Applications of Organic Manure Increased Maize \textit{(Zea mays L.)}

Yield and Water Productivity in a Semi-arid Region

Xiaolin Wanga, b, Yuanyuan Rena, b, Suiqi Zhanga, b, c *, Yinglong Chena, c, d *, Nan Wangc

a State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, 26 Xinong Road, Yangling, Shaanxi 712100, China.

b University of Chinese Academy of Sciences, Beijing 100049, China.

c State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, 26 Xinong Road, Yangling, Shaanxi 712100, China.

d The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, LB 5005, Perth 6001, Australia.

* Co-corresponding authors. Tel: 86 29 87010897; Fax: 86 29 87012210;

E-mail: sqzhang@ms.iswc.ac.cn (S Zhang); yinglongchen@hotmail.com (Y Chen)

Abbreviations:

WP: water productivity; HI: harvest index; N: total nitrogen; P: available phosphorus; SOM: soil organic matter; SWC: soil water content; SBD: soil bulk density; TWU: total water use; SWS: soil water storage; SD: soil depth; Pi: precipitation.
Abstract

Organic manure application has been neglected in recent years, reflecting the rapid replacement with synthetic fertilizer. Exploration of the restorative effect of organic manure on the soil fertility, quality and sustainable productivity is urgently needed. A 4-year field experiment (2011-2014) investigated variation of grain yield, soil water-nutrient content and plant growth in a local cultivar (Zheng Dan 958) of maize (Zea mays L.) at three planting densities with extra organic manure application in a semi-arid region of Northwestern China. Soil water content in 0-50 cm and below 150 cm soil profile was maintained stably at 25% and 18% under organic manure application over four consecutive years, and soil water use in the depth of 50-150 cm was improved. Organic manure helped residual soil nutrient mineralization after harvest with 25 %, 198 % and 41 % increases in total nitrogen (N), available phosphorus (P) and soil organic matter (SOM) over three years respectively. Adequate content of N, P and SOM after maize harvest played an important role for stable high yield in the next season. Consequently, the biomass allocation into shoot and grains was optimized and presented as a slight increase in harvest index (HI). Based on the improvement of water-nutrient status in manured soil, maize water productivity (WP) increased by 3-8 %, which positively associated with the yield increase by 5-10 % at high planting density. Organic manure could be used to improve soil environment and promote yield and WP in maize in dryland agriculture.

Keywords: Maize (Zea mays L.), Organic manure, The Loess Plateau; Planting density; Soil water and nutrient; Grain yield; Water productivity
1. Introduction

Plastic film mulch, increased plant densities and chemical fertilizer input have been extensively used in intensive agricultural production areas of China (Bu et al., 2013; Liu et al., 2014), such as the Loess Plateau, a typical semi-arid region. These strategies contribute to rainfall capture, decrease in soil surface evaporation and increase in crop yield and water productivity (Cui et al., 2013; Chen et al., 2014; Zhang et al., 2014). Although high planting density increases the radiation interception and simultaneously leads to intensified soil water consumption (Jiang et al., 2014), this strategy negatively affects maize biomass allocation (Wang et al., 2010). Furthermore, continual use of chemical fertilizer, film mulching and high planting density have caused soil degradation (Ju et al., 2009), particularly the occurrence of chain reactions, soil compaction, thereby worsening water storage and soil nutrients content, which consequently impairs soil quality (Zhao et al., 2009; Wang et al., 2013) and then restrains crop production (Chen et al., 2012; Li et al., 2013; Meng et al., 2013). Alternatively, organic manure possesses the potential of stabilizing crop production via improving soil water-nutrient condition in the semi-arid intensive agricultural region of China. Manure has been utilized as a major amendment method to maintain soil fertility (Liang et al., 2012), prior to the 1950s.

