT options, compared to only 29.5% for 

SuperDerivatives.  Where price-maker trading interventions are expected to be more frequent 

and of greater magnitude, that is, for DNT options with strong to very strong impact intensity, 

the market price traded above Trader Model mid-prices 78% of the time, compared to only 28% 

for SuperDerivatives. 

Table 4.11 
Inter-model comparison of pricing performance for DNT options taking into 

account the impact of price-maker trading interventions. 
 Trader Model SuperDerivatives 
Intensity Mkt < TMMid Mkt > TMMid Mkt < SDMid Mkt > SDMid 
VS 7 18 17 8 
St 11 46 42 15 
M 1 5 3 3 
Total 19 69 62 26 

Mkt is the actual traded market price of the DNT option.  TMMid and SDMid are the mid-prices from the Trader 
Model and SuperDerivatives, respectively.  VS is the acronym for ‘very strong’; St is the acronym for ‘strong’; 
and M is the acronym for ‘medium’, impact intensity.  For the 82 DNT options with strong to very strong impact 
intensity, the market price was greater than the Trader Model (SuperDerivatives) mid-price 78% (28%) of the 
time, consistent with (contrary to) hypotheses in Section 3.4.2. 

 

Therefore, not only were Trader Model prices consistent with expectations of price-

maker trading interventions, but where price-maker trading interventions were expected to have 

greater frequency and greater magnitude, the results were even better.  In contrast, 

SuperDerivatives’ results were contrary to expectations, and where price-maker trading 

interventions were expected to have greater frequency and greater magnitude, the results were 

even worse.  Fig. 4.6 and Fig. 4.7 show this effect diagrammatically.  Fig. 4.6 shows that the 

results for the Trader Model are consistent with expectations, both within each American binary 

option class as well as across option class (e.g. results are more pronounced for DNT options).  

Whilst the Trader Model’s absolute pricing performance is strong, the results are even stronger 

when pricing performance relative to SuperDerivatives is considered. 
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Fig. 4.6.  American binary option traded market prices versus model mid prices.  The blue 
(burgundy) bars show the number of American binary options in each category for the Trader 
Model (SuperDerivatives).  For OT options, actual market prices traded below (above) Trader 
Model mid-prices 56 (30) times.  Fig. 4.6 shows that for the Trader Model OT options are generally 
offered, and DNT options are generally bid in the interbank exotic FX option market, consistent with 
expectations outlined in hypotheses in Section 3.4.2.  The effect is stronger for DNT options, also 
as expected.  Fig. 4.6 shows that the Trader Model’s relative pricing performance vis-à-vis 
SuperDerivatives was even stronger than its absolute pricing performance. 
 

Fig. 4.7 shows that the pricing performance of the Trader Model improved, both 

absolutely and relative to SuperDerivatives, for American binary options in the strong to very 

strong impact intensity.  American binary options within these categories of impact intensity 

should exhibit more pronounced trader interventions.  Fig. 4.7 shows that the results are more 

pronounced for the Trader Model, both absolutely and (especially) relative to SuperDerivatives. 
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Fig. 4.7.  American binary option traded market prices versus model mid prices, taking into account 
the impact of price-maker trading interventions.  The blue (burgundy) bars show the percentage of 
American binary options in each category for the Trader Model (SuperDerivatives).  The lighter 
shades of blue and burgundy, i.e., TM* and SD* show the results for the Trader Model and 
SuperDerivatives for American binary options in the strong to very strong impact intensity.  Fig. 4.7 
shows that for the Trader Model OT options are even more likely to be offered in the interbank 
exotic FX option market as impact intensity strengthens, consistent with expectations outlined in 
hypotheses in Section 3.4.2.  Trader Model DNT option prices are insensitive to impact intensity, 
but that could reflect the small sample size for medium intensity options (6).  SuperDerivatives OT 
and DNT option prices behave contrary to expectations.  Fig. 4.7 shows that the already strong 
absolute pricing performance is improved further when pricing performance relative to 
SuperDerivatives is considered. 

 

Therefore, the results in this section strongly support the claim that the Trader Model is 

a useful decision-making tool for price-makers in practice.  The Trader Model is accurate 

relative to the competitor benchmark SuperDerivatives.  Furthermore, empirical results strongly 

support the notion that the Trader Model captures the essential financial economics 

underpinning the wholesale intermediation of market risk in the price-making process, both in 

an absolute sense, but especially relative to SuperDerivatives.  Unfortunately, it is not possible 

to reconcile or to explain price differences between the Trader Model and SuperDerivatives, as 

SuperDerivatives has a policy of not releasing details of their model, citing the need to keep 

proprietary information confidential for commercial reasons. 

4.4. Conclusion 

The empirical testing of the Trader Model in this thesis is much larger in both scale and 

scope than any other published research on the pricing of exotic options to market.  The results 

of the empirical testing show that the Trader Model’s pricing performance is robust to a broad 

range of diverse market conditions and option contract specifications, both absolutely and 

relative to a commercially successful competitor benchmark.  The accuracy and robustness of 

the Trader Model, given the rigour of the empirical testing, provides scope to draw inferences 

not only about the Trader Model itself, but also about the key factors driving the market 

mechanism for pricing exotic options to market. 

Lipton and McGhee (2002, p. 85) claim that “only a universal volatility model is capable 

of matching the market [price] properly.  In our experience, this conclusion is valid for almost all 

path-dependent options”.  The pricing performance of the Trader Model, both absolutely against 
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actual traded market prices, and relatively against SuperDerivatives, is sufficiently strong to 

question their claim.  Furthermore, unlike Lipton and McGhee (and SuperDerivatives), the 

Trader Model identifies a unique hedge portfolio that is priced, and easily implemented in highly 

liquid, actual traded markets.  This is a significant economic benefit to a price-maker managing 

an exotic option book in the market. 
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CHAPTER 5 

CONCLUSION 

5.1. Findings 

The overall aim of this thesis was to develop and test empirically a model for pricing 

American binary FX options to market which: (i) predicts actual traded market prices with 

sufficient accuracy to be a useful decision-making tool for price-makers in practice; (ii) identifies 

and quantifies market risk in a manner which provides unique insights into risk management for 

price-makers in practice; and (iii) achieves real savings in computational efficiency relative to 

best practice quantitative models exemplified by the universal volatility models of Jex et 

al. (1999) and Lipton and McGhee (2002).  This research was motivated by the extreme 

dependency of sell-side banks on exotic option pricing models.  Sell-side banks rely on these 

models for a broad range of critical tasks from pricing market risk to identifying hedging 

strategies, calculating daily profit and loss, defining risk limits, reporting to key stakeholders 

both internally and externally, as well as determining trader bonuses and Basel II capital 

retention levels.  It is through this extreme model dependency that banks are exposed to model 

risk, defined as the risk that reported daily mark-to-model profits do not reflect financial 

economic substance. 

The model developed in this research, referred to as the Trader Model, was tested 

empirically in a manner similar to Jex et al. (1999) and Lipton and McGhee (2002).  That is, 

Trader Model prices for American binary FX options were compared with actual traded market 

prices and the prices of a competitor model.  American binary FX options were chosen not only 

to assist with comparisons to published literature, but also because: 

• binary option prices are extremely sensitive to the traded volatility surface; 

• as a “smallest decomposable fragment” (Taleb, 1997, p. vi) binary optionality is 

elemental to, and embedded in, other exotic options with significant traded 

volume; and 

• their extreme sensitivity to the traded volatility surface means that binary 

options are “the right security” to exploit arbitrage opportunities emanating from 

arbitrary specifications of smile dynamics that are an essential component of 

contemporary orthodox pricing methodologies (Ayache et al., 2004, p. 11). 

