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width than the one shown in Figure 2-14, allowing for appropriate sampling and signal 

digitisation by off-the-shelf data acquisition cards. In the interest of simulation playing 

time, in Figure 2-16, the mirror velocity is grossly exaggerated by at least a factor of 

10,000x, as it would correspond to a 100 MHz A-line rate for a one-way pathlength scan 

range of 5 mm. 

Figure 2-17 summarises key features of the low coherence interferometric process, 

where the coherence function is generated with increasing group delay by the increasingly 

uncorrelated temporal waveforms, i.e., the one returning from the sample mirror and 

Doppler-shifted one, returning from the translating reference arm mirror. 

 
Figure 2-17. Field amplitudes (left panel), electric charge generated at the photodetector (middle panel) and detector 
photocurrent as a function of reference arm group delay. The delay is counted from the time the reference and sample 
arm mirror positions were matched. Representative steps in the generation of the OCT axial signal amplitude, i.e., 
photocurrent, (a) with a monochromatic wave source and (b) with a polychromatic CW wave source. The close-ups in the 
left and middle panels are on five evenly spaced temporal windows within one period of the interferometric carrier 
(fringe). 

Therefore, depth sectioning in TD-OCT can be achieved by scanning the position of 

the reference arm mirror, 𝑧𝑧𝑅𝑅 [36]. An A-scan in TD-OCT, 𝐼𝐼𝐷𝐷(𝜏𝜏), is recorded as a function 

of time delay and then converted to depth, 𝐼𝐼𝐷𝐷(𝑧𝑧), where 𝑧𝑧 =  Δ𝐿𝐿 = 𝑣𝑣𝑔𝑔𝜏𝜏𝑔𝑔. 

In general, the detected coherence function varies with both the group delay, 𝜏𝜏𝑔𝑔(𝑡𝑡), 

and the phase delay, 𝜏𝜏𝑝𝑝(𝑡𝑡) [36]. The coherence function can be expressed in terms of these 

delays as [36],  
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𝛾𝛾 �𝜏𝜏𝑔𝑔(𝑡𝑡), 𝜏𝜏𝑝𝑝(𝑡𝑡)� = �𝛾𝛾 �𝜏𝜏𝑔𝑔(𝑡𝑡)�� 𝑒𝑒−𝑖𝑖�2𝜋𝜋𝜈𝜈0𝜏𝜏𝑝𝑝(𝑡𝑡)+𝛼𝛼(𝑡𝑡)�  (2-16) 

where 𝛼𝛼(𝑡𝑡) is a phase offset, accounting for phase modulations that may be either 

deliberately introduced, or arise as a result of fluctuations in ν0 or shifts in path lengths as a 

result of mechanical jitter.  

If the reference arm mirror is translated axially in air, then the group and phase delays 

are equal [36]. An additional phase delay can be introduced using a piezo-electric 

transducer [37], or the group and phase delays can be controlled separately by replacing the 

linear translation of the reference mirror by a frequency-domain optical delay line 

(FDODL) [36]. The detected intensity can then be expressed as [36], 

 𝐼𝐼𝐷𝐷(𝜏𝜏) = 𝐼𝐼0 �𝑅𝑅𝑠𝑠 + 𝑅𝑅𝑅𝑅 + 2�𝑅𝑅𝑠𝑠𝑅𝑅𝑅𝑅 �𝛾𝛾 �𝜏𝜏𝑔𝑔(𝑡𝑡)�� 𝑐𝑐𝑐𝑐𝑐𝑐 �2𝜋𝜋𝑓𝑓0𝜏𝜏𝑝𝑝(𝑡𝑡) + 𝛼𝛼(𝑡𝑡)��  (2-17) 

For most samples, the reflectance of the reference will be much greater than the 

reflectance of the sample, 𝑅𝑅𝑅𝑅 ≫ 𝑅𝑅𝑠𝑠, so the detected OCT signal is dominated by a constant 

signal background, 𝑅𝑅𝑅𝑅. This can be removed by high-pass filtering, leaving the desired 

signal from the sample, �𝑅𝑅𝑠𝑠, amplified by the reference signal, �𝑅𝑅𝑅𝑅, and modulated by a 

carrier, cos �2𝜋𝜋𝑓𝑓0𝜏𝜏𝑝𝑝(𝑡𝑡) + 𝛼𝛼(𝑡𝑡)�.  

The earliest OCT systems were time-domain systems [10, 36, 37, 82, 83]. The principle 

advantage of TD-OCT is flexibility in the acquisition geometry, the absence of auto-

correlation terms in the scan (see Section 2.1.3) and the absence of spectral roll-off of 

sensitivity with distance (see Section 2.1.3). OCT data can be acquired A-scan-first, by 

scanning the group delay, as in many early systems and in FD-OCT, but can also be 

acquired lateral scan first, by holding the group delay fixed and modulating 𝛼𝛼(𝑡𝑡) whilst 

scanning laterally. This latter scenario is the acquisition geometry used for many full-field 

OCT and optical coherence microscopy (OCM) setups, which commonly use lenses with 

high numerical aperture (NA) to greatly increase their transverse resolution [38, 84]. The 

principle disadvantages of TD-OCT are that it suffers from low acquisition speed and 

sensitivity, and although the FDODL scanning mechanism allows for up to several kHz 

A-scan rate, it is still two or more orders of magnitude slower and subject to higher phase 

noise than FD-OCT A-scan rates [85]. 

2.1.3 Fourier-domain optical coherence tomography 

Fourier-domain OCT systems represent the second generation of OCT systems [85], and 

operate on the principles of spectral interferometry [86]. Two implementations exist for 

FD-OCT: spectral-domain OCT (SD-OCT) [85] uses broad-band light as the source and a 
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spectrometer as the detector; and swept-source OCT (SS-OCT) or optical frequency-

domain imaging (OFDI) [87-89] uses a frequency swept-laser as the source, and records the 

output using a photodiode as the detector. Advantages of these implementations over TD-

OCT are the much faster acquisition speeds [85, 90, 91] and higher sensitivity (see Section 

2.3.2).  

Spectrometer and swept sources record or produce an output signal, which is, spatially 

or temporally, respectively, nearly linear with wavelength. Designs linear in wavenumber 

can also be realised in hardware. Nevertheless, in FD-OCT, with appropriate calibration 

A-scans are computed as a function of wavenumber, 𝑘𝑘 [10], with the reference mirror held 

stationary, as in Figure 2-8(b)  

𝐼𝐼𝐷𝐷(𝑘𝑘) = 𝑊𝑊𝑠𝑠(𝑘𝑘)⨂|𝐸𝐸𝑠𝑠(𝑘𝑘) + 𝐸𝐸𝑅𝑅(𝑘𝑘)|2����������������������, (2-18) 
 

 
where 𝑊𝑊𝑠𝑠(𝑘𝑘) is a function describing the sampling of wavenumbers by the finite pixel size 

of the spectrometer (SD-OCT) or of the finite line-width of the swept-source (SS-OCT), 

and ⨂ is the convolution operator.  