Organic manure application is compatible with tillage practices conversion from conventional to sustainable tillage systems via improving the soil quality and crop growth worldwide (Shah et al., 2012; Carr et al., 2013; Ahmad et al., 2013; Parija and Kumar 2013). In northwest India, the combined application of organic and inorganic fertilizers could increase the activities of soil invertase and the available nutrient contents (Manna et al., 2007). Similarly, greenhouse experiments indicate that cow manure improved soil organic matter (SOM), nitrogen (N), phosphorus (P) and soil permeability in a dryland sandy soil in Japan (Uzoma et al., 2011) Studies showed that the increase of soil available P contributed to crop P uptake and
without any additional P input for nearly 10 years (Eghball et al., 2004; Lithourgidis et al., 2007). Previous studies confirm that the increased levels of N, P and SOM positively associated with crop yield increase beyond the manure application years (Liu et al., 2013), suggesting that the effects of manure can last for several years (Nevens and Reheul, 2003; Eghball et al., 2004; Dordas et al., 2008). Other studies consider that organic manure typically mineralize within only a few cropping seasons, therefore, to obtain a sustainable and stable increase in yield, organic manure should be applied for consecutive years (Su et al., 2006; Khan et al., 2007; Uzoma et al., 2011; Molina et al., 2014). Meanwhile, continual application of manure in a given soil decreases bulk density and increases soil porosity, thereby improves resource use efficiency (Nevens and Reheul, 2003). Nyamangara et al. (2004) reports that organic manure improves plant growth for high yield via an optimized soil environment. Addition of 42 Mg ha\(^{-1}\) organic manure resulted in an economic optimum of silage maize yield on a sandy loam soil, with a substantial retention of mineral fertilizer N and N use efficiency increase (Nevens and Reheul, 2003; Nyamangara et al., 2004). Moreover, with two years of manure applications on a calcareous loam, maize dry matter production in plots increased by an average of 39 % (Bocchi and Tano, 1994; Gil et al., 2008). Importantly, organic manure could replace inorganic fertilizer without yield loss, consistent with the increase in the kernel weight per cob and number of kernels per cob of 35% and 32% in northern Greece (Dordas et al., 2008). However, on the Loess Plateau, there are few reports concerning how organic manure improves soil water-nutrients status and maize growth to ensure sustainable and stable yield increase (Liang et al., 2012; Liu et al., 2013; Liu et al., 2014). Thus, exploration of the crop yield potential and sustainable soil productivity under organic manure remains a challenge for stable food production in semi-arid farming region of China (Cui et al. 2013). The objective of our study was to determine how the organic manure applications improved soil water-nutrient status and sustainable productivity in maize on the
China Loess Plateau.

2. Materials and methods

2.1. Field experimental sites

Field experiments were conducted at the Chang Wu Agro-ecological Experimental Station (35°12′30″ N, 107°40′30″ E, altitude 1200 m), Chinese Academy of Sciences, located in the south-central region of the Loess Plateau, a semi-arid region of northwestern China. The soil is classified as Cumuli-Ustic Isohumosols according to Chinese Soil Taxonomy System (Gong et al., 2007), and contains 37% of clay, 59% of silt and 4% of sand with a bulk density of 1.3 g cm⁻³ and a pH (soil water solution) of 8.3. Organic matter, total nitrogen, available phosphorus and available potassium contents in the top 30 cm were 10.4 g kg⁻¹, 0.6 g kg⁻¹, 3.0 mg kg⁻¹ and 129.0 mg kg⁻¹, respectively. The climate at the experimental site is temperate and semi-arid monsoonal with a mean annual temperature of 9.1°C and a mean annual precipitation of 584.6 mm. Approximately 80% of the rainfall occurs from June to September.