However, in contrast to Jex et al. and Lipton and McGhee, a large database of actual 

traded market prices was used, and the competitor model is widely regarded as best practice 

both within academia and industry.  Therefore, the performance benchmarks for the Trader 

Model are much more challenging and rigorous than the performance benchmarks in published 

literature, which, in turn, underpins the robustness of inferences drawn in this thesis. 

Furthermore, in stark contrast to published literature, the empirical research in this 

thesis explicitly takes into account that traded price data is formed in the interbank market.  As a 

result, the empirical research in this thesis uniquely incorporates the price-maker / model nexus 

into model testing, which is internally consistent with recommendations by prominent financial 
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engineers to incorporate this nexus into model pricing.99

It was found in this thesis that the Trader Model predicts actual traded market prices 

with a high degree of accuracy, not only absolutely but relative to the best practice competitor 

model benchmark.  Actual market prices traded within the Trader Model bid-ask spread for 92% 

of OT options, and 90% of DNT options.  This is a remarkable outcome given that (i) price-

makers routinely move model prices to the right (left) to reflect bid (offered) interest to bank 

counterparties; and (ii) Trader Model prices were completely independent of actual traded 

market prices, because the Trader Model was not used by interbank price-makers during the 

testing period.

  Therefore, testing is not restricted to 

the frequency with which the actual market price traded within the model bid-ask spread, but 

also whether the actual market price should, given our knowledge of sell-side bank franchise 

flows and its effect on price-maker behaviour, trade closer to the bid price or the ask price.  The 

tests incorporate this additional information which is critical to the wholesale intermediation of 

market risk.  Doing so enables not only the coarse grade pricing structure of the model bid-ask 

spread to be tested, but also the fine grade pricing structure of the position of the market price 

relative to the model bid-ask spread.  Both are crucial to the economic fundamentals 

underpinning price-making in practice.  Again, this additional performance criterion is more 

challenging than criteria used in the existing literature. 

100

Whilst the Trader Model’s coarse grade pricing performance was excellent, its fine 

grade pricing performance was even better.  This is crucial, as fine grade pricing performance is 

a key determinant of the usefulness of the Trader Model as a decision-making tool in practice.  

It is well known that price-makers are usually net long binary discontinuity from franchise flows, 

i.e., net long OT options

  The Trader Model also performed strongly against the competitor model.  

After neutralising differences in bid-ask spread width, the Trader Model’s coarse grade pricing 

performance was almost identical to the competitor model.  While the Trader Model had two 

fewer OT options trading within the normalised spread than the competitor model, the Trader 

Model’s exceptions were of much smaller magnitude than the exceptions of the competitor 

model.  This strong relative pricing performance was achieved despite the competitor model 

having the significant advantage of being a commercially successful model used by price-

makers, and, therefore, having its model prices influence traded prices themselves. 

101

 

 and net short DNT options (Wystup, 2006; UBS).  Therefore, one 

would expect price-makers who clear excess discontinuity risk via the interbank exotic FX 

option market to show, in general, offered interest for OT options and bid interest for DNT 

options, ceteris paribus.  The Trader Model reflected offered interest for OT options, as traded 

market prices were less than Trader Model mid-prices for 65% of OT options in the database.  

The Trader Model also reflected bid interest for DNT options, as traded market prices were 

greater than Trader Model mid-prices for 78% of DNT options.  In contrast, the benchmark 

competitor model reflected the opposite, namely bid interest for OT options (77%) and offered 

interest for DNT options (70%). 

                                                     
99 Derman (1996, p. 5); Bates (2003, p. 400); Derman (2002, p. 82); and Ayache et al. (2004, p. 33). 
100 The Trader Model was not licensed for use by sell-side banks until the last quarter of 2008. 
101 Either directly or indirectly via reverse barrier options. 
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The strength of the Trader Model’s pricing performance, not only in respect of its 

accuracy but also in respect of its robustness to inputs that vary on both time series and cross-

sectional bases, demonstrates that the Trader Model’s unique innovation closely reflects the 

actual market pricing mechanism for American binary FX options.  That finding alone is 

significant.  In addition, because the Trader Model directly prices the cost of liquid, 

commoditised, market traded hedging strategies, it is also able to identify and quantify market 

risk in a manner which provides unique insights into risk management for price-makers in 

practice.  That is, price-makers can implement a liquid market traded hedge that is internally 

consistent with the model price.  In contrast, Jex et al. (1999) and Lipton and McGhee (2002), 

for example, derive model prices independently of a market traded hedge.  They calibrate to the 

entire volatility surface, but cannot identify nor quantify an implementable market traded hedge 

that is internally consistent with their model price.  The benchmark competitor model also does 

not identify a market traded hedge. 

In addition to making price discovery more opaque, and economic inference more 

difficult, numerical calibration to the volatility surface has also made contemporary orthodox 

pricing methodologies computationally inefficient.  In fact, the protracted search for marginal 

gains in computational efficiency in numerical calibration is described well by Ayache et 

al.’s (2004, p. 33) observation that “quantitative finance seems to be wasting itself in 

sophisticated mathematical exercise”.  By making numerical calibration redundant, the Trader 

Model achieves significant real savings in computational efficiency relative to best practice 

quantitative models. 

5.2. Trader Model attributes 

The path of evolution of exotic option pricing models has increased bank exposure to 

model risk.  Orthodox models for pricing exotic options to market are so mathematically 

complex that price discovery is opaque and only tenuously linked to the underlying financial 

economics of the market.  To quote Rebonato (2002, p. 7), “very often . . . the adoption of new 

models has been driven not by their superior explanatory power, but by . . . technological and 

numerical advances”.  In contrast, the Trader Model is driven by financial economics because it 

is price-makers who make prices, not models.  By explicitly taking into account the prominent 

role of price-makers in price discovery the Trader Model effectively redefines the modelling 

problem from pricing to hedging centric.  This is consistent with Bates’ (2003, p. 400) call for “a 

renewed focus on the explicit financial intermediation of the underlying risks by option market 

makers”.  Financial intermediation is primarily a hedging issue.  Price, on the other hand, is a 

secondary consideration to establish the premium required by a price-maker to cover the cost of 

intermediation.  Since the sell-side FX option business is a low margin / high volume 

proposition, it is imperative that price articulates closely with hedging costs, otherwise “selling 

optionality too cheaply is likely to cause an uneven but steady haemorrhaging of money out of 

the book, and can ultimately cause the demise of the trader” (Rebonato, 2002, p. 1). 

The renewed focus on hedging is pivotal.  In contrast to the universally accepted 

benchmark model for pricing European vanilla FX options to market,102

                                                     
102 Garman and Kohlhagen (1983) model derived under the BSM paradigm, in conjunction with the exogenous volatility surface. 

 there is no universally 
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accepted benchmark model for pricing exotic FX options to market.  However, there is general 

agreement on hedging, albeit with disagreement on modelling philosophy and therefore on the 

(model-dependent) price.  This general agreement on hedging is not strictly observed, for 

example price-makers will not trade the same hedge at the same time, as they have different 

inventory and different views on the market.  Nevertheless, a price-maker’s “option book . . . will 

generally be neutral in the lower moments and exposed to various risks in the higher moments” 

(Taleb, 1997, p. 149).103

Price-makers must hedge in practice with market traded instruments.  As the Trader 

Model specifically preserves the direct one-to-one mapping between price and hedging cost, 

trading desk profits calculated with the Trader Model will be internally consistent between exotic 

options and the vanilla options that hedge them.  The key outcome for sell-side banks is 

significantly reduced model risk.  Orthodox models calculate a price independently of a traded 

market hedge, thereby disarticulating price and hedging costs which can result in highly 

asymmetric profits from exotic option mark-to-model and vanilla option mark-to-market 

valuations.  Price-makers’ actual hedging activity cannot bind arbitrary whole-of-volatility-

surface numerical calibrations to the market price of an exotic option, because there is no 

traded whole-of-volatility-surface hedge. 