Assuming the sample is made up of reflectors spaced far enough to avoid near-field 

interactions, and neglecting dispersion, the fields reflected from the (stationary) reference 

mirror and from the n reflectors in the sample arm are, respectively: 

𝐸𝐸𝑅𝑅(𝑘𝑘) ∝ �𝑔𝑔(𝑘𝑘)�𝑅𝑅𝑅𝑅𝑒𝑒𝑖𝑖𝜙𝜙𝑅𝑅(𝑘𝑘), (2-19) 

𝐸𝐸𝑠𝑠(𝑘𝑘) ∝ �𝑔𝑔(𝑘𝑘) �𝑅𝑅𝑠𝑠𝑒𝑒𝑖𝑖𝜙𝜙𝑠𝑠(𝑘𝑘) = �𝑔𝑔(𝑘𝑘)∑ �𝑅𝑅𝑠𝑠𝑛𝑛𝑛𝑛 𝑒𝑒𝑖𝑖𝜙𝜙𝑠𝑠𝑛𝑛(𝑘𝑘), (2-20) 

where, 𝑔𝑔(𝑘𝑘) is the normalised power spectral density of the light source as a function of 

wavenumber. 𝜙𝜙𝑅𝑅(𝑘𝑘) = 2𝑘𝑘𝑧𝑧𝑅𝑅 and 𝜙𝜙𝑠𝑠𝑛𝑛(𝑘𝑘) = 2𝑘𝑘𝑧𝑧𝑠𝑠𝑛𝑛 are the phase responses of the 

reference arm and of the sample arm, at 𝑧𝑧 = 𝑧𝑧𝑅𝑅 and at the individual sample reflectors 

positions 𝑧𝑧 = 𝑧𝑧𝑠𝑠𝑛𝑛, respectively. Therefore, the detected irradiance can be expressed as [82],  

𝐼𝐼𝐷𝐷(𝑘𝑘) ∝ 𝑊𝑊𝑠𝑠(𝑘𝑘)⨂[|𝐸𝐸𝑠𝑠(𝑘𝑘)|2 + |𝐸𝐸𝑅𝑅(𝑘𝑘)|2 + 2𝑅𝑅𝑅𝑅{𝐸𝐸𝑠𝑠∗(𝑘𝑘)𝐸𝐸𝑅𝑅(𝑘𝑘)}]������������������������������������������������������ = 
 
= 𝑊𝑊𝑠𝑠(𝑘𝑘)⨂𝑔𝑔(𝑘𝑘) �𝑅𝑅𝑠𝑠(𝑘𝑘) + 𝑅𝑅𝑅𝑅(𝑘𝑘) + 2�𝑅𝑅𝑠𝑠(𝑘𝑘)𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅�𝑒𝑒𝑖𝑖𝜙𝜙𝑅𝑅(𝑘𝑘)−𝑖𝑖𝜙𝜙𝑠𝑠(𝑘𝑘)�� = 
 

= 𝑊𝑊𝑠𝑠(𝑘𝑘)⨂𝑔𝑔(𝑘𝑘) ��𝑅𝑅𝑠𝑠𝑛𝑛(𝑘𝑘) + 𝑅𝑅𝑅𝑅(𝑘𝑘)
𝑛𝑛

+ 2��𝑅𝑅𝑠𝑠𝑛𝑛(𝑘𝑘)𝑅𝑅𝑅𝑅(𝑘𝑘)
𝑛𝑛

𝑅𝑅𝑅𝑅�𝑒𝑒𝑖𝑖2𝑘𝑘�𝑧𝑧𝑅𝑅−𝑧𝑧𝑠𝑠𝑛𝑛��

+ 2 � �𝑅𝑅𝑠𝑠𝑚𝑚(𝑘𝑘)𝑅𝑅𝑠𝑠𝑛𝑛(𝑘𝑘)
𝑛𝑛≠𝑚𝑚

𝑅𝑅𝑅𝑅�𝑒𝑒𝑖𝑖2𝑘𝑘�𝑧𝑧𝑠𝑠𝑛𝑛−𝑧𝑧𝑠𝑠𝑚𝑚���. 

(2-21) 

A depth-resolved A-scan is then obtained through inverse Fourier transform of ID(k). 

Using the properties of the Fourier Transform that 1
2

[𝛿𝛿(𝑧𝑧 + 𝑧𝑧0) + 𝛿𝛿(𝑧𝑧 − 𝑧𝑧0)]
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ℱ
↔𝑅𝑅𝑅𝑅�𝑒𝑒𝑖𝑖𝑖𝑖𝑧𝑧0�, 𝑥𝑥(𝑧𝑧)⨂𝑦𝑦(𝑧𝑧)

ℱ
↔𝑋𝑋(𝑘𝑘)𝑌𝑌(𝑘𝑘), and 𝑥𝑥(𝑧𝑧)𝑦𝑦(𝑧𝑧)

ℱ
↔𝑋𝑋(𝑘𝑘)⨂𝑌𝑌(𝑘𝑘), the depth-

resolved A-scan, iD(z), simplifies to [82], 

𝑖𝑖𝐷𝐷(𝑧𝑧) ∝ 𝛹𝛹(𝑧𝑧)⨂𝑤𝑤𝑠𝑠(𝑧𝑧)

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ ��𝑅𝑅𝑠𝑠𝑛𝑛 + 𝑅𝑅𝑅𝑅

𝑛𝑛

�𝛿𝛿(𝑧𝑧)

+��𝑅𝑅𝑠𝑠𝑛𝑛𝑅𝑅𝑅𝑅 𝛿𝛿 �𝑧𝑧 ± 2�𝑧𝑧𝑅𝑅 − 𝑧𝑧𝑠𝑠𝑛𝑛��
𝑛𝑛

+
1
2
� �𝑅𝑅𝑠𝑠𝑚𝑚𝑅𝑅𝑠𝑠𝑛𝑛
𝑛𝑛≠𝑚𝑚

𝛿𝛿 �𝑧𝑧 ± 2�𝑧𝑧𝑠𝑠𝑛𝑛 − 𝑧𝑧𝑠𝑠𝑚𝑚��
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 

 

(2-22) 

where 𝛹𝛹(𝑧𝑧) is an effective axial point-spread-function due to the source bandwidth, and 

𝑤𝑤𝑠𝑠(𝑧𝑧) causes the system sensitivity to drop with distance from the zero delay due to the 

band-limited shape of the Fourier transform of the wavenumber sampling function, 

determined by the pixel size or source linewidth, and is often referred to as spectral roll-off. 

The components of Eq. (2-22) are illustrated in Figure 2-18.  

 
Figure 2-18. An example of the spectral interference generated by a discrete sample reflectivity function (top), and the 
corresponding A-scan captured by FD-OCT (bottom). The sample reflectivity function can be written as 𝑅𝑅𝑠𝑠(𝑧𝑧𝑠𝑠) =
∑ 𝛿𝛿�𝑧𝑧𝑠𝑠 − 𝑧𝑧𝑠𝑠𝑛𝑛�𝑛𝑛  1: DC term; 2: Cross-correlation terms; 3: auto-correlation terms, corresponding to the three terms in 
Eq. (2-22). Adapted from [82]. 

Once again, for most samples 𝑅𝑅𝑅𝑅 ≫ 𝑅𝑅𝑠𝑠, so the recorded signal tends to be dominated 

by the DC term. The cross-correlation terms represent the desired signal proportional to 

the square root of the sample reflectances. The auto-correlation terms can create “ghost” 

images, and, as such, represent unwanted noise in the signal, but are usually much smaller 

than the other terms. 
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The reconstructed spatial signal, iD(z), is mirrored about 𝑧𝑧 = 0, and about the 

maximum z-depth, 𝑧𝑧 = 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚. This is because only the real part of the spectral 

interferogram, ID(k), is typically recorded, so its Fourier transform presents an ambiguity 

with respect to the zero delay [92]. That is, a reflector at 𝑧𝑧𝑠𝑠 = 𝑧𝑧𝑅𝑅 − 𝑧𝑧1, or 𝑧𝑧𝑠𝑠 =

𝑧𝑧𝑅𝑅 + 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑧𝑧1 will both appear as complex conjugate mirror artefacts at  𝑧𝑧 = 𝑧𝑧1. 

Recording additional A-scans with variable phase shifts in the reference arm resolves these 

mirror artefacts and enables reconstruction of the full complex spectral interferogram [92]. 

In practice, however, the attenuation of most soft tissues reduces any signal from beyond 

 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 to below the sensitivity limit, and the overlap between auto- and cross-correlation 

terms can be minimized by adjusting the relative positions of the sample and reference. It 

is, thus, more common to simply discard the negative z components of iD(z) [85]. In 

FD-OCT, ID(k) is fully real and iD(z) is a complex quantity. Thus, unlike TD-OCT, 

FD-OCT directly provides access to the depth-resolved phase of the backscattered light, as 

well as the irradiance [92]. The phase information is coarsely subsampled in the vast 

majority of cases, yet, relative phase measurements provide additional information that has 

been exploited in Doppler OCT and the emerging field of optical coherence elastography 

(OCE) that is a major topic of this thesis. This topic is treated in more detail in the 

following section. 