2.2. Experimental design and plot arrangement

The experiments were conducted in a split plot design with three replicates from 2011 to 2014. The seeds of a local cultivar (Zheng Dan 958) of maize were sown in April of the four years (2011-2014) after soil preparation and harvest was in September. The plots were 5 m wide × 6 m long with 80 cm plastic film mulched and 40 cm rowledge. Plastic film mulching ensured the appropriate water and temperature for seeds emergence. The experimental conditions including chemical fertilizer with organic manure application under three densities are showed in Table 1. Basal fertilizers were applied in all treatments prior to the sowing, e.g., 135 kg ha⁻¹ N as urea (46%, N), 112.5 kg ha⁻¹ P₂O₅ as superphosphate (17%, P₂O₅), 112.5 kg ha⁻¹ K₂O as potassium sulphate (54%, K₂O). Organic manure as a rate of 52.5 t ha⁻¹ (ox manure contained total C, N, K and P of 362.1 g kg⁻¹, 20.3 g kg⁻¹, 8.5 mg kg⁻¹ and 18.2 mg kg⁻¹, respectively, based on the dry matter) was applied in T2, T4 and T6 each year (the first year
in 2011 spring), scattered uniformly in each plot then ploughed under to 0-30 cm soil layer. No organic manure was applied in treatments T1, T3 and T5 (controls). Additional 90 kg ha\(^{-1}\) of N as urea was applied in all treatments at the jointing stage. Three planting densities were arranged as the second factors: T1 and T2 at 60,000 plants ha\(^{-1}\), T3 and T4 at 75,000 plants ha\(^{-1}\), T5 and T6 at 90,000 plants ha\(^{-1}\). Daily precipitation and temperature were recorded during the growth period (Fig. 1).

2.3. Biomass collection

To investigate biomass accumulation, shoot samples were collected at each harvest. Three adjacent plants of similar sizes were harvested from each plot. The aboveground portion was separated into grains, leaves and stems, then exposed for 1 h to 105°C and dried to a constant weight at 80°C to determine the shoot biomass allocation.

2.4. Measurement of soil water content and determination of soil nutrients

Soil water content was measured gravimetrically at fore-sown and post-harvest. Soil samples were collected at the centre of each plot with an auger at 10 cm intervals over a depth of 0-100 cm and at 20 cm intervals over a depth of 100-200 cm, instantly packed into aluminum specimen boxes, numbered and dried at 105°C to constant weight for calculating soil water content (SWC) and soil water storage (SWS). Bulk density of 0-20 cm soil profile was measured at the sowing stage in 2011 and after harvest in 2014 using a foil sampler, with three replications per plot. The topsoil samples (0-20 cm depth) were collected before seeding and after harvest without factitious interference. They were then subjected to natural withering for measurement of the soil organic matter (SOM) with FeSO\(_4\) titration, total N (N) using a Kieldahl apparatus, and available-P (P) with 0.5 M sodium bicarbonate (NaHCO\(_3\)) - molybdenum antimony colorimetric method.

2.5. Data treatment and statistical analyses

Grain yield (GY) was estimated from all the plants within a 2-m length of two middle rows.
Subsequently, all cobs were collected, and the grains were manually stripped from every cob, followed by air drying to 10% water content and weighed to determine the grain yield. Total water uses (TWU), water productivity (WP) and harvest index (HI) were calculated using the following formulas (Zhang et al., 2011; Pereira et al., 2012):

\[\text{SWS (mm)} = \text{SWC} \times \text{SBD} \times \text{SD} \]
\[\text{TWU (mm)} = \Delta \text{SWS} + \text{Pi} \]
\[\text{WP (kg.m}^{-1}) = \frac{\text{GY}}{\text{TWU}} \]
\[\text{HI (g.g}^{-1}) = \frac{\text{GB}}{\text{GB} + \text{SB}} \]

SWS means soil water storage in 2 m depth, SWC represents soil water content mass percentage (Mg Mg^{-1}), SBD represents soil bulk density, SD represents soil depth, \(\Delta \text{SWS} \) (mm) means the soil water storage difference between seeding and harvested; \(\text{Pi} \) represents precipitation, GB represents grain biomass and SB represents shoot biomass.

Two-way ANOVAs were used to determine significances among organic manure, densities and cultivated years in SPSS Statistics 17. Means exhibiting significant differences between treatments, between years and between treatments within each year were separated using Duncan’s Multiple Comparison analysis (\(P<0.05 \)).