  Because price-makers must use traded instruments to hedge high-

order risk, the obvious immediate hedging choices are liquid, highly commoditised trading 

strategies like butterflies and risk reversals, even for price-makers with orthodox models based 

on arbitrary volatility dynamics, such as universal volatility models.  As a result, hedging by 

price-makers is relatively model-independent, whereas pricing is extremely model-dependent.  

This is a crucial point not only theoretically, but also from a practical financial economic 

perspective.  It is the price-maker’s hedging activity which binds the traded volatility surface to 

exotic option prices, not the arbitrary dynamical behaviour of non-traded parameters imposed 

by a financial engineer. 

The Trader Model is a unique application of what is now known as the vanna-volga 

method.  The vanna-volga method is intuitive, simple, transparent, and computationally efficient, 

and it reflects actual price-maker hedging behaviour.  However, prices derived from the vanna-

volga method have not achieved a satisfactory performance standard when compared to actual 

traded market prices.  To overcome this unsatisfactory pricing performance, financial engineers 

introduced arbitrary constants to scale the raw solution; and developed other mathematically-

laden and opaque methodologies that price independently of the cost of a traded market hedge.  

Both responses significantly increase model risk.  The Trader Model’s innovation is to recognise 

and exploit a key economic insight to develop a unique application of the vanna-volga method 

that achieves strong pricing performance without requiring arbitrary constants, thereby 

maximising pricing and hedging intuition, and minimising model risk. 

The Trader Model’s unique innovation is the discovery of an intuitive and simple 

concept for pricing exotic options to market that ensures there is articulation between the 

market price of exotic options and the market price of vanilla options.  Articulation is essential 

for price-making to be sustainable in practice.  In so doing, the Trader Model does not require 

                                                     
103 Part of the reason for this phenomenon is that trading book limits are usually described in lower moment terms, i.e. first-order 

greeks. 
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arbitrary scaling constants to price the risk of early termination.  The Trader Model also ensures 

that the divergence between volatilities of the forward and volatilities of the spot is taken into 

account in an internally consistent manner for all option contracts, irrespective of whether they 

are American or European. 

The Trader Model prices exotic options by calculating the cost of the European vanilla 

option hedge, where the maturity of the hedge is equal to the expected stopping time of the 

exotic option.  This is eminently logical, as a hedge is only a hedge if it offsets the risk of 

something else.  In those cases where the exotic option terminates early, it is optimal to have 

the hedge terminate at the same time, otherwise a residual open position exists.  Equating the 

maturity of the hedge to the expected stopping time of the exotic option means that only the 

cost of the hedge needs to be priced.  This is computationally efficient and minimises hedging 

costs.  In contrast, other applications of the vanna-volga method equate the maturity of the 

hedge to the maturity of the exotic option, thereby making it necessary to price not only the cost 

of the hedge, but also the cost of unwinding the hedge when the exotic option terminates early.  

All these applications of the vanna-volga method are computationally inefficient and cause 

excessive hedging costs. 

By equating the maturity of the hedge to the expected stopping time of the exotic 

option, the Trader Model also successfully resolves the dilemma caused by the divergence 

between the volatility of the forward and the volatility of the spot.  As the strength of American 

optionality intensifies, such as high (low) theoretical value OT (DNT) options, the expected 

stopping time of the exotic option shortens.  The Trader Model uses volatilities at the expected 

stopping time to value the market supplement to theoretical value, not the much longer maturity.  

In these cases, volatilities of the forward at the expected stopping time closely resemble 

volatilities of the spot, as short-dated European vanilla options have low levels of interest rate 

risk.  As American optionality weakens, such as low (high) theoretical value OT (DNT) options, 

the expected stopping time lengthens.  Since in these cases American exotic options more 

closely resemble European options, the Trader Model uses volatilities approaching the maturity 

to value the market supplement to theoretical value.  Given that all FX option markets exhibit 

term structures of volatility, and term structures are also present in smiles and skews, the 

Trader Model is the only model that prices the cost of a liquid market-traded hedge which 

incorporates term risk. 

When pricing exotic options to market, Derman’s (2003, p. 13) advice is germane: 

“As in most social sciences, the big and interesting battle in options 

theory and the smile is to avoid being Utopian, and instead to try to pick 

methods and models whose results depend as little as possible on 

unverified, indeed unverifiable, assumptions”. 

The Trader Model does not depend on “unverified, indeed unverifiable, assumptions”, instead it 

relies on the same assumptions as the universally accepted benchmark pricing model for 

European vanilla options.  In the FX market, the volatility surface is an exogenous market 

pricing correction to the Garman and Kohlhagen (1983) model for European vanilla options that 

reflects the additional costs of hedging volga and vanna.  Therefore, volatilities are specific to 

market risk and model dynamics.  The Trader Model is a pragmatic rather than Utopian 
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mechanism for translating the European vanilla option market supplement - the volatility 

surface - to an internally consistent market supplement for American exotic options.  The 

empirical results in this thesis, which are much larger in scale and scope than any other 

published research on pricing exotic options to market, show that the pricing performance of the 

Trader Model is very strong, not only vis-à-vis traded market prices, but also relative to a 

competitor benchmark with an established reputation in academia and industry as “a standard 

reference for FX options prices” (Wystup, 2006, p. 303).  Like Jex et al. (1999, p. 12), we 

conclude that because of “the fact that the model agrees to such a degree with the market 

prices provides confirmation that the assumptions behind the model are close to the actual 

market mechanism”.  Unlike Jex et al., the Trader Model’s very strong pricing performance was 

achieved without having to abandon the parsimonious Garman and Kohlhagen dynamics 

universally accepted for pricing European vanilla FX options, and without having to dilute or 

distort the information content in the traded volatility surface by applying it out of context.  Jex et 

al., like all universal volatility, stochastic volatility and jump diffusion models, rely on elaborate, 

unverifiable dynamics that are not universally accepted, and where the volatility surface is no 

longer a set of model price adjustments for specific market risks under Garman and Kohlhagen 

dynamics, but is instead a convenient mechanism for quantifying arbitrary, non-traded 

parameters that have no connection to the price-maker’s price adjustment. 

5.3. Extensions of the research 

This research has established that the Trader Model is an effective decision-making 

tool for price-makers who trade American binary FX options in practice.  This research used the 

largest data sample of actual traded exotic option prices that could be obtained by the author, 

which, was larger than those used in published literature.  Whilst the scale and scope of the 

sample of actual traded data supports the robustness of the Trader Model’s pricing performance 

to a wide range of market conditions and contract specifications, extensions of this research 

would be to test empirically the pricing performance of the Trader Model for: 

• OT options and DNT options traded during a time period different to the data 

sample in this research (7 January 2004 to 29 September 2004, inclusive); 

• other exotic FX options, such as regular and reverse barrier options; and 

• other markets, such as equity and commodity markets. 