2.2 Optical coherence elastography 

Key to the advancement of the optical microscopy of tissue has been the exploration of 

sources of contrast aimed at improving the visualization of structure and providing 

information on function. On length scales from the molecular (sub-nanometre) to many 

millimetres, elastic scattering is a source of contrast that provides information on structure, 

size and motion of tissue constituents [44], and spectroscopy provides information on 

molecular composition [93]. Over the same length scales, the mechanical properties of 

tissue are a rich alternative to optical sources of contrast [94]. Such properties govern the 

mechanical interactions between cells and their environment, which, in concert with 

chemical interactions, determine how they grow, differentiate and migrate. The impairment 

of a cell’s capacity to respond to mechanical forces contributes to the pathogenesis of 

diseases such as cancer [20], and leads to differences in the mechanical properties of 

normal and malignant tissue. Tumour cells are known to be commonly softer than their 

normal counterparts and, at the same time, tumours commonly cause the generation of 

additional collagen-dense stroma, making them feel stiffer on the macro-scale [19]. The 
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result of this innate heterogeneity is that, on the microscopic scale, malignant tissues often 

have a broader stiffness distribution than normal tissues [19].  

The measurement of the mechanical properties of cells and tissues on the nano- and 

micro-scale, using techniques such as atomic force microscopy [19] and optical tweezers 

[95], has contributed greatly to our understanding of the role of mechanical interactions in 

disease. On the macro-scale, physicians have used palpation as a means of diagnosis for 

centuries. The advent of medical imaging, such as ultrasound and magnetic resonance 

imaging, has provided the means for the development of elastography, the use of imaging 

to map mechanical properties [16, 96, 97]. In elastography, the tissue is mechanically loaded 

and imaged to measure its deformation. For the class of methods based on compressive 

loading, the vector field of displacements between acquired images is used to estimate 

components of the local strain tensor (change in length per unit length), which are 

displayed in images (elastograms) that represent relative tissue stiffness [16]. Elastography 

has a more-than-twenty-year history [98] during which many loading methods and means 

of extracting mechanical properties have been explored, and clinical applications have 

emerged, e.g., in breast cancer [17] and liver fibrosis [99].  

Amongst optical elastography methods [22, 100, 101], the use of optical coherence 

tomography (OCT) to measure displacement, termed optical coherence elastography 

(OCE), has been the most prominent [18, 22, 102-110]. 

2.2.1 Elasticity 

Sample elasticity and deformation can be described using the formalisms of continuum 

mechanics [111]. The applied load, and the resulting deformation, are described in terms of 

stress and strain tensors. Elasticity is then defined by the constitutive equation that links 

these tensors.  

The local stress acting at point P in a deformable body, in an infinitesimally small cubic 

volume about the point P, is defined as the resultant force acting on one of the 

infinitesimal cube facets, ∆𝐴𝐴, over the area of ∆𝐴𝐴. It is in units of Pascals, and equivalent to 

force per unit area N/m2. It can be decomposed into components orthogonal to the 

surface ∆𝐴𝐴 (normal stress) and parallel to it (shear stresses). The local strain along one direction 

(normal strain) is defined as the change in length of the infinitesimal cube edge aligned with 

that direction over the original length. Strain in a plane (sheer strain) is related to the change 

in angle between two edges of the infinitesimal cube that were originally orthogonal. As 

strain is a ratio of lengths, it is unitless.  
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If we consider the relationship between stress and strain to be linear and constant with 

time, i.e., the sample is modelled as being a linearly elastic solid, the constitutive equation is 

given by 

𝜎𝜎𝑖𝑖𝑖𝑖 = ��𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝜀𝜀𝑘𝑘𝑘𝑘 
3

𝑙𝑙=1

3

𝑘𝑘=1

, (2-23) 

where 𝜎𝜎𝑖𝑖𝑖𝑖 and 𝜀𝜀𝑘𝑘𝑘𝑘 are elements of the stress and strain tensors, respectively, and 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 refers 

to elements of the elasticity tensor, a 4-th order tensor with 3 x 3 x 3 x 3 = 81 components. 

If the sample’s mechanical properties are independent of direction, i.e., isotropic, the 

constitutive equation simplifies to 

𝜎𝜎𝑖𝑖𝑖𝑖 = 𝜆𝜆�𝜀𝜀𝑘𝑘𝛿𝛿𝑖𝑖𝑖𝑖 + 2𝜇𝜇𝜇𝜇𝑖𝑖𝑖𝑖 ,
𝑘𝑘

 (2-24) 

where ε𝑘𝑘 = ε𝑘𝑘𝑘𝑘 are the normal strain components, δ𝑖𝑖𝑖𝑖 is the Kronecker delta function 

(δ𝑖𝑖𝑖𝑖 = 1 if 𝑖𝑖 = 𝑗𝑗, and 0 otherwise), and λ and 𝜇𝜇 are called the Lamé coefficients, in units of 

Pascals, that describe the sample’s mechanical properties. 

Four descriptors can be derived from the Lamé coefficients: Young’s modulus, 

Poisson’s ratio, shear modulus, and bulk modulus [111]. 

Young’s modulus, 𝐸𝐸, is the ratio of uniaxial stress, 𝜎𝜎𝑖𝑖, to the resulting uniaxial strain, 𝜀𝜀𝑖𝑖, 

where the index 𝑖𝑖 represents any of the coordinate directions. For example, for a load 

acting along the 𝑧𝑧-axis, 

𝐸𝐸 =
𝜎𝜎𝑧𝑧
𝜀𝜀𝑧𝑧

. (2-25) 

In terms of the Lamé coefficients, 𝐸𝐸 = 𝜇𝜇(3𝜆𝜆 + 2𝜇𝜇) (𝜆𝜆 + 𝜇𝜇)⁄ . Since strain is unitless, 

Young’s modulus is in units of Pascals, the same as stress. 

Poisson’s ratio, 𝜈𝜈, is defined as the ratio of transverse to axial strain. For a sample under 

compression, it is the ratio of lateral expansion to axial compression. For a sample under 

tension, it is the ratio of lateral compression to axial extension. For example, for a load 

acting along the 𝑧𝑧-axis, 

𝜈𝜈 = −
𝜀𝜀𝑥𝑥
𝜀𝜀𝑧𝑧

= −
𝜀𝜀𝑦𝑦
𝜀𝜀𝑧𝑧

. (2-26) 

In terms of the Lamé coefficients, 𝜈𝜈 =  𝜆𝜆 2(𝜆𝜆 + 𝜇𝜇)⁄ . As a ratio of strains, Poisson’s 

ratio is unitless. For most materials, 0 < 𝜈𝜈 < 0.5. 

Shear modulus, 𝐺𝐺, is the ratio of an applied shear stress to the resulting shear strain. 

For example, for a shear load applied parallel to the 𝑥𝑥𝑥𝑥-plane, 
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𝐺𝐺 =
𝜎𝜎𝑥𝑥𝑥𝑥
𝜀𝜀𝑥𝑥𝑧𝑧

. (2-27) 

Shear modulus is equal to the Lamé coefficient 𝜇𝜇, and is in units of Pascals. It can 

alternatively be expressed in terms of Young’s modulus and Poisson’s ratio as 𝐺𝐺 =

𝐸𝐸 2(1 + 𝜈𝜈)⁄ . 