3. Results

3.1. Vertical changes in soil water content (SWC)

About 70-85% of the precipitation in the experimental field occurred during the maize growing season (Fig. 1), i.e. 429.8, 440.0, 503.1 and 375.6 mm respectively in each year. The quantity and distribution of rainfall from July-September were able to satisfy the high water demand of maize, except in July, 2014, when the rainfall was only 21.8 mm and the temperature was high. Compared to the raining pattern, similar changes in the daily average temperature were observed, with 12.8 °C at seeding, peaking at 21.6 °C in July and gradually decreasing to 15.0 °C at harvest.
SWC of 0-50 cm and below 150 cm was relatively stable over four years, while SWC of 50-150 cm soil layer decreased under the consecutive application of organic manure over four years (Fig. 2). In 2011 and 2012 (average rainfall), SWC showed slight decrease in the deeper soil layer (50-150 cm) under organic manure, compared with that in the same soil layer of controls. Importantly, significant decrease of SWC occurred at 50-150 cm soil layer in the next two growing seasons (wet year, 2013; dry year, 2014) under organic manure, synchronously a stable SWC was maintained at about 25% in 0-50 cm and at about 18% below-150 cm soil layers. Organic manure improved the soil water use at 50-150 cm soil layer (SWC decreased to about 15%) in the drought year (2014). Moreover, SWC significantly decreased at medium planting densities under organic manure application compared with that in low and high planting densities.

3.2. Soil bulk density and main nutrient contents in the topsoil

Soil bulk density (SBD) significantly decreased ($P < 0.05$) under three planting densities with organic manure application (Fig. 3). SBD of T2 (1.21 g cm$^{-3}$), T4 (1.14 g cm$^{-3}$) and T6 (1.20 g cm$^{-3}$) decreased significantly ($P < 0.05$) compared with that of T1 (1.28 g cm$^{-3}$), T3 (1.30 g cm$^{-3}$) and T5 (1.25 g cm$^{-3}$) respectively, while SBD showed no significant differences among three planting densities without organic manure application.

Organic manure significantly increased topsoil nutrient content over three years compared to that without organic manure. Furthermore, relative contents of SOM, N and P significantly increased over three years compared to original content at fore-sowing of 2011 (Fig. 4, Fig. 5). SOM significantly increased by 13.5, 33.8 and 21.5% in three planting densities under organic manure application compared with original value over three years (Fig. 4a).

Compared to the original values, total N of topsoil increased by 18.5, 37.6 and 17.9% under organic manure application over three years (Fig. 4b), and in three planting densities, available P increased by 97.3, 169.1 and 145.2 % over three years, respectively (Fig. 4c).
Compared with that without organic manure application over three years, SOM increased significantly by 38.2, 50.2 and 34.5% in three planting densities, respectively (Fig. 5a), N content of the topsoil increased by 18.9, 38.3 and 17.9% (Fig. 5b), and interestingly, P content in the topsoil significantly increased by 330.4, 131.9 and 132.5% in three densities from 2011 to 2013. In addition, a high P increase by 312% was observed in 2013 after two-year consecutive organic manure application (Fig. 5c), which implied that available P content exceeded the demand of maize growth.

3.3. Variation of harvest index over four continuous growing seasons

After the consecutive application of organic manure, mean harvest index (HI) increased from 0.32 to 0.41 in T2, 0.34 to 0.53 in T4, and 0.40 to 0.53 in T6 over four seasons (Table 2), and showed the maximum in T4 (0.53, 2012) and T6 (0.53, 2013). HI increased with the increase in planting density. However, no significant difference was observed between manure and non-manure treatments at the same plant density in each of four testing years. Moreover, with same planting density, mean HI had significant increase in 2012, 2013 and 2014 compared with that in 2011. With organic manure application (T4 and T6), stable and high HI was observed compared to that without manure input.