Each of these extensions test the robustness of the Trader Model’s pricing 

performance, and hence its unique philosophy and methodology, to an even broader range of 

market conditions and contract specifications.  However, each of these extensions must 

overcome the challenge of obtaining actual traded market data from over-the-counter financial 

markets that are extremely difficult for non-participants to access.  Extensions to other contract 

specifications, such as second generation exotic FX options, will require the derivation of 

expected stopping time consistent with those specifications, for the approach in this thesis to be 

implemented. 
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APPENDIX A 

A.1 Trader Model overview 

 
 

 

 

Calculate the Theoretical 
Value (TV) of the Exotic 
Option (2) 

Calculate the Value of the 
Market Supplement (MS) to 
TV of the Exotic Option (5) 

Calculate the Mid-Market 
Value (MV) of the Exotic 
Option (6) 

Calculate the Bid – Ask 
Spread of the Exotic Option 
(8) 

Calculate the Asymmetric 
Slippage of the Exotic 
Option (9) 

Calculate Bid and Ask Prices 
of the Exotic Option (10) 

Market and Option 
Contract Inputs (1) 

Convexity to Traded 
Volatility Adjustment 
(3) 

Market Weight 
Adjustment (4) 

Bid-Ask Spread 
Adjustment (7) 
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A.2 Trader Model vega convexity to traded volatility adjustment 

 
 

 

 

 

Calculate the ∂vega / ∂vol of 
the exotic option (12) 

Identify the term and delta of 
the equivalent vega neutral 
(VN) butterfly (15) 

Calculate the per unit price 
of ∂vega / ∂vol (18) 

Value the adjustment for 
∂vega / ∂vol for the exotic 
option (19) 

Market and Option 
Contract Inputs (11) 

The term is a 
function of the 
market weight (13) 

The delta is the ten 
delta pillar for the 
term (14) 

Calculate the 
∂vega / ∂vol of the 
VN butterfly (16) 

Calculate the zeta of 
the VN butterfly (17) 
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A.3 Trader Model delta convexity to traded volatility adjustment 

 
 

 

Calculate the ∂delta / ∂vol of 
the exotic option (21) 

Identify the term and delta of 
the equivalent risk reversal 
(RR) (24) 

Calculate the per unit price 
of ∂delta / ∂vol (27) 

Value the adjustment for 
∂delta / ∂vol for the exotic 
option (28) 

Market and Option 
Contract Inputs (20) 

The term is a 
function of the 
market weight (22) 

The delta is the ten 
delta pillar for the 
term (23) 

Calculate the 
∂delta / ∂vol of the 
risk reversal (25) 

Calculate the zeta of 
the risk reversal (26) 
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A.4 Trader Model bid-ask spread calculation overview 

 
  

Market and Option Contract 
Inputs (29) 

Calculate the vega 
contribution to the bid – ask 
spread (32) 

Calculate the ∂vega / ∂vol 
contribution to the bid – ask 
spread (36) 

Calculate the ∂delta / ∂vol 
contribution to the bid – ask 
spread (40) 

Calculate the vega 
of the American 
binary option (30) 

Collect the implied 
vol spread for the 
relevant 0 - delta 
straddle (31) 

Calculate the 
∂vega / ∂vol of the 
American binary 
option (33) 

Calculate the 
∂vega / ∂vol of the 
relevant strangle 
(34) 

Calculate the bid – ask 
spread (41) 

Collect the implied 
vol spread of the 
relevant strangle 
(35) 

Calculate the 
∂delta / ∂vol of the 
American binary 
option (37) 

Calculate the 
∂delta / ∂vol of the 
relevant RR (38) 

Collect the implied 
vol spread of the 
relevant RR (39) 
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APPENDIX B 

Descriptive statistics for deposit rates 
Table B.1:  EUR deposit rate input data description 

EUR Max Min Diff 

1w 2.08 1.96 0.12 

1m 2.11 1.945 0.165 

2m 2.11 1.895 0.215 

3m 2.175 1.875 0.3 

6m 2.285 1.805 0.48 

12m 2.475 1.825 0.65 

12m-1w 0.44 -0.245 0.685 

12m-1m 0.41 -0.12 0.53 

Minimum and maximum EUR-denominated deposit rates for the period 
7 January 2004 to 29 September 2004, inclusive.  The last two rows 
show the slope of the term structure of deposit rates.  For example, the 
term structure between twelve month (12m) and one week (1w) deposit 
rates ranged from a normal curve with slope of 44 basis points, to an 
inverse curve with slope of -24.5 basis points.  Source:  Reuters LLC. 

 

Table B.2:  USD deposit rate input data description 

USD Max Min Diff 

1w 1.8 0.99 0.81 

1m 1.81 1.02 0.79 

2m 1.87 1.03 0.84 

3m 2.0 1.04 0.96 

6m 2.14 1.09 1.05 

12m 2.435 1.21 1.225 

12m-1w 1.37 0.19 1.18 

12m-1m 1.2 0.17 1.03 

Minimum and maximum USD-denominated deposit rates for the period 
7 January 2004 to 29 September 2004, inclusive.  The last two rows 
show the slope of the term structure of deposit rates.  For example, the 
term structure between twelve month (12m) and one week (1w) deposit 
rates ranged from a normal curve with a slope of 19 to 137 basis points.  
Source:  Reuters LLC. 
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Table B.3:  JPY deposit rate input data description 

JPY Max Min Diff 

1w -0.005 -0.125 0.12 

1m 0.03 -0.105 0.135 

2m 0.05 -0.09 0.14 

3m 0 -0.09 0.09 

6m 0.05 -0.07 0.12 

12m 0.06 -0.02 0.08 

12m-1w 0.155 0.005 0.15 

12m-1m 0.12 -0.095 0.215 

Minimum and maximum JPY-denominated deposit rates for the period 
7 January 2004 to 29 September 2004, inclusive.  The last two rows 
show the slope of the term structure of deposit rates.  For example, the 
term structure between twelve month (12m) and one week (1w) deposit 
rates ranged from a normal curve with a slope of 0.5 to 15.5 basis points 
(bp).  The 12m to 1w term structure exhibited normal (12bp) and inverse 
(-9.5bp) deposit rate curves.  Source:  Reuters LLC. 

 

Table B.4:  AUD deposit rate input data description 

AUD Max Min Diff 

1w 5.455 5.115 0.34 

1m 5.455 5.235 0.22 

2m 5.51 5.275 0.235 

3m 5.53 5.3 0.23 

6m 5.62 5.345 0.275 

12m 5.805 5.4 0.405 

12m-1w 0.62 0.115 0.505 

12m-1m 0.505 0.05 0.455 

Minimum and maximum AUD-denominated deposit rates for the period 
7 January 2004 to 29 September 2004, inclusive.  The last two rows 
show the slope of the term structure of deposit rates.  For example, the 
term structure between twelve month (12m) and one week (1w) deposit 
rates ranged from a normal curve with a slope of 11.5 to 62 basis points.  
Source:  Reuters LLC. 
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Table B.5:  GBP deposit rate input data description 

GBP Max Min Diff 

1w 5.01 3.55 1.46 

1m 4.825 3.77 1.055 

2m 4.87 3.885 0.985 

3m 4.97 3.94 1.03 

6m 5.15 4.09 1.06 

12m 5.365 4.215 1.15 

12m-1w 1.015 -0.01 1.025 

12m-1m 0.98 0.28 0.7 

Minimum and maximum GBP-denominated deposit rates for the period 
7 January 2004 to 29 September 2004, inclusive.  The last two rows 
show the slope of the term structure of deposit rates.  For example, the 
term structure between twelve month (12m) and one week (1w) deposit 
rates ranged from a normal curve with slope of 101.5 basis points, to an 
inverse curve with slope of -1 basis point.  Source:  Reuters LLC. 