Bulk modulus, 𝐾𝐾, is a measure of a sample’s resistance to uniform compression. It is 

defined as the ratio of the hydrostatic pressure, 𝜎𝜎, to the resulting unit change in volume, 

Δ𝑉𝑉 𝑉𝑉⁄ , 

𝐾𝐾 = −
𝜎𝜎

𝛥𝛥𝛥𝛥 𝑉𝑉⁄
. (2-28) 

Hydrostatic pressure describes the case where all the normal stress components are 

equal, 𝜎𝜎 = 𝜎𝜎𝑥𝑥 = 𝜎𝜎𝑦𝑦 = 𝜎𝜎𝑧𝑧 and all shear stresses are zero. In terms of the Lamé coefficients, 

𝐾𝐾 =  𝜆𝜆 + 2 𝜇𝜇 3⁄ . Bulk modulus is in units of Pascals. 

When dynamic loading is used, the solution to the constitutive equation for a linear 

elastic solid in motion (Navier’s equation) gives rise to waves that propagate through the 

material at speeds dependent on the mechanical properties. A load applied orthogonally to 

the surface of the sample generates surface waves, called surface acoustic waves (SAW) in 

elastography. Rayleigh waves, containing both longitudinal and vertical shear components 

[112], are a good model for SAW. The load also creates waves within the bulk of the 

material. Both longitudinal (pressure) and transverse (shear) waves are generated and can 

propagate independently [111]. The phase velocities of SAWs, 𝑐𝑐𝑝𝑝 [113], longitudinal waves, 

𝑐𝑐𝑙𝑙[111], and shear waves (SW), 𝑐𝑐𝑠𝑠 [111], are given by, respectively, 

𝑐𝑐𝑝𝑝 = 0.87+1.12𝜈𝜈
1+𝜈𝜈 �

𝜇𝜇
𝜌𝜌

,    𝑐𝑐𝑙𝑙 = �𝜆𝜆+2𝜇𝜇
𝜌𝜌

,    and    𝑐𝑐𝑠𝑠 = �
𝜇𝜇
𝜌𝜌

,     (2-29) 

where 𝜌𝜌 is the material density. The SAW phase velocity, 𝑐𝑐𝑝𝑝, is related to the real root of 

the Rayleigh wave equation [112, 114], 𝜂𝜂6 − 8𝜂𝜂4 + 8(3 − 2𝜉𝜉2)𝜂𝜂2 − 16(1 − 𝜉𝜉2) = 0, 

where 𝜂𝜂 = 𝑐𝑐𝑝𝑝 𝑐𝑐𝑠𝑠⁄  and 𝜉𝜉 = 𝑐𝑐𝑠𝑠 𝑐𝑐𝑙𝑙⁄ . In case of Poisson’s ratios in the range 0 < 𝜈𝜈 < 0.5, as in 

most biomaterials [112], an approximate solution is given by 𝜂𝜂 =

(0.87 + 1.12𝜈𝜈) (1 + 𝜈𝜈)⁄ , which yields the expression for the SAW phase velocity shown 

in Eq. (2-29) [114].  

Only two of the previous quantities are needed to fully specify the material’s mechanical 

properties, as they all linearly depend on the Lamé coefficients.  

The usual goal in OCE is to measure Young’s modulus, 𝐸𝐸, shear modulus, 𝐺𝐺, SAW 

velocity, 𝑐𝑐𝑝𝑝 , or SW velocity, 𝑐𝑐𝑠𝑠 (although SAW and SW velocity require knowledge of the 
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sample density) [18], since Poisson’s ratio, 𝜈𝜈, and the bulk modulus, 𝐾𝐾, do not vary greatly 

between tissues, and the longitudinal wave velocity, 𝑐𝑐𝑙𝑙, is typically too fast to measure with 

OCE [98]. In fact, the Poisson’s ratio of most soft tissues is close to (but never greater 

than) 0.5. This is due to the high water content of soft tissue making tissue effectively 

incompressible. Soft tissues also generally possess a bulk modulus, 𝐾𝐾, very close to that of 

water [16]. For typical biomaterials, the velocity of pressure waves, 𝑐𝑐𝑙𝑙, is orders of 

magnitude faster than that of shear waves, 𝑐𝑐𝑠𝑠, typically in the order of 1000s of m/s, and 

m/s, respectively. 

In soft tissue, Young’s modulus has the highest dynamic range compared to the shear 

modulus, the SAW velocity, and the SW velocity. In fact, under the assumption that 

𝜈𝜈 ≈ 0.5, it can be shown that 𝐸𝐸 ≈ 3𝐺𝐺, 𝐸𝐸 ∝ 𝑐𝑐𝑝𝑝2, and 𝐸𝐸 ∝ 𝑐𝑐𝑠𝑠2. Therefore the most 

commonly probed property in OCE to characterise tissue elasticity is Young’s modulus 

[18].  

 

Elasticity of tissue 

Tissue elasticity is determined by both its constituent materials and the structural 

arrangement of these constituents [115]. There are several types of tissue constituents: 

cellular, e.g., adipose, blood, and epithelial cells; polymer, e.g., collagen; elastomer, e.g., 

elastin; or ceramic, e.g., dentin and enamel [115]. The density of these constituents partially 

determines tissue elasticity, with higher densities related to stiffer tissues with higher 

Young’s modulus [116]. The arrangement of these tissue constituents, from the nanometre 

scale (molecular level) to the centimetre scale (organ level) in a hierarchy of structures 

(linked to their function), is also an important factor in determining tissue elasticity [115]. 

Tissue structure and, consequently, the measured elasticity can vary greatly depending on 

the scale being probed (cellular, micro, or organ scale). A study of the elasticity of porcine 

cartilage by Stolz et al. [117] showed a 100-fold lower Young’s modulus at the nanometre-

scale (∼20–50 kPa) compared to the micrometre-scale (∼2.6 MPa), highlighting the 

importance of scale as well as structure in determining tissue mechanical properties. Figure 

2-19 illustrates graphically the Young’s modulus of various tissues constituents, structures 

and whole organs.  
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Figure 2-19. Reported values and ranges of Young’s modulus for selected tissues and tissue constituents. Adapted from 
[18]. 

The figure shows that the Young’s modulus of tissue spans more than eight orders of 

magnitude, showing high contrast potential for elastography. 

Many diseases are correlated with a modification of tissue constituents and hierarchical 

structure. The mechanical properties of diseased tissue vary from those of its healthy 

counterpart, and they vary differently at different scales. A complex, two-way interplay 

between tissue mechanics and disease genesis and progression is revealed by studies in bio-

mechanics using cellular/sub-cellular methods, such as atomic force microscopy (AFM), 

optical tweezers, traction-force microscopy, and micropipette aspiration [118-120].  

OCE can currently probe the elasticity of tissues on the intermediate scale 

(10s-100s μm) between that of cells and whole organs, and has the potential to aid in the 

understanding, diagnosis, and assessment of treatments of conditions and diseases [18, 

105]. There is a wealth of applications where OCE has already shown potential to measure 

tissue mechanical properties: e.g., in dermatology [104, 121-126], in eye diseases [127-130], 

in lung diseases [131, 132], and in breast tissue [133]. Similarly, in cardiovascular disease, 

OCE could aid in measuring the mechanical properties of atherosclerotic plaques [134-

136], which are likely to play a role in plaque rupture [136, 137]. In cancer, assessment of 

tumour margins may benefit from the high resolution and sensitivity to tumour detection 

of OCE. Also, the field of biomechanics would greatly benefit from an in situ high 

resolution OCE system, capable of measuring cellular-resolution mechanical properties of 

tissue in its native environment in 3-D and at depth below the tissue surface. In this thesis, 

we propose and demonstrate such system in Chapter 7. 



2.2 Optical coherence elastography 35 

 

2.2.2 Principles of  optical coherence elastography 

Many different OCE techniques have been developed and implemented to date [18, 105]. 

OCT is the underlying imaging modality for all these techniques, but they vary in the way 

they estimate displacement from the OCT scan and/or the mechanism used to load the 

tissue. In each technique, a mechanical model of deformation is then used to estimate a 

tissue mechanical property, which is mapped into an elastogram. 