3.4. Grain yield and water productivity (WP)

Over four study years, grain yield ranged from 11.5 to 14.5 Mg ha\(^{-1}\) under organic manure application, and increased with the plant density increase (5.3%, 6.8% and 10.0% in three densities, respectively) compared to no manure treatments over the four years (Tables 3 and 5). The highest yield was observed generally in T6 (Table 5). The initial manure application did not significantly impact the maize yield. However, with continuous manure applications, the maize yield showed a stable, significant increase compared to the first season, and sustainable increase ranging from 4.8 to 16.3%.

TWU slightly increased with increase in organic manure application and precipitation. Table 4
shows significant differences among the four years, but not the six treatments. Based on the change of yield and TWU, mean WP increased from 24.6 to 37.4 kg mm\(^{-1}\) for the treatments with organic manure application, and from 23.2 to 35.9 kg mm\(^{-1}\) for those without manure input, moreover, mean WP increased by 3.5, 3.0 and 7.9 % in three densities with organic manure application over four years (Table 5). The highest WP with manure appeared in T6 from 2011 to 2014, increasing by 9.0 %, 9.8 %, 7.4 % and 5.6 %, respectively, compared with that in T5.

4. Discussion

4.1. Soil properties improved with organic manure application

In the present study, SBD at depth of 0-20 cm decreased by 6.9, 12.3 and 7.7 % in low, medial and high planting densities after four consecutive manure application years compared to that in spring of 2011 (Fig. 3). Edmeades (2003) reported that organic manure or chemical fertilizer benefitted only soil productivity and not soil quality. Accumulation of soil nutrients, particularly P and N, could arise from the long-term use of manure, relative to the use of fertilizers. However, stable production positively relied on the improvement of both soil productivity and soil quality. Furthermore, organic manure not only decreased SBD at a 0-30 cm soil layer, but also reduced soil water penetration resistance at depth of 0-50 cm in Mediterranean soil compared with the use of mineral fertilizer (Lithourgidis et al., 2007; Celik et al., 2010). Decrease of SBD is associated with the increase of soil organic matter and higher porosity. A consequence of the increase in soil organic matter is that some soil chemical and biological properties were improved (Edmeades, 2003; Celik et al., 2010), which benefitted soil water storage in a dryland farming region of China (Hai et al., 2010; Hou et al., 2012).

Our results show that the SWC in the depth of 0-50 cm was maintained at about 25% over four years (Fig. 2). SWC in the depth of 50-150 cm under organic manure application
decreased, especially in the dry year of 2014. Consequently, consecutive organic manure input improved soil water uptake in 50-150 cm soil profile and maintained stable SWC in the depth of 0-50 cm and below 150 cm. These results were partly consistent with previous studies on the alleviation of soil water stress by organic manure in dry land farming (Eldardiry et al., 2013; Gajri et al., 1994; Dalal et al., 2011). Addition of organic matter to soil improved both soil water infiltration and water holding capacity, through incorporation of plant residues or manures (Celik et al., 2010; Parija and Kumar, 2013). Notably, the positive effects of organic manure on soil water retention should be in consideration of soil quality, which contributes to sustainable production in the dry land farming region of China.

Long term application of chemical fertilizer resulted in soil compaction, acidification and microbial diversity loss which were the major causes of soil degradation (Gong et al., 2009; Hou et al., 2012). Degraded soil had lower soil organic matter and higher nutrients loss (Gong et al., 2009; Celik et al., 2010). In the present research, decrease of N, P and SOM in topsoil with only chemical fertilizer application over four years indicated the consistent result of soil fertility deterioration. However, when organic manure was applied in consecutive years, N, P and SOM in the topsoil significantly increased which not only resulted from manure composition but also from organophilic nutrient accumulation (Fig.4). Over four years, manure helps maintaining stable N, P and SOM in topsoils. With soil organic matter increasing in a long-term organic manure project, soil quality and fertility were simultaneously improved, which provided a solid foundation for sustainable soil productivity (Hou et al., 2012; Dunjana et al., 2012). Secondly, organic manure efficiently prevented soil nutrients from leaching out and locked residual compounds into the topsoil through rapid mineralization (Celik et al., 2010; Pinitpaitoon et al., 2011), optimizing soil microorganism diversity and enzymatic activity (Edmeades, 2003; Eldardiry et al., 2013). These results also suggested the potential of organic manure for replacing synthetic fertilizer input in a semi-arid
farming region (Gong et al., 2009; Liu et al., 2013). According to our results, SOM and N increased by 22.9 and 24.7% over three years, organic manure replacing synthetic fertilizer as an alternative could be feasible, but P increase by 137% suggested that synthetic P input should decrease by 20 - 90% when extra organic manure is applied, especially in a wet year (2013) and at a lower planting density. Li et al (2015) indicated that soil P availability depends on soil properties and regional climate variations, the most fundamental of which are soil pH and rainfall distribution.