 

Table B.6:  CHF deposit rate input data description 

CHF Max Min Diff 

1w 0.52 0.11 0.41 

1m 0.555 0.12 0.435 

2m 0.585 0.14 0.445 

3m 0.645 0.16 0.485 

6m 0.8 0.205 0.595 

12m 1.085 0.355 0.73 

12m-1w 0.925 0.16 0.765 

12m-1m 0.8 0.17 0.63 

Minimum and maximum CHF-denominated deposit rates for the period 
7 January 2004 to 29 September 2004, inclusive.  The last two rows 
show the slope of the term structure of deposit rates.  For example, the 
term structure between twelve month (12m) and one week (1w) deposit 
rates ranged from a normal curve with a slope of 16 to 92.5 basis points.  
Source:  Reuters LLC. 
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Table B.7:  CAD deposit rate input data description 

CAD Max Min Diff 

1w 2.77 1.1975 0.795 

1m 2.68 1.975 0.705 

2m 2.61 1.975 0.635 

3m 2.57 1.975 0.595 

6m 2.66 2.005 0.655 

12m 2.97 2.04 0.93 

12m-1w 0.83 -0.27 1.1 

12m-1m 0.79 -0.24 1.03 

Minimum and maximum CAD-denominated deposit rates for the period 
7 January 2004 to 29 September 2004, inclusive.  The last two rows 
show the slope of the term structure of deposit rates.  For example, the 
term structure between twelve month (12m) and one week (1w) deposit 
rates ranged from a normal curve with slope of 83 basis points, to an 
inverse curve with slope of -27 basis poinst.  Source:  Reuters LLC. 
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APPENDIX C 

Descriptive statistics for European vanilla traded volatility surfaces 

 

Table C.1:  Level, smile and skew of the volatility surface data 

 Level Smile Skew 

FX Pair Max Min Max Min Max Min 

EUR/USD 19.50 6.00 0.95 0.50 1.70 -1.75 

USD/JPY 18.00 5.00 2.30 0.75 1.75 -6.30 

EUR/JPY 14.50 8.80 1.525 0.80 0.40 -2.90 

GBP/USD 17.50 9.00 0.725 0.50 2.50 -1.60 

AUD/USD 19.50 9.90 0.90 0.725 0.48 -3.20 

EUR/CHF 5.90 3.40 0.77 0.385 0.45 -1.055 

EUR/GBP 7.55 6.50 0.625 0.55 -0.05 -0.55 

USD/CAD 10.60 8.50 0.75 0.50 1.00 -0.60 

Level is the size of ATM volatility in percent per annum.  Smile is the volatility premium for a 10 delta vega 
neutral butterfly in percent per annum.  Skew is the volatility premium for a 10 delta delta neutral risk reversal 
in percent per annum.  10 delta refers to OTM European vanilla options with spot deltas of 0.1 for the Call  
and -0.1 for the Put. 

 

Table C.2:  Level, smile and skew of the volatility surface for DNT options 

DNT Level Smile Skew 

FX Pair Max Min Max Min Max Min 

EUR/USD 18.50 6.00 0.95 0.50 1.40 -1.75 

USD/JPY 15.50 5.50 2.30 0.75 1.75 -6.00 

EUR/JPY 14.50 8.80 1.50 0.80 0.40 -2.90 

GBP/USD 17.50 9.15 0.725 0.525 1.30 -1.60 

AUD/USD 14.50 10.25 0.90 0.75 0.48 -2.20 

EUR/CHF 4.45 3.60 0.77 0.385 0.45 0.25 

EUR/GBP 7.55 6.50 0.625 0.55 -0.05 -0.55 

USD/CAD 10.60 8.50 0.75 0.50 1.00 -0.60 

Level is the size of ATM volatility in percent per annum.  Smile is the volatility premium for a 10 delta vega 
neutral butterfly in percent per annum.  Skew is the volatility premium for a 10 delta delta neutral risk reversal 
in percent per annum.  10 delta refers to OTM European vanilla options with spot deltas of 0.1 for the Call  
and -0.1 for the Put.  Volatility surface data is truncated at the three year maturity to match the length of the 
longest exotic option deal. 
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Table C.3:  Level, smile and skew of the volatility surface for OT options 

OT Level Smile Skew 

FX Pair Max Min Max Min Max Min 

EUR/USD 19.50 6.00 0.95 0.50 1.70 -1.60 

USD/JPY 18.00 5.00 2.30 0.90 1.75 -6.30 

EUR/JPY 10.75 9.30 1.525 0.80 0.00 -2.20 

GBP/USD 16.50 9.00 0.725 0.50 2.50 -0.80 

AUD/USD 19.50 9.90 0.90 0.725 0.175 -3.20 

EUR/CHF 5.90 3.40 0.77 0.385 0.45 -1.055 

EUR/GBP N/A N/A N/A N/A N/A N/A 

USD/CAD 10.40 8.55 0.70 0.50 0.50 0.00 

Level is the size of ATM volatility in percent per annum.  Smile is the volatility premium for a 10 delta vega 
neutral butterfly in percent per annum.  Skew is the volatility premium for a 10 delta delta neutral risk reversal 
in percent per annum.  10 delta refers to OTM European vanilla options with spot deltas of 0.1 for the Call  
and -0.1 for the Put.  N/A is ‘Not Applicable’, as there were no OT option trades in the database for this FX 
pair. 
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APPENDIX D 

Trader Model pricing results for OT options 
EUR 
 

 
Fig. D1.  EUR OT option traded market prices versus Trader Model bid-ask prices, for 
theoretical values less than or equal to 0.3.  Prices in green show EUR OT options where 
market prices traded outside of the Trader Model bid-ask spread. 
 
 
 
 

 
Fig. D2.  EUR OT option traded market prices versus Trader Model bid-ask prices, for 
theoretical values greater than 0.3. 
 
 
  

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Pr
ic

e

TV

EUR OT Option Mkt v Trader Model for TV ≤ 0.3

TMB

TMA

Mkt

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.30 0.35 0.40 0.45 0.50 0.55 0.60

Pr
ic

e

TV

EUR OT Option Mkt v Trader Model for TV > 0.3

TMB

TMA

Mkt



110 
 

 
Fig. D3.  EUR OT option traded market prices versus Trader Model bid-ask prices, for expiries 
less than or equal to 100 days. 
 
 
 
 

 
Fig. D4.  EUR OT option traded market prices versus Trader Model bid-ask prices, for expiries 
greater than 100 days.  Prices in green show EUR OT options where market prices traded 
outside of the Trader Model bid-ask spread. 
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Fig. D5.  EUR Up OT option traded market prices versus Trader Model bid-ask prices, as a 
function of theoretical value.  Prices in green show EUR OT options where market prices traded 
outside of the Trader Model bid-ask spread. 
 
 
 
 

 
Fig. D6.  EUR Up OT option traded market prices versus Trader Model bid-ask prices, as a 
function of expiry days.  Prices in green show EUR OT options where market prices traded 
outside of the Trader Model bid-ask spread. 
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Fig. D7.  EUR Down OT option traded market prices versus Trader Model bid-ask prices, as a 
function of theoretical value. 
 
 
 
 

 
Fig. D8.  EUR Down OT option traded market prices versus Trader Model bid-ask prices, as a 
function of expiry days. 
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JPY 
 

 
Fig. D9.  JPY OT option traded market prices versus Trader Model bid-ask prices, for 
theoretical values less than or equal to 0.3.  Prices in green show JPY OT options where 
market prices traded outside of the Trader Model bid-ask spread. 
 
 
 
 

 
Fig. D10.  JPY OT option traded market prices versus Trader Model bid-ask prices, for 
theoretical values greater than 0.3. 
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Fig. D11.  JPY OT option traded market prices versus Trader Model bid-ask prices, for expiries 
less than or equal to 150 days.  Prices in green show JPY OT options where market prices 
traded outside of the Trader Model bid-ask spread. 
 
 
 
 

 
Fig. D12.  JPY OT option traded market prices versus Trader Model bid-ask prices, for expiries 
greater than 150 days.  Prices in green show JPY OT options where market prices traded 
outside of the Trader Model bid-ask spread. 
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Fig. D13.  JPY Up OT option traded market prices versus Trader Model bid-ask prices, as a 
function of theoretical value.  Prices in green show JPY Up OT options where market prices 
traded outside of the Trader Model bid-ask spread. 
 
 
 
 

 
Fig. D14.  JPY Up OT option traded market prices versus Trader Model bid-ask prices, as a 
function of expiry days.  Prices in green show JPY Up OT options where market prices traded 
outside of the Trader Model bid-ask spread. 
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Fig. D15.  JPY Down OT option traded market prices versus Trader Model bid-ask prices, as a 
function of theoretical value.  Prices in green show JPY Down OT options where market prices 
traded outside of the Trader Model bid-ask spread. 
 