The two primary methods of measuring tissue deformation are based on speckle 

tracking (see Section 2.3.3) and phase-sensitive detection [18]. Selected performance 

parameters for these mechanisms are listed in Table 2-1. The two most commonly used 

loading mechanisms are based on uniaxial compression, and pulsed or periodic actuation 

(contact or non-contact) generating elastic waves in the sample [18]. Selected performance 

parameters for these mechanisms are listed in Table 2-2. 

Table 2-1. Imaging parameters for OCE displacement estimation methods. Adapted from [18]. 

 Speckle tracking Phase-sensitive 

Displacement 
      Minimum 
      Maximum 

 
~0.5 x voxel size 

~0.5 x OCT resolution 

 
~20 pm* 

~source wavelength (without 
phase unwrapping) 

~5 x source wavelength (with 
phase unwrapping) 

 
Resolution 
      Axial 
      Transverse 

 
 

~5 - 10 x OCT resolution 
~5 - 10 x OCT resolution 

 
 

Same as OCT 
Same as OCT 

   

Mapping of elasticity tensor in 3-D 1-D 

* Method combines multiple A-scans for each measurement [138]. 

Table 2-2. Experimental and theoretical imaging parameters for OCE loading methods. Adapted 
from [18]. 

 Compression Elastic wave 

  Surface acoustic Shear 

Measured parameter Local strain 𝜀𝜀𝑙𝑙 Phase velocity, 𝑐𝑐𝑝𝑝  Phase velocity, 𝑐𝑐𝑠𝑠 

Dynamic range* ~660 
(1.6 mε / ~2.4 µε) 

[139] 

~450 
(5 m/s / ~11 mm/s) 

[107] 

14 
(7 m/s / 0.5 m/s) 

[140] 
    

Quantitative N Y (density knowledge 
required) 

Y (density knowledge 
required) 

Axial resolution 40-120 µm [106] Unknown Unknown 

Transverse resolution Same as OCT 500-1000 µm 500 µm 

Loading frequency 0 - 800 Hz 
[141] 

0 - ~300 Hz 
[101] 

1 - 5 kHz 
[140] 

* Reported max/min of measured parameter 
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Displacement estimation 

In this thesis, we focus on phase-sensitive OCE. In phase-sensitive OCE, the axial 

displacement within a sample in response to a load, 𝑑𝑑(𝑥𝑥,𝑦𝑦, 𝑧𝑧), is calculated from the 

change in the OCT phase, ∆𝜙𝜙(𝑥𝑥,𝑦𝑦, 𝑧𝑧), between scans of the loaded and unloaded sample 

[103, 106, 142], i.e.,  

𝑑𝑑(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝜆𝜆0
4𝜋𝜋𝜋𝜋

∆𝜙𝜙(𝑥𝑥,𝑦𝑦, 𝑧𝑧), (2-30) 

where 𝜆𝜆0 is the mean free-space wavelength of the OCT system, and 𝑛𝑛 is the sample 

refractive index at location (𝑥𝑥,𝑦𝑦, 𝑧𝑧). In compression OCE, the axial displacement can be 

used to calculate the local axial strain (i.e., the strain defined over a finite range) [103, 106, 

142] and in shear wave and surface acoustic wave OCE, it can be used to calculate the 

phase velocity of the propagating wave [107, 143-145]. 

 

Loading mechanism 

In this thesis, we focus on compression OCE. This technique requires only two OCT 

scans: one of the sample unloaded, or under a static preload, and another of the sample 

under an additional compressive load described by an applied stress tensor, 𝜎𝜎 [18]. The 

resulting sample deformation can be quantified by the strain tensor, 𝜀𝜀 [18].  

The compressive load is applied by an actuator over an area bigger than the transverse 

field of view, but ideally just big enough to avoid edge effects being visible in the image. As 

tissues are intrinsically non-linearly elastic, the initial preload the sample is subjected to, in 

order to flatten out its uneven surface morphology and ensure contact with the 

compression actuator, is very important. For induced strains < 0.1, it has been reported 

that tissues such as breast and prostate, and elastomers such as silicone, can be described 

by a linear elastic model [24, 29, 146]. Additionally, considering the sample to be isotropic, 

if the compressive load is uniform and uniaxial at the sample surface, then the uniaxial 

stress, 𝜎𝜎𝑧𝑧, and strain, 𝜀𝜀𝑧𝑧, of the sample are related through a single constant, Young’s 

modulus, 𝐸𝐸 = 𝜎𝜎𝑧𝑧 𝜀𝜀𝑧𝑧⁄ , which is a common measure of material stiffness. In general, the 

Young’s modulus will vary throughout the sample, and a map of Young’s modulus can be 

calculated by measuring the local strains and stresses within the sample. 

 

Elastogram generation 

The local strain can be determined from the spatial derivative of the measured 

displacement at each point within the sample. It is not straightforward, however, to 
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measure the local stress distributed throughout the material, although our group has 

recently proposed a technique to measure local stress at the tissue surface [147]. 

Compression elastograms are typically, thus, a map of the strain distribution throughout 

the sample in response to the load. 

Phase-sensitive detection generally measures only the axial displacement, so the local, 

axial strain, 𝜀𝜀𝑧𝑧(𝑥𝑥,𝑦𝑦, 𝑧𝑧), in phase-sensitive compression OCE is calculated as 

𝜀𝜀𝑧𝑧(𝑥𝑥,𝑦𝑦, 𝑧𝑧) =
∆𝑑𝑑(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)

𝛥𝛥𝛥𝛥
, (2-31) 

where Δ𝑑𝑑(𝑥𝑥,𝑦𝑦, 𝑧𝑧) is the change in axial displacement over the depth range Δ𝑧𝑧. In this 

thesis, the phase difference, ∆𝜙𝜙(𝑥𝑥,𝑦𝑦, 𝑧𝑧), is unwrapped prior to calculating the axial 

displacement to increase the measurable dynamic range [24]. 

The axial strain is then calculated using weighted-least-squares (WLS) linear regression 

over a sliding window on the axial displacement, with the weights being the OCT signal-to-

noise ratio associated with each displacement measurement [106]. 

 
Figure 2-20. Illustration of phase-sensitive compression optical coherence elastography on a structured phantom. (a) 
Sample arm of the imaging system. RP, rigid plate; SP, structured phantom; RA, ring actuator and window; L, Lens; X-Y 
GM, 𝑥𝑥𝑥𝑥-scanning galvanometer mirrors. Perspective and side-view illustrations of the phantom containing a rigid star-
shaped inclusion are also shown. (b) Displacement of the ring actuator and synchronised synchronized 𝑥𝑥-scanning 
galvanometer mirror scan pattern. (c) Illustrations of displacement and local strain at two locations in the phantom. (d) 
Three-dimensional OCT perspective view of the phantom. (e) Corresponding perspective view of the three-dimensional 
elastogram displaying the local strain, and a cutaway view revealing a B-mode elastogram through the central region of the 
inclusion. Scale bars, 0.5 mm. Adapted from [24]. 
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Figure 2-20 illustrates the process of the loading mechanism and elastogram generation 

for phase-sensitive compression OCE. The sample is a silicone phantom containing a rigid 

star-shaped inclusion, as described in Section 4.7. 

Figure 2-21 shows the capabilities of OCE in differentiating malignant and healthy 

breast tissue in a freshly excised breast sample, based on the mechanical properties of these 

tissues.  

 
Figure 2-21. Optical coherence elastography of a malignant breast tumour with quantitative elasticity estimation. (a) 
Haematoxylin and eosin (H&E) histology. (b) En-face OCT image. (c) En-face strain elastogram. (d) Fused en-face OCT and 
quantitative optical coherence elastography. Elasticity is plotted on a logarithmic scale. A = adipose, S = stroma, T = 
tumour. Dashed boxes indicate regions over which mean strain and elasticity values were calculated. In the strain image, 
this ratio is 0.77, and in the elasticity image it is 82, i.e., the tumour is much stiffer than the healthy stroma and as a result 
it strains less under compression. Adapted from [148]. 