4.2. Organic manure had a potential for Harvest index (HI) increase

Organic manure improved Soil environments e.g. soil physical and chemical properties which favored maize root growth (Zhao et al., 2009; Efthimiadou et al., 2010). A further research about the effects of organic manure on biomass accumulation indicated that favorable root growth caused a large increase in the dry weight of shoots and grains (Maddonni and Otegui, 1996; Jena et al., 2013), and final crop yield (Jokela, 1992; Chen et al., 2013). In the present study, organic manure application showed a great potential for HI increase, which also depended on planting density and consecutive years of manure application (Table 2). Organic manure application for high yield primarily affected root-shoot ratio and then HI (Mohsin et al., 2012; Muhumed et al., 2014). The insignificant differences of HI in our results possibly related to planting density, the amount of manure input and duration of manure release of nutrients (Valentinuz and Tollenaar, 2006; Abera et al., 2013).

4.3. Grain yield and WP increased under organic manure application

In our results, organic manure treatments generally obtained higher maize grain yield at the three planting densities, even though the effect of organic manure on grain yield was insignificant compared with chemical fertilizer only treatments. Long term manure application stably increased yield and WP by 7.4 and 4.8%, respectively, over four years (Table 3). It is likely that organic manure improved the soil permeability (Liu et al., 2014;
Zhao et al., 2014), or improved field-saturated hydraulic conductivity (Uzoma et al., 2011), and stimulated root physiological function and adjusted soil water distribution for higher WP (Zhou et al., 2012; Mkhabela and Materechera 2013). It also appears that additional manure application would alleviate the inconsistency between scarce water resources and high water demand for substantial yield (Smaling et al., 1992; Ge et al., 2011). Wang et al. (2010) reported that the combination of organic manure and chemical fertilizer increased the sustained supply of nutrients, while reduced the nutrient enrichment of synthetic fertilizer in soil environments. Meanwhile, organic manure benefited the infiltration of rainwater into the soil and enhanced soil water retention for high crop production and WP (Parija and Kumar, 2013), through improving soil physico-chemical properties (Uzoma et al., 2011). However, Edmeades (2003) reported that there was no significant difference between chemical fertilizer and manure in the long-term effects on crop production, and organic manure might only improve the vegetative organs during crop development (Bilalis and Karamanos, 2010). Therefore, organic manure involved in modern agriculture is vital for achieving higher yield and WP, particularly in dry land farming regions (Gong et al., 2009). At the three different planting densities, grain yield increased by 5.3%, 6.8% and 10.0%, and WP by 3.5%, 3.0% and 7.9% with organic manure compared to non-organic manure treatments (Tables 3 and 5). This was probably because organic manure optimized photosynthate allocation and root capacity to an efficient extent in different planting densities (Zhou et al., 2012; Gao et al., 2014). Higher WP under extra manure have mostly been attributed to restrict topsoil water evaporation and enhanced rainwater infiltration (Liu et al., 2013), which could have caused the increase in yield and WP at high planting density. Finally, organic manure improves soil water retention, and mineralization or immobilization of soil nutrients when the fertilizer input exceeded crop uptake (Jokela, 1992). Application of organic manure would be an alternative strategy for semi-arid farming because it could increase soil
water and nutrient storage (Wang et al., 2013).