 
 
 

 
Fig. D16.  JPY Down OT option traded market prices versus Trader Model bid-ask prices, as a 
function of expiry days.  Prices in green show JPY Down OT options where market prices 
traded outside of the Trader Model bid-ask spread. 
 
 

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

Pr
ic

e

TV

JPY Down OT Option Mkt v Trader Model

TMB

TMA

Mkt

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70

0 200 400 600 800 1,000 1,200

Pr
ic

e

Expiry Days

JPY Down OT Option Mkt v Trader Model

TMB

TMA

Mkt



117 
 

EUR/JPY 
 

 
Fig. D17.  EUR/JPY OT option traded market price versus Trader Model bid-ask prices, as a 
function of theoretical value.  The option is a EUR down OT option. 
 
 
 
 

 
Fig. D18.  EUR/JPY OT option traded market price versus Trader Model bid-ask prices, as a 
function of expiry days.  The option is a EUR down OT option. 
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GBP 
 

 
Fig. D19.  GBP OT option traded market prices versus Trader Model bid-ask prices, as a 
function of theoretical value. 
 
 
 
 

 
Fig. D20.  GBP OT option traded market prices versus Trader Model bid-ask prices, as a 
function of expiry days. 
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Fig. D21.  GBP Up OT option traded market prices versus Trader Model bid-ask prices, as a 
function of theoretical value. 
 
 
 
 

 
Fig. D22.  GBP Up OT option traded market prices versus Trader Model bid-ask prices, as a 
function of expiry days. 
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Fig. D23.  GBP Down OT option traded market prices versus Trader Model bid-ask prices, as a 
function of theoretical value. 
 
 
 
 

 
Fig. D24.  GBP Down OT option traded market prices versus Trader Model bid-ask prices, as a 
function of expiry days. 
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AUD 
 

 
Fig. D25.  AUD OT option traded market prices versus Trader Model bid-ask prices, as a 
function of theoretical value.  The option with TV = 0.3846 is an AUD Up OT option, the others 
are AUD down. 
 
 
 
 

 
Fig. D26.  AUD OT option traded market prices versus Trader Model bid-ask prices, as a 
function of expiry days.  The option with Expiry = 18 days is an AUD Up OT option, the others 
are AUD down. 
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CAD 
 

 
Fig. D27.  CAD OT option traded market price versus Trader Model bid-ask prices, as a 
function of theoretical value.  The option is a CAD Up OT option. 
 
 
 
 

 
Fig. D28.  CAD OT option traded market price versus Trader Model bid-ask prices, as a 
function of expiry days.  The option is a CAD Up OT option. 
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EUR/CHF 
 

 
Fig. D29.  EUR/CHF OT option traded market prices versus Trader Model bid-ask prices, as a 
function of theoretical value.  The option with TV = 0.595 is a EUR Up OT option, the others are 
EUR Down. 
 
 
 
 

 
Fig. D30.  EUR/CHF OT option traded market prices versus Trader Model bid-ask prices, as a 
function of expiry days.  The option with expiry = 124 days is a EUR Up OT option, the others 
are EUR Down. 
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APPENDIX E 

Trader Model pricing results for DNT options 
EUR 
 

 
Fig. E1.  EUR DNT option traded market prices versus Trader Model bid-ask prices, for 
theoretical values less than or equal to 0.15. 
 
 
 
 

 
Fig. E2.  EUR DNT option traded market prices versus Trader Model bid-ask prices, for 
theoretical values greater than 0.15. 
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Fig. E3.  EUR DNT option traded market prices versus Trader Model bid-ask prices, for expiries 
less than or equal to 180 days. 
 
 
 
 

 
Fig. E4.  EUR DNT option traded market prices versus Trader Model bid-ask prices, for expiries 
greater than 180 days. 
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JPY 
 

 
Fig. E5.  JPY DNT option traded market prices versus Trader Model bid-ask prices, for 
theoretical values less than or equal to 0.25.  Prices in green show JPY DNT options where 
market prices traded outside of the Trader Model bid-ask spread. 
 
 
 
 

 
Fig. E6.  JPY DNT option traded market prices versus Trader Model bid-ask prices, for 
theoretical values greater than 0.25.  Prices in green show JPY DNT options where market 
prices traded outside of the Trader Model bid-ask spread. 
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Fig. E7.  JPY DNT option traded market prices versus Trader Model bid-ask prices, for expiries 
less than or equal to 300 days.  Prices in green show JPY DNT options where market prices 
traded outside of the Trader Model bid-ask spread. 
 
 
 
 

 
Fig. E8.  JPY DNT option traded market prices versus Trader Model bid-ask prices, for expiries 
greater than 300 days.  Prices in green show JPY DNT options where market prices traded 
outside of the Trader Model bid-ask spread. 
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EUR/JPY 
 

 
Fig. E9.  EUR/JPY DNT option traded market prices versus Trader Model bid-ask prices, as a 
function of theoretical value. 
 
 
 
 

 
Fig. E10.  EUR/JPY DNT option traded market prices versus Trader Model bid-ask prices, as a 
function of expiry days. 
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GBP 
 

 
Fig. E11.  GBP DNT option traded market prices versus Trader Model bid-ask prices, as a 
function of theoretical value. 
 
 
 
 

 
Fig. E12.  GBP DNT option traded market prices versus Trader Model bid-ask prices, as a 
function of expiry days. 
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AUD 
 

 
Fig. E13.  AUD DNT option traded market prices versus Trader Model bid-ask prices, as a 
function of theoretical value. 
 
 
 
 

 
Fig. E14.  AUD DNT option traded market prices versus Trader Model bid-ask prices, as a 
function of expiry days. 
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CAD 
 

 
Fig. E15.  CAD DNT option traded market prices versus Trader Model bid-ask prices, as a 
function of theoretical value.  Prices in green show CAD DNT options where market prices 
traded outside of the Trader Model bid-ask spread. 
 
 
 
 

 
Fig. E16.  CAD DNT option traded market prices versus Trader Model bid-ask prices, as a 
function of expiry days.  Prices in green show CAD DNT options where market prices traded 
outside of the Trader Model bid-ask spread. 
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EUR/CHF 
 

 
Fig. E17.  EUR/CHF DNT option traded market price versus Trader Model bid-ask prices, as a 
function of theoretical value. 
 
 
 
 

 
Fig. E18.  EUR/CHF DNT option traded market price versus Trader Model bid-ask prices, as a 
function of expiry days. 
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EUR/GBP 
 

 
Fig. E19.  EUR/GBP DNT option traded market price versus Trader Model bid-ask prices, as a 
function of theoretical value. 
 
 
 
 

 
Fig. E20.  EUR/GBP DNT option traded market price versus Trader Model bid-ask prices, as a 
function of expiry days. 
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GLOSSARY 

If any of the following terms have multiple meanings, only the meaning which is relevant for the 

purpose of this thesis is shown. 

 

American Option.  A binary option which can terminate prior to expiry if the spot rate trades in 

the market at or beyond a barrier rate. 

 

Ask.  The lowest price at which a price-maker is prepared to sell the option. 

 

Bid.  The highest price at which a price-maker is prepared to buy the option. 

 

Binary Option.  An American One Touch (OT) or American Double-No-Touch (DNT) FX option, 

with continuously monitored barrier rates. 

 

Book.  Price-maker’s portfolio of options. 

 

BSM.  The seminal option pricing papers of Black and Scholes (1973) and Merton (1973).  In a 

FX option context, it has become associated with spot FX rate dynamics of the form 

( )t d f t t tdS r r S dt S dWσ= − + , where rd, rf and σ are constant, as per Garman and 

Kohlhagen (1983) and Grabbe (1983). 