 

2.3 Image quality 

OCT image quality is defined by many descriptors, such as resolution (axial and transverse), 

depth of field (DOF), signal-to-noise ratio, sensitivity, contrast, and speckle contrast. 

Improvement of all these descriptors at once is unfeasible, as many are in a trade-off 

relationship with one another. In the following, we shall describe each one and the existing 

trade-off relationships. We shall also define the noise sources affecting elastogram image 

quality. 
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2.3.1 OCT resolution and depth of  field 

Unlike most optical microscopies, such as confocal microscopy, the axial and transverse 

resolution in OCT are determined by separate, decoupled, processes.  

 

Axial resolution 

The axial resolution is determined by the coherence function of the light source [11, 36]; 

which is sometimes referred to as the coherence gate. Often the light source will have a power 

spectral density that differs from a Gaussian function. Nevertheless, a Gaussian power 

spectral density is sought after, as it provides the smallest time-bandwidth product, i.e., its 

coherence gate is the smallest for a given spectral (frequency) bandwidth [33]. With 

FD-OCT spectral reshaping to a Guassian power spectral density is possible in post-

processing. If we consider a light source with a Gaussian power spectral density, as in Eq. 

(2-11), and we express the coherence function, Eq. (2-12), as a function of the physical 

pathlength 𝑧𝑧 within a sample of group refractive index 𝑛𝑛𝑔𝑔, we obtain the axial point-

spread-function (PSF) (for further details see Section 5.2.1):  

𝛹𝛹(𝑧𝑧) ≜ 𝑒𝑒
−� 𝜋𝜋

 √𝑙𝑙𝑙𝑙2
∆𝜆𝜆
𝜆𝜆0
2𝑛𝑛𝑔𝑔𝑧𝑧�

2

𝑒𝑒−𝑖𝑖
2𝜋𝜋
𝜆𝜆 �2𝑛𝑛𝑔𝑔𝑧𝑧�, 

(2-32) 

where 𝜆𝜆0 is the centre wavelength of the source, and ∆λ is the full-width-at-half-maximum 

(FWHM) spectral bandwidth. The axial resolution, ∆𝑧𝑧𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹, is typically defined as the 

FWHM of the intensity of the axial PSF. For a Gaussian source spectrum, this corresponds 

to [36, 92]  

∆𝑧𝑧𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 =
2 𝑙𝑙𝑙𝑙2
𝜋𝜋

𝜆𝜆02

∆𝜆𝜆𝑛𝑛𝑔𝑔
. (2-33) 

Thus, improving the axial resolution in OCT requires greater source bandwidths 

and/or shorter source wavelengths.  

 

Transverse resolution 

The transverse resolution is entirely dependent on the sample arm optics, as in most other 

microscopies. There are several criteria to determine the minimum transverse distance that 

two point-source objects have to be separated by, in order to distinguish the two sources 

from each other. Excluding super-resolution techniques, all light microscopies have their 

optimum transverse resolution bound by the limit of diffraction, as illustrated in Figure 

2-21. When overfilling the objective lens, as in confocal microscopy, an Airy diffraction 
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pattern is generated as the transverse profile in focus. [149]. The bigger the objective 

aperture, the smaller the central Airy disk radius 𝑟𝑟 = 1.22𝜆𝜆 2NA⁄ , where the lens 

numerical aperture is NA = 𝑛𝑛𝑝𝑝sin𝜃𝜃. 

 
Figure 2-22. Schematic illustrating diffraction-limited resolution in microscopy. (a) Transverse resolution depends linearly 
on the numerical aperture, i.e., the size of the Airy disk diffraction pattern in the transverse plane in focus is smaller for 
higher NA. (b) Illustration of the signal from two point sources as a function of their separation. (c) Three criteria for 
transverse resolution, using overfilled objective lenses. Adapted from [150-152]. 

The Rayleigh criterion for resolution is satisfied when the principal diffraction 

maximum (the central spot of the Airy disk) from the image of one of the point sources 

overlaps with the first minimum (dark region surrounding the central spot) of the Airy disk 

from the other point source. The Abbe criterion is less stringent and, when satisfied, a 

small dip is still discernible between the two maxima. In the Sparrow criterion, the sum of 

the two Airy patterns produces a flat intensity profile. 
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In OCT, the lens aperture is seldom overfilled, so Gaussian beam optics [153] is used to 

determine the axial and transverse beam profile, and the corresponding PSF. Assuming a 

collimated Gaussian beam with 1 𝑒𝑒2⁄  of intensity radius 𝜔𝜔0
′, and a sample objective lens 

with focal length f, then the beam numerical aperture is  NA ≅ 𝜔𝜔0
′ 𝑓𝑓⁄  [36] and the 

transverse resolution at the focal plane, defined as the FWHM of the transverse PSF, 

∆𝑥𝑥𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹, (see Section 5.4.1) is [82]  

∆𝑥𝑥𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑃𝑃𝑃𝑃 = �𝑙𝑙𝑙𝑙2
2
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𝑒𝑒2�
𝑃𝑃𝑃𝑃𝑃𝑃
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(2-34) 

This is the least stringent criterion for the transverse resolution, i.e., giving the highest 

resolution. Figure 2-23(b) shows the beam amplitude and intensity profile with relevant 

width corresponding to different criteria for transverse resolution with Gaussian beams. 

Figure 2-23(c) shows the transverse profiles in focus with limits for the resolution. 

Δ𝑥𝑥𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹PSF  is shown in red. Alternative criteria for the transverse resolution, in order of 

increasing strictness, are: the 1 𝑒𝑒⁄  diameter of the transverse PSF Δ𝑥𝑥1 𝑒𝑒� 𝑃𝑃𝑃𝑃𝑃𝑃
= �1

2
Δ𝑥𝑥1

𝑒𝑒2�
PSF

 

[26, 154], shown in yellow in Figure 2-23(c); the FWHM of the Gaussian beam illumination 

profile Δ𝑥𝑥𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = √𝑙𝑙𝑙𝑙2Δ𝑥𝑥1
𝑒𝑒2�

PSF
 [10, 36], shown in green in Figure 2-23(c), 

and the 1 𝑒𝑒2⁄  of intensity (or PSF) beam diameter Δ𝑥𝑥1
𝑒𝑒2�

PSF
= 2ω0, shown in blue in 

Figure 2-23(c).  

When discussing system specification within the OCT community, resolution and 

FWHM transverse PSF width (or any of the other criteria) are used interchangeably 

without regard for the transverse profile of non-Gaussian beams (if used) and for the 

impact of scattering- and sample-induced aberration. This equivalence is valid in the 

absence of strong sidelobes when using different beams and in the absence of scattering- 

and sample-induced aberration due to reciprocity. This equivalence remains valid in this 

thesis, when using low-Fresnel number Bessel beams (see Section 3.1.3), and in the 

presence of scattering and sample-induced aberration, where the FWHM PSF width is 

unaffected for the tested imaging depths and scattering coefficient (see Section 6.2.2).  
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Depth of field (DOF) 

The DOF of the OCT system is determined by the so-called confocal gating mechanism, 

which is equivalent to the axial PSF that would be obtained without coherence gating, 

shown in Figure 2-23(a). The DOF is usually defined, by reciprocity, as the full-width at 

half-maximum of the squared magnitude of the axial distribution of the focused electric 

field, i.e., the illumination beam. That coincides with the depth over which the FWHM 

transverse resolution is < √2 of its value at focus, and is equal to twice the Rayleigh range, 

𝑧𝑧𝑅𝑅, of the focused beam [36], i.e., 

𝐷𝐷𝐷𝐷𝐷𝐷 = 2𝑧𝑧𝑅𝑅 =
2𝜋𝜋𝑛𝑛𝑔𝑔𝜔𝜔0

2

𝜆𝜆0
≅ 𝑛𝑛𝑔𝑔

2𝜆𝜆0
𝜋𝜋
�

1
𝑁𝑁𝑁𝑁2

�. (2-35) 

 
Figure 2-23. Schematic illustrating the determinants of resolution in OCT. (a) The coherence gate determines the axial 
resolution, as the FWHM of the axial PSF, shown in the left panel. The complex PSF (in absence of coherence gating) 
and the complex Gaussian beam are shown in the middle and right panels, respectively. (b) The axial depth of field, 
shown in the left panel, is the FWHM of the beam intensity axial profile (i.e., axial PSF intensity in absence of coherence 
gating), shown in the middle panel, while the right panels shows the Gaussian beam amplitude. (c) Various criteria 
determining the transverse resolution.    