5. Conclusion

A sustainable and stable increase in yield and WP was observed with consecutive application of organic manure at three planting densities over four years. The stable increase in grain yield under organic manure application was due not only to optimize soil water use but also to the residual soil nutrients retained from previous growing seasons. Organic manure application optimized the water use in 50-150 cm soil layer and enhanced rainwater infiltration from soil surface into deeper soil layer. Correspondingly, organic manure could increase SOM and subsequently decrease SBD, which benefits mineralization and immobilization of residual N and P in topsoil. The findings indicate a better soil environment for maize development, the stable increase of yield and WP over four seasons. Our findings suggest that, for a higher yield and resource use efficiency, farmers could adopt the rational combination of organic manure with appropriate low P and N input at low and medium planting densities.

Acknowledgments

This work was supported by the National Science and Technology Supporting Programs (2015BAD22B01), the 111 project of the Chinese Education Ministry (B12007), and Special Funds of Scientific Research Programs of State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau (A314021403-C5). Chen Y acknowledges the support of “Hundred Talent” program of Chinese Academy of Sciences (A315021449).
References

Eldardiry E., et al., 2013. Assessment cultivated period and farm yard manure addition on some soil properties, nutrient content and wheat yield under sprinkler irrigation system. Agriculture Science 4: 14-22.

Zhao, Y.C., et al., 2014. Effects of long-term cattle manure application on soil properties and...
soil heavy metals in corn seed production in Northwest China. Environmental Science and Pollution Research 21, 7586-7595.

Table 1: The experimental design and fertilizer applications

<table>
<thead>
<tr>
<th>Treatment code</th>
<th>Organic manure (t ha⁻¹)</th>
<th>Planting Density (Plants ha⁻¹)</th>
<th>N (Kg ha⁻¹)</th>
<th>P₂O₅ (Kg ha⁻¹)</th>
<th>K₂O (Kg ha⁻¹)</th>
<th>Additional N at jointing stage (Kg ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>0</td>
<td>60000</td>
<td>135</td>
<td>112.5</td>
<td>112.5</td>
<td>90</td>
</tr>
<tr>
<td>T2</td>
<td>52.5</td>
<td>60000</td>
<td>135</td>
<td>112.5</td>
<td>112.5</td>
<td>90</td>
</tr>
<tr>
<td>T3</td>
<td>0</td>
<td>75000</td>
<td>135</td>
<td>112.5</td>
<td>112.5</td>
<td>90</td>
</tr>
<tr>
<td>T4</td>
<td>52.5</td>
<td>75000</td>
<td>135</td>
<td>112.5</td>
<td>112.5</td>
<td>90</td>
</tr>
<tr>
<td>T5</td>
<td>0</td>
<td>90000</td>
<td>135</td>
<td>112.5</td>
<td>112.5</td>
<td>90</td>
</tr>
<tr>
<td>T6</td>
<td>52.5</td>
<td>90000</td>
<td>135</td>
<td>112.5</td>
<td>112.5</td>
<td>90</td>
</tr>
</tbody>
</table>
Table 2 Harvest index (HI) and coefficient of variation (CV) for different treatments in four years

<table>
<thead>
<tr>
<th>Treatments</th>
<th>HI (kg kg(^{-1}))</th>
<th>Coefficient of Variation (CV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2011</td>
<td>2012</td>
</tr>
<tr>
<td>T1</td>
<td>0.33b</td>
<td>0.41a</td>
</tr>
<tr>
<td>T2</td>
<td>0.32b</td>
<td>0.41a</td>
</tr>
<tr>
<td>T3</td>
<td>0.33b</td>
<td>0.47a</td>
</tr>
<tr>
<td>T4</td>
<td>0.34c</td>
<td>0.46b</td>
</tr>
<tr>
<td>T5</td>
<td>0.42b</td>
<td>0.49a</td>
</tr>
<tr>
<td>T6</td>
<td>0.42b</td>
<td>0.53a</td>
</tr>
</tbody>
</table>