 

Buy-Side.  A buy-side financial institution does not provide liquidity on demand to other market 

participants.  It is instead a price-taker; a user of liquidity.  Examples include hedge 

funds, portfolio managers, etc. 

 

Calibration.  Popular practice among financial engineers of using statics from the present 

(traded volatility surface) to define dynamics in the future (arbitrary volatility diffusions) 

by fitting arbitrary parameters to data via an optimisation algorithm. 

 

Delta.  Delta can be defined in terms of the spot or the forward.  For American binary options, 

spot delta is important, because the termination condition is satisfied by the spot rate 

not the forward rate.  That is, it is the spot rate which trades at or beyond a barrier rate 

to bring about early termination.  The spot delta measures the change in the value of an 

option given a small change in the underlying spot FX rate.  The spot delta is defined in 

the interbank FX option market in foreign percent or domestic points terms, depending 

on the FX pair.  Delta is defined as G
S
∂

∆ =
∂

 
  

. 

 

Derivatives.  Derivatives are products with payoffs and prices dependent upon the stochastic 

evolution of associated underlying financial variables (Bates, 2003, p. 388). 
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∂delta/∂vol.  Aka vanna.  ∂delta/∂vol is the change in the option delta given a small change in 

the option’s volatility. It is equal to ∂vega/∂spot.  i.e. 
2G

S Sσ σ
∂∆ ∂ ∂Φ

= =
∂ ∂ ∂ ∂

 
 
 

. 

 

Domestic Currency.  FX rates are quoted as the number of units of domestic currency required 

to purchase one unit of foreign currency.  For example, EUR is quoted as USD 

domestic, EUR foreign; and JPY is quoted as JPY domestic, USD foreign.  The 

domestic currency is the numeraire. 

 

Double-No-Touch Option.  A DNT option obliges the seller to pay a fixed cash amount to the 

buyer if the spot FX rate trades in the market without ever touching or exceeding either 

barrier price prior to expiration.  The liability can only be crystallised at expiration, and 

physical payment occurs on the delivery date of the option. 

 
∂vega/∂vol.  Also known as volga, vomma and vol of vol.  ∂vega/∂vol is the change in the option 

vega given a small change in the option’s volatility.  i.e. 
2

2
G

σ σ σ
∂Φ ∂

Φ = =
∂ ∂

. 

 

European Option.  A vanilla option which either expires worthless or is exercised by the buyer 

of the option, on expiration. 

 

Financial Engineer.  Professional with qualifications principally in the mathematics of the 

physical sciences.  Also known as a quant. 

 

Foreign Currency.  FX rates are quoted as the number of units of domestic currency required 

to purchase one unit of foreign currency.  For example, EUR is quoted as USD 

domestic, EUR foreign; and JPY is quoted as JPY domestic, USD foreign. 

 

Forward FX Rate.  The foreign currency exchange rate for delivery later than spot delivery.  In 

the interbank FX market, forward swap points are traded directly, not the outright 

forward rate.  Where Ft is the outright forward rate, ( )( )d fr r T t
t tF S e − −= .  Swap points are 

equal to Ft – St. 

 

Franchise Flows.  From the perspective of the price-maker, an option traded with corporate 

and institutional customers of the counterparty.  To be distinguished from other bank 

counterparties (interbank flows). 

 

Gamma.  Delta convexity to underlying spot FX rates (∂delta/∂spot).  i.e. 
2

2
G

S S
∂∆ ∂

Γ = =
∂ ∂

. 
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Gap Delta.  The size of the delta position which needs to be unwound in the spot FX market if 

an American binary FX option terminates.  For example, if a long ‘down’ OT option with 

a delta of -$400 million is hedged in the spot dimension by $400 million of spot FX, if 

the barrier FX rate trades in the market the delta of the OT option goes to zero, and the 

price-maker is left with an open spot FX position of +$400 million in a falling spot FX 

market. 

 

Geometric Brownian Motion.  Diffusion of the form dX Xdt XdWα σ= + with drift α and 

volatility σ .  The conditional mean of ( )uln X  for u t>  is ( ) ( ) ( )2
t

1
ln X u t u t

2
α σ+ − − −  

and the conditional standard deviation of ( )uln X  is ( )u tσ − .  ( )uln X  is normally 

distributed.  The conditional expected value of uX  is ( )u t
tX eα −  (Shimko, 1992). 

 

Give the bid.  Price-taker sells at the price-maker’s bid price. 

 

Greeks.  Option greeks are usually described as low-order and high-order.  Low-order greeks 

include delta, gamma, vega, rho, phi and theta.  High-order greeks include volga and 

vanna. 

 

High TV.  An American binary option with a theoretical value greater than 0.30.  Whilst the cut-

off point is somewhat arbitrary, the essential characteristic is that a buyer of the option 

risks a relatively large amount to earn potentially a modest reward. 

 

Implied Volatility Surface.  The set of all European vanilla option smiles and skews for each 

expiry.  In FX option markets, implied volatility (σ) is a matrix of dimension ΔxT.  The 

matrix is only relevant for models of the BSM paradigm.  In the FX option market, 

‘implied volatility surface’ and ‘volatility surface’ are used interchangeably.  However, in 

FX option markets, the surface is not implied but directly traded, and hence, traded 

volatility surface is more accurate terminology. 

 

Internal Distribution Margins.  Trading floor sales practitioners widen price-maker bid-ask 

spreads when quoting franchise flows, in order to generate income as compensation for 

developing trading ideas, hedging structures etc. for business that is executed. 

 

Interbank Market.  The interbank market for FX options comprises banks and inter-dealer 

brokers only.  In this market, each option trade ultimately has as counterparties two 

banks.  The trade may be negotiated directly between banks or indirectly via inter-

dealer brokers. 
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Inventory.  The options in price-makers’ books are known as inventory.  Inventory usually 

consists of long and short option positions from a diverse range of interbank, corporate 

and institutional counterparties. 

 

Lean prices to the ‘right’ or ‘left’.  Price-makers lean model prices to the right when they are 

aggressive bidders, and to the left when aggressive sellers.  e.g. model bid-ask prices 

of 0.10/0.12, can be leaned to the right and made 0.1025/0.1225, or leaned to the left 

and made 0.0975/0.1175, to show mildly aggressive bid and ask interest, respectively. 

 

Lift the ask.  Price-taker buys at the price-maker’s ask price. 

 

Long the barrier.  One is ‘long the barrier’ if one wants the spot rate to trade at or beyond a 

barrier rate.  For example, if a price-maker buys (sells) a OT (DNT) option they are long 

the barrier.  If the spot rate trades at or beyond a barrier rate before expiry, then, in the 

OT option case, their payoff is crystallised and they receive the full face value from the 

counterparty on the delivery date of the option.  In the DNT option case, their contingent 

liability is extinguished. 

 

Low TV.  An American binary option with a theoretical value less than 0.30.  Whilst the cut-off 

point is somewhat arbitrary, the essential characteristic is that a buyer of the option 

risks a relatively small amount to earn potentially a much larger reward. 

 

Market-Maker.  Trader in a sell-side financial institution responsible for preparing bid and ask 

prices on demand for corporate, institutional and interbank counterparties, either direct 

or through brokers.  Provider of liquidity.  Also known as a price-maker. 

 

Market Supplement.  The difference between an option’s actual traded market price and its 

theoretical value.  The market supplement can be positive, negative or zero. 

 

Model Risk.  The risk that the model being used to price a binary option does not reflect actual 

financial economic substance. 

 

Moneyness.  At-the-money (ATM) options in the FX option market are zero-delta straddles.  