The DOF is illustrated in the axial plot, bound by the red lines, in Figure 2-23(b). The 

DOF decreases quadratically with the beam NA, while the transverse resolution increases 

linearly with the beam NA. There is, thus, an inherent trade-off between achieving high 

transverse resolution, and having a large depth of field. 
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The latter is typically desirable, especially in FD-OCT, where a full A-scan is acquired at 

high speed without requiring moving parts. This requires objective lenses (and beams) with 

low numerical aperture, and limits the ability to exploit the high FD-OCT acquisition speed 

in microscopy applications [33]. One solution to this problem is the employment of beam 

shaping to increase the DOF without compromising the transverse resolution, as we shall 

see in Chapter 3. 

The systems used in this thesis have beam NAs of ≈ 0.04 to 0.27 leading to transverse 

resolutions of 15 down to 1.5 µm and DOF (for Gaussian beams) of 335 down to 7.3 µm 

and axial resolutions, set by the source bandwidth, of 16 down to 1.5 µm. The OCT 

resolution defines an upper bound on the resolution of methods to measure elasticity using 

OCE. 

2.3.2 OCT signal-to-noise ratio, sensitivity and contrast 

The signal-to-noise ratio (SNR) is conventionally defined in terms of ratios of signal-to-

noise electrical powers post-photodetection; an equivalent quantity may be defined in terms 

of the photocurrent in TD-OCT, given by [90] 

𝑆𝑆𝑆𝑆𝑆𝑆 =
〈𝑖𝑖𝐷𝐷2(𝑧𝑧)〉
𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2

, (2-36) 

where the symbol 〈∙〉 represents the esamble-average operation, 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 represents the 

noise variance in units of squared current, A2, in the time (space) domain signal. 

The sensitivity Σ of an OCT imaging system is defined as the minimum detectable 

reflectivity by the system, i.e., the reflectivity yielding an SNR = 1 or, alternatively, the 

highest achievable signal-to-noise ratio [36]. Three noise sources limit OCT sensitivity: 

intensity (excess) noise, shot noise and receiver noise [36, 57, 90]. Stochastic fluctuations in 

the instantaneous source power are responsible for intensity noise, visible on the axial PSF 

in Figure 2-17. The quantised nature of light detection produces shot noise.  In OCT, shot 

noise power is usually dominated by the reference arm power, not by the sample arm 

power, as is the case in non-interferometric systems. Electrical and thermal noise within the 

detector determine receiver noise. The relative contributions of intensity and receiver noise 

sources depends on the irradiance of the light incident on the detector [90]. Maximum 

sensitivity can, thus, be achieved by tuning the power returning from the reference arm [57, 

90], as the reference reflectance is usually much greater than the sample reflectance for 

biological samples in OCT. This is shown in Figure 2-24, which plots the effects of these 

noise sources on the OCT sensitivity as a function of the reference arm reflectance.  
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OCT sensitivity is ultimately limited by shot noise, so systems operating at maximum 

sensitivity are said to be operating in the shot-noise limit or shot-noise limited.  

 
Figure 2-24. Calculated sensitivity for a typical spectrometer-based SD-OCT system. The maximum sensitivity is 
ultimately limited by the shot noise. Adapted from [57].  

In the shot-noise limit, the sensitivity of TD-OCT is given by [155, 156],  

𝛴𝛴𝑇𝑇𝑇𝑇−𝑂𝑂𝑂𝑂𝑂𝑂 =
𝑟𝑟𝐷𝐷𝑃𝑃𝑆𝑆
𝐸𝐸𝜈𝜈𝐵𝐵𝑊𝑊

, (2-37) 

where 𝑟𝑟𝐷𝐷 is the responsivity of the detector, 𝑃𝑃𝑆𝑆 is the optical power from the sample (𝑃𝑃𝑆𝑆 ∝

𝑅𝑅𝑆𝑆, the sample reflectivity), 𝐸𝐸𝜈𝜈 = ℎ𝜈𝜈 is the photon energy (h is Planck’s constant, ν  is the 

optical frequency), and BW is the low-pass electrical bandwidth of the detector. Since the 

axial resolution in OCT increases with bandwidth, there is a trade-off in TD-OCT between 

sensitivity and resolution.  

By comparison, the shot-noise limited sensitivity of FD-OCT is [90, 91],  

𝛴𝛴𝐹𝐹𝐹𝐹−𝑂𝑂𝑂𝑂𝑂𝑂 =
𝑟𝑟𝐷𝐷𝑃𝑃𝑆𝑆𝜏𝜏𝑖𝑖
𝐸𝐸𝜈𝜈

=
𝑟𝑟𝐷𝐷𝑃𝑃𝑆𝑆𝑀𝑀
2𝐸𝐸𝜈𝜈𝐵𝐵𝑊𝑊

≈
𝑀𝑀
2
𝛴𝛴𝑇𝑇𝑇𝑇−𝑂𝑂𝑂𝑂𝑂𝑂, (2-38) 

where τi is the integration time of the detector, M is the number of pixels in the line-scan 

camera of the spectrometer in SD-OCT, or the equivalent number of spectral lines in the 

source for SS-OCT, BW M⁄ = 1 2τi⁄  by Nyquist’s theorem [156]. This generally translates 

to a sensitivity advantage of 10 to 20 dB in favour of FD-OCT [57], which typically has a 

maximum sensitivity in the range 100 to 110 dB. In practice, the lower reflectances of most 

tissue samples mean the maximum SNR in an OCT image is typically in the range 30 to 50 

dB [26].  

We define OCT contrast [157] as the difference in dB between the square of the 

average OCT signal amplitude, 𝑎𝑎𝐷𝐷����𝐴𝐴1
2 , in a homogeneous area 𝐴𝐴1 of a sample, and the 
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square of the average OCT signal amplitude, 𝑎𝑎𝐷𝐷����𝐴𝐴2
2, in a homogeneous area 𝐴𝐴2 

neighbouring 𝐴𝐴1, near the border between the two:  

𝐶𝐶 = 10𝑙𝑙𝑙𝑙𝑙𝑙10�𝑎𝑎𝐷𝐷����𝐴𝐴1
2� − 10𝑙𝑙𝑙𝑙𝑙𝑙10�𝑎𝑎𝐷𝐷����𝐴𝐴2

2�. (2-39) 

However, since OCT is a coherent imaging modality, the measured signal amplitudes 

and SNR depend not only on the sample and reference reflectances, but will also be 

spatially modulated by speckle.  

2.3.3 Speckle 

Speckle is an intrinsic feature of images acquired with any imaging system employing 

coherent waves [158, 159]. The phenomenon is present and has been studied extensively in 

narrowband imaging modalities, such as ultrasound, astronomy, synthetic aperture radar 

and optical holography. It appears as a rapid fluctuation of the detected intensity (or field 

envelope) over the spatial extent of the image, conveying a granular texture. 

In OCT [33], speckle is generated by the summation of multiple optical fields, 

backscattered from the sample arm of the interferometer. The fields must return to the 

detector within the temporal coherence gate, so that a coherent interference signal is 

generated with the light returning from the reference arm. They must also retain their 

spatial “coherence,” so that they are focused onto the optical detector (often via a confocal 

pinhole, or an optical fibre). They are represented by complex phasors, the sum of which 

determines the intensity and phase of the detected signal at a given depth in the sample. An 

OCT image of a human fingertip, clearly illustrating speckle, is presented in Figure 2-25. 