Source of variation

<table>
<thead>
<tr>
<th></th>
<th>Organic manure (O)</th>
<th>Density (D)</th>
<th>O × D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NS</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

* Significant at \(P < 0.05 \); NS, non-significant;
The mean values followed by different letters within a row indicate significant difference among four years at \(P < 0.05 \), \(n = 3 \).
Table 3 Average grain yield for different treatments in four years

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Grain Yield (Mg ha⁻¹)</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2011</td>
<td>2012</td>
</tr>
<tr>
<td>T1</td>
<td>8.44b</td>
<td>11.40ab</td>
</tr>
<tr>
<td>T2</td>
<td>8.89c</td>
<td>12.13ab</td>
</tr>
<tr>
<td>T3</td>
<td>9.57b</td>
<td>11.88ab</td>
</tr>
<tr>
<td>T4</td>
<td>10.70bc</td>
<td>12.04b</td>
</tr>
<tr>
<td>T5</td>
<td>11.71b</td>
<td>12.64b</td>
</tr>
<tr>
<td>T6</td>
<td>12.63b</td>
<td>14.70ab</td>
</tr>
</tbody>
</table>

Source of variation

Organic manure (O)

- NS
- *Significant at P < 0.05*
- **Significant at P < 0.01**
- NS, non-significant; CV, Coefficient of Variation,

* The mean values followed by different letters (a, b and c) within a row indicate significant difference among four years at P < 0.05, n=3.
Table 4 Evapotranspiration (ET) and water-use efficiency (WUE) of different treatments in four years

<table>
<thead>
<tr>
<th>Treatments</th>
<th>ET (mm)</th>
<th>WUE (kg mm⁻¹)</th>
<th>CV (WUE)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2011</td>
<td>2012</td>
<td>2013</td>
</tr>
<tr>
<td>T1</td>
<td>364.48b</td>
<td>372.11ab</td>
<td>456.75a</td>
</tr>
<tr>
<td>T2</td>
<td>362.03b</td>
<td>380.49b</td>
<td>490.60a</td>
</tr>
<tr>
<td>T3</td>
<td>359.76b</td>
<td>379.94ab</td>
<td>452.15a</td>
</tr>
<tr>
<td>T4</td>
<td>353.88b</td>
<td>386.93b</td>
<td>480.87a</td>
</tr>
<tr>
<td>T5</td>
<td>361.42b</td>
<td>359.49b</td>
<td>485.63a</td>
</tr>
<tr>
<td>T6</td>
<td>357.73b</td>
<td>377.59b</td>
<td>483.31a</td>
</tr>
</tbody>
</table>

Source of variation

<table>
<thead>
<tr>
<th></th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>Mean</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>Mean</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Organic manure (O)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Density (D)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>**</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>O × D</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

* Significant at $P < 0.05$; **Significant at $P < 0.01$; NS Non-significant; CV, Coefficient of Variation,

The mean values followed by different letters (a, b and c) within a row indicate significant difference among four years at $P < 0.05$, n=3.
Table 5 Relative increments of grain yield and WUE of the organic manure treatments (T2, T4 and T6) compared to non-organic manure treatments (T1, T3 and T6) at the respective planting density.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Grain yield (%)</th>
<th>WUE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2011</td>
<td>2012</td>
</tr>
<tr>
<td>T1</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>T2</td>
<td>5.3</td>
<td>6.39</td>
</tr>
<tr>
<td>T3</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>T4</td>
<td>11.78</td>
<td>1.42</td>
</tr>
<tr>
<td>T5</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>T6</td>
<td>7.86</td>
<td>16.34</td>
</tr>
</tbody>
</table>
Fig. 1
Fig. 3

Soil bulk density (g/cm3)

- Original
- T1
- T2
- T3
- T4
- T5
- T6

Treatments

Bars marked with different letters (a, b) indicate significant differences.
Fig. 4
Fig. 5

Soil organic matter (%) - Treatments with organic manure

Total N (%) - Treatments with organic manure

Available P (%) - Treatments with organic manure