Out-of-the-money (OTM) options have deltas of smaller magnitude than the options 

comprising the straddle.  In-the-money (ITM) options have deltas of greater magnitude 

than the options comprising the straddle.  e.g. if the Call option in the straddle has 
Call
ATM 0.48∆ = , then Call

OTM 0.48∆ <  and Call
ITM 0.48∆ > . 

 

One Touch Option.  A OT option obliges the seller to pay a fixed cash amount to the buyer if 

the spot FX rate trades in the market at or beyond the barrier price, prior to expiration.  

While the liability is crystallised immediately, physical payment occurs on the delivery 

date of the option. 
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Over-the-counter.  Markets are either over-the-counter or exchange traded.  For FX and FX 

options, over-the-counter traded volume dominates exchange traded volume by a 

significant margin. 

 

Phi.  The change in the value of the option given a small change in the foreign deposit rate.  For 

example, the phi of a USD/JPY option is the sensitivity of the option price to a small 

change in the USD deposit rate.  i.e. 
f

G
r

φ ∂
=
∂

. 

 

Price-Maker.  Trader in a sell-side financial institution responsible for preparing bid and ask 

prices on demand for corporate, institutional and interbank counterparties, either direct 

or through brokers.  Provider of liquidity.  Also known as a market-maker. 

 

Price-Taker.  Trader in a buy- or sell-side institution who demands bid and ask prices from a 

price-maker, either direct or through brokers.  User of liquidity. 

 

Quant.  Financial engineer with qualifications principally in the mathematics of the physical 

sciences. 

 

Rho.  The change in the value of the option given a small change in the domestic deposit rate.  

For example, the rho of a USD/JPY option is the sensitivity of the option price to a small 

change in the JPY deposit rate.  i.e. 
d

G
r

ρ ∂
=
∂

. 

 

Risk Reversal.  1. A liquid European vanilla option strategy consisting of a long (short) OTM 

Call and a short (long) OTM Put, where the Call and Put have different strikes and 

identical delta.  Trades in the interbank FX option market with a delta hedge to make it 

delta-neutral.  It prices the skew in the European vanilla option market.  2. Any option 

strategy where the slope of the risk changes sign.  This is consistent with Taleb’s (1997, 

p. 275) definition that “a risk reversal for a book manager is the switch in risk across 

one point”, such as “where the gamma and / or vegas flip from positive to negative 

across one point”.  In this thesis, the broader definition (2) is used.  In this thesis, OTM 

legs of the risk reversal have a delta equal to ±0.10. 

 

Sell-Side.  A sell-side financial institution provides liquidity on demand to other market 

participants.  A sell-side financial institution is a price-maker; a provider of liquidity.  

Examples include commercial and investment banks. 
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Short the barrier.  One is ‘short the barrier’ if one does not want the spot rate to trade at or 

beyond a barrier rate.  For example, if a price-maker sells (buys) a OT (DNT) option 

they are short the barrier.  If the spot rate trades at or beyond a barrier rate before 

expiry, then, in the OT option case, their contingent liability is crystallised and they have 

to pay the full face value to the counterparty at the delivery date of the option.  In the 

DNT option case, their asset becomes worthless. 

 

Skew.  The set of asymmetric volatilities at expiry T, which represents the ‘price’ of (delta 

neutral) risk reversals at different delta pillars Δi.  Skews can be positive, negative or 

zero. 

 

Slippage.  The risk that the price-maker unwinds the delta hedge for a binary option at a worse 

spot rate than the barrier rate that has just traded.  This is a significant risk when the 

spot rate approaches the barrier rate close to expiry. 

 

Smile.  The set of symmetric volatilities at expiry T, which represents the ‘price’ of vega neutral 

butterflies at different delta pillars Δi.  Smiles are usually positive. 

 

Spot (FX) Rate.  The foreign currency exchange rate for immediate delivery in theory, and for 

delivery in two business days in practice (except USD/CAD delivery which is one 

business day).  Quoted as the amount of domestic currency required to buy one unit of 

foreign currency.  E.g. USD/JPY is the amount of JPY required to buy one US dollar. 

 

Spread.  The difference between the price-maker’s ask price and bid price.  e.g. A bid price of 

0.30 and an ask price of 0.33 has a spread equal to 0.03. 

 

Straddle.  A European vanilla option trading strategy with a long or short position in both a Put 

and a Call, with identical strikes, such that 0DeltaDelta CallPut =+  when dealt.  Strike 

prices (K) are ( )( )pct 2
0 d fK S exp r r 0.5 Tσ∆ = − − −  or ( )( )pts 2

0 d fK S exp r r 0.5 Tσ∆ = − − + , for 

delta expressed in percent foreign and domestic points, respectively. 

 

Strangle.  A European vanilla option trading strategy with a long or short position in both a Put 

and a Call, with different strikes, such that 0DeltaDelta CallPut =+ .  In the interbank FX 

option market, only OTM options are used. 

 

Strike Structure of Volatility.  The vector of OTM volatilities for all option expiries Ti.  i.e. the 

smile and / or skew for each maturity.  In the FX option market, it is more accurate to 

describe it as the delta structure of volatility, as it is quoted by delta. 
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System Arbitrage.  A practice whereby traders exploit model mis-pricing to book unrealised 

mark-to-model revaluation ‘profits’.  For example, a trader buys (sells) an exotic option 

in the market that is over- (under-) priced by their model.  Buying (selling) in the market 

at a price below (above) the model price produces an immediate unrealised daily 

revaluation system ‘profit’ when the option is marked-to-model.  It does not represent a 

real (realised) profit, only a real discrepancy between the model price and the market 

price.  Taleb notes that “it is often easier to arbitrage one’s accounting system than the 

market” (1997, p. 85). 

 

Term Structure of Volatility.  The vector of straddle volatilities for all option expiries Ti. 

 

Theoretical Value.  The value of vanilla and exotic options derived under the BSM paradigm. 

 

Theta.  The change in value of an option given a small reduction in the option’s time to maturity.  

i.e. Gθ
τ

∂
=
∂

. 

 

Vanna.  Also known as ∂delta/∂vol and ∂vega/∂spot.  Vanna is the change in option delta given 

a small change in the option’s volatility.  i.e. 
2G

S Sσ σ σ
∂∆ ∂Φ ∂

∆ = = =
∂ ∂ ∂ ∂

. 

 

Vega.  The change in the value of the option given a small change in the option’s volatility.  For 

binary options, the relevant volatility is the zero-delta straddle volatility for the same 

expiry as the binary option.  i.e. G
σ
∂

Φ =
∂

. 

 

Vega Neutral Butterfly.  A liquid, commoditised European vanilla option strategy consisting of 

a long (short) strangle and a short (long) straddle, weighted such that net vega and 

delta is zero, that is, straddle
strangle

straddle
strangle FV

Vega
Vega

FV ×= .  In this thesis, the strangle 

consists of two OTM options with delta equal to ±0.10. 
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Volatility.  The most common reference to volatility is as a constituent element of the volatility 

surface.  Whilst colloquially referred to as volatility or vol for short, its full name in an FX 

option context is ‘Garman-Kohlhagen volatility’.  Garman-Kohlhagen volatilities are 

volatilities of the forward, not volatilities of the spot.  In the theoretical value framework, 

volatilities of the forward and volatilities of the spot are the same, because domestic 

and foreign interest rates are constant.  However, in a market price framework where 

interest rates are not constant, volatilities of the forward and volatilities of the spot are 

different.  In the interbank FX option market, volatilities of the forward are directly traded 

between price-makers as pseudo prices, not implied from dollar prices.  Nevertheless, 

consistent with the interbank FX option market, volatility and implied volatility is used 

interchangeably in this thesis. 

 

Volga.  Also known as ∂vega/∂vol, vomma and vol of vol.  Volga is the change in the option 

vega given a small change in the option’s volatility.  i.e. 
2

2
G

σ σ σ
∂Φ ∂

Φ = =
∂ ∂

. 
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