 
Figure 2-25. OCT image of a human fingertip with high contrast speckle pattern plotted on a logarithmic grayscale. The 
transverse extension of the image is 2 mm. Sweat duct extending from the papillary dermis to the stratum corneum 
highlighted in the inset.  
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Coherent, in the context of OCT, implies that the detected signal is linear with respect to 

the complex amplitude of the resultant back-propagating field. An imaging technique that 

is linear with the intensity (or the squared modulus of the complex amplitude) is termed 

incoherent. The large number of backscattered waves (treated as random variables) included 

in the summation at the detector leads to two very different results in the incoherent and 

coherent cases. In the incoherent case, where the fields are added on a positive intensity 

basis, the standard deviation of the sum will be much less than its mean, so the “random” 

fluctuations will be negligible. In the coherent case, where the fields are added on a 

complex amplitude basis, the mean will be zero, and the complex-valued fluctuations about 

it will constitute the entirety of the signal. (The fluctuations are preserved when the 

modulus of the signal is taken.) For this reason, speckle is present only in coherent 

techniques [158]. 

Although speckle is often regarded as a source of noise, it is distinct from system noise 

components such as intensity, shot, phase and electrical noises that depend only upon the 

properties of the source and detection scheme. In fact, its realization is highly sample 

dependent and time invariant, if the sample is stationary with respect to the probing beam. 

In this sense, speckle is fundamental to OCT image formation, to the extent that its 

complete removal would leave us with no image at all [160]. 

A specific speckle realization depends on the sample structure down to length scales on 

the order of fractions of the wavelength. Besides the sample structure or motion of its 

scattering components, the realization is also affected by the temporal and spatial 

characteristics of the light, multiple scattering and phase aberrations of the propagating 

beam and the aperture of the detector [160]. 

OCT speckle has been discussed in detail in the literature, e.g., in [160-173], and in 

several reviews of the modality as a whole [10, 174, 175]. As in most of these cases speckle 

is perceived as a corrupting influence on the ability to resolve microstructure in the image, 

the majority of this literature is devoted to methods to suppress or overcome speckle. This 

often involves a form of ‘incoherent’ averaging of images of the same target featuring 

different speckle patterns (realizations), acquired with different system hardware 

configurations [160]. An alternative is to apply image post-processing techniques. In both 

cases, there is an inherent trade-off between the reduction in speckle contrast and the 

image resolution: ameliorating one comes at the expense of the other. 

Another perspective is to regard speckle as a source of sample information and devise 

approaches to extract this information. In other areas of optical metrology [158, 159], such 

approaches are common. In considering its information content, a “missing frequency” 

characterisation of speckle [160, 176] is valuable. This interprets the phenomenon as arising 
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from the band-pass filtering properties of the OCT point-spread function. The speckled 

OCT signal is a reconstruction of only a small subset of the entire range of sample spatial 

frequencies; speckle only conveys information in the specific frequency range. If described 

in statistical terms, it is possible in some instances to extract sample-dependent information 

from the speckle’s temporal or spatial characteristics. Dynamic speckle is also used to 

determine tissue motion, by speckle tracking or cross-correlation methods, and finds 

application in functional imaging such as OCE [166, 177], measuring displacement 

resulting from compression introduced to the sample to extract a local strain map of the 

sample, and micro-angiography [178], quantifying blood flow. 

 

2.3.4 Elastogram quality  

Sources of noise in phase-sensitive optical coherence elastography 

In phase-sensitive optical coherence elastography, the elastography technique we use in this 

thesis, image quality is strongly affected by the noise sources in the OCT phase difference 

measurements.  

Noise sources in phase-sensitive OCE depend mainly on the OCT SNR and the 

amount of strain and displacement the sample is subject to between consecutive OCT 

images, at any given pixel in the phase difference image. Displacements deriving from a 

phase change of greater than ±𝜋𝜋 are ambiguous. This is a limitation referred to as phase 

wrapping [179] and sets the upper limit of measurable phase difference, if phase unwrapping 

algorithms are not used, otherwise the limitation is set by phase decorrelation, as described in 

the Section 7.2.2.  

One fundamental limitation on the minimum detectable phase difference arises from 

the OCT SNR of a measurement. To quantify this effect, in [180], 1024 consecutive depth 

profiles (A-scans) at a single point on a glass slide were obtained at different SNRs using a 

variable neutral density filter in the sample arm. The phase difference between the front 

and back surfaces of the glass slide was determined, and the standard deviation of these 

phase differences was calculated. This standard deviation directly yields the minimum 

detectable phase difference. The resulting standard deviations demonstrate a decreasing 

minimum detectable phase difference, Δ𝜙𝜙𝑚𝑚, with increasing SNR. In the shot noise limit, 

noise can be modelled as a random vector, 𝑨𝑨𝒏𝒏, added to a complex vector, 𝑨𝑨𝒔𝒔, describing 

light returning from the sample, to yield a measured complex quantity, 𝑨𝑨𝒎𝒎.  
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This case corresponds to the case modelled by a random phasor sum 𝑨𝑨𝒏𝒏 plus a known 

constant phasor 𝑨𝑨𝒔𝒔 [34]. The modulus |𝑨𝑨𝒎𝒎| will be Rician-distributed with parameters 

|𝑨𝑨𝒔𝒔|, and 𝜎𝜎, where 𝜎𝜎 is the noise standard deviation [26]. 

Figure 2-26 shows the marginal probability density function 𝑝𝑝𝜙𝜙(𝜙𝜙) for the OCT signal 

phase, for a range of parameter ratios. 

   
Figure 2-26. Marginal probability density function 𝑝𝑝𝜙𝜙(𝜙𝜙) for the OCT signal phase. Adapted from [34]. 

The SNR of the glass slide measurement is given by SNR =  (|𝑨𝑨𝒔𝒔| |𝑨𝑨𝒏𝒏|⁄ )2. Assuming a 

good SNR (|𝑨𝑨𝒏𝒏| ≪ |𝑨𝑨𝒔𝒔|), the standard deviation of the phase 𝜙𝜙𝑚𝑚 of 𝑨𝑨𝒎𝒎 is given by 

𝜎𝜎𝜙𝜙𝑚𝑚
2 =  1

2
(|𝑨𝑨𝒏𝒏| |𝑨𝑨𝒔𝒔|⁄ ) = 1

2
(SNR)−1. The minimum detectable phase difference 

𝜎𝜎Δ𝜙𝜙𝑚𝑚 between two measured phases 𝜙𝜙𝑚𝑚 can now be determined as:  

𝜎𝜎𝛥𝛥𝜙𝜙𝑚𝑚 = �2𝜎𝜎𝜙𝜙𝑚𝑚2 = (𝑆𝑆𝑆𝑆𝑆𝑆)−
1
2. (2-40) 

Eq. (2-40) indicates that low OCT SNR is a fundamental noise factor affecting the 

precision of OCE, i.e., the repeatability of the tissue displacement and strain measurement. 

Using a WLS linear regression over a sliding window on the measured axial displacement, 

with the weights being the OCT SNR at any given depth [106], allows for a more precise 

strain estimation in phase-sensitive OCE. 

In this thesis, we consider the precision of OCE as quantified by three metrics: 

displacement sensitivity, strain sensitivity, and strain SNR, as further defined in Section 

7.2.2. 
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2.4 Conclusion 

In this chapter, we introduced the basics and working principles of low-coherence 

interferometry, optical coherence tomography and optical coherence elastography. We 

overviewed their uses in various biomedical fields and we have defined the descriptors of 

image quality in both imaging modalities.  

This provides the background necessary in this thesis to understand the research aimed 

at quantifying and improving image quality by means of beam shaping and image formation 

simulations, which forms the remainder of this dissertation.  

The next chapter will deal with beam shaping techniques and Bessel beam generation 

and characterisation, as one of the means used to improve image quality. 
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