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Abstract

There is mounting evidence of the apparent ubiquity of scale-free networks among complex

systems. Many natural and physical systems exhibit patterns of interconnection that conform,

approximately, to the structure expected of a scale-free network. We propose an efficient algorithm

to generate representative samples from the space of all networks defined by a particular (scale-

free) degree distribution. Using this algorithm we are able to systematically explore that space

with some surprising results: in particular, we find that preferential attachment growth models do

not yield typical realizations and that there is a certain latent structure among such networks —

which we loosely term “hub-centric”. We provide a method to generate or remove this latent hub-

centric bias — thereby demonstrating exactly which features of preferential attachment networks

are atypical of the broader class of scale free networks. Based on these results we are also able to

statistically determine whether experimentally observed networks are really typical realizations of

a given degree distribution (scale-free degree being the example which we explore). In so doing

we propose a surrogate generation method for complex networks, exactly analogous the the widely

used surrogate tests of nonlinear time series analysis.
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I. INTRODUCTION

The notion of scale-free networks has been around for a while [? ]. The introduction

of the preferential attachment (PA) algorithm for generating random scale-free graphs was

a significant step in understanding the properties of scale-free networks, and the physical

processes that create them. PA has spawned a good deal of subsequent algorithms and

analysis.

The purpose of this paper is to highlight that not all scale-free networks have the same

properties, and that algorithms, like PA, do not capture the full richness of scale-free net-

works, nor do they necessarily display the properties they may termed typical of all scale-free

networks.

To achieve our aim, we first briefly recall in this introduction the principal processes

that have been proposed to discribe and generate scale-free networks, and indicate some

of their deficiencies as models of typical scale-free networks. We then propose a maximum

entropy process that provides an unbiased sample of the set of all scale-free networks. A

maximum entropy process provides a better representation of expected properties of scale-

free networks, both in terms of richness and typicality. A maximum entropy process also

provides a unbiased standard against which other processes that generate scale-free networks

can be compared.

In section II we make a careful comparison of PA with our unbiased standard to illustrate

how PA has a significant bias in the structural properties of the networks it generates. We

demonstrate it has a hub-centric bias.

In section III we use a surrogate data approach to examine a selection of real-world

networks claimed to be scale-free, and analyse in what sense these networks are typical of

scale-free networks and how they differ.

A. Scale-free networks from processes

In this section we briefly review the notion of scale-free networks, and the principal models

of the physical processes that generate scale-free networks. These models can be broadly

divided into growth models and configuration models.

Scale-free networks are usually identified by the histogram of node degrees having a
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power-law tail. Many naturally occurring networks have been identified as having a scale-free

property: citation and collaboration networks [4? ? ], airline networks [? ], protein-protein

interaction [? ], metabolic pathways [? ], the world-wide web and internet [? ].

To understand the formation of scale-free networks various models have been proposed to

mimic the physical or conceptual processes that build and shape these networks. One of the

first, proposed by Barabási and Albert, is preferential attachment [1], which is a restatement

of the process discribed by de Solla Price [3] as a model of observed scale-free networks of

citations [4].

Preferential attachment is an unchanging, additive growth process, where nodes of a

fixed degree are added to the network, with links perferentially attached to existing nodes

depending on their degree; usually proportional to the degree. Although this was suggested

as a model of the process that grows to world-wide web (seen as hyperlinks between web-

pages), it was recognised that there is an aging process (AOL is replaced by Facebook, yahoo

looses popularity to Google) so that attachment preferences change as the network growth

procedes [6, 9, 10].

Other processes can be introduced into a network growth model, such as shuffling parts

of the network, and deletion of links and nodes [6, 15], such that these actions do not change

the underlying scale-free property of the networks produced.

Scale-free networks can be produced by processes that are not growth processes. Config-

uration models procede by choosing nodes to have prescribed degrees, then connecting these

together to form a scale-free network [11]; although care is needed to ensure the networks

obtained satisfy other expected properties, such as, being simple (no self-links or multiple

edges between nodes) and connected [8, 12, 15].

B. Not all scale-free networks are the same

With so many different processes generating scale-free networks, the question arises: do

they generate the same networks? The simple answer is no. Many differences in the scale-

networks generated by different processes have been noted; some particular differences are

outlined in the following.

Consider a preferential attachment process that attachs nodes of degree m. This choice

clearly effects the robustness of the networks generated, and it effects other properties
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too [15]. If the probability of linking a new node to a node of degree d is d + A, where

A > 0 is a constant called the initial attractiveness [13], then it can be shown that the

power-law tail has an exponent γ = 2 +A/m. This type of preferential attachment process

restricts the power-law exponent to γ > 2. Some real-world networks have γ < 2, and net-

work growth models can be modified to shape networks and allow such power-laws [14, 15].

When other network statisics are considered (such as diameter, node-degree assortativity,

clustering coefficients), then the differences between scale-free networks found in the real-

world and generated by different models become more apparent.

For example, consider the node-degree assortativity of scale-free networks generated by

preferential attachment. These networks have low assortativity, but many natural networks

are found to have very high assortativity [16]. Although these natural networks are not

scale-free, it can be shown that other processes can generate scale-free networks with high

node-degree assortativity [17]. Newman [18] observed systematic biases in the assortativity

of real-world scale-free networks: technological networks tended to be dis-assortative, social

networks assortative. Newman also showed that networks generated by preferential attach-

ment have a definite bias compared to real-world networks; on the other hand, altruistic

attachment does not [19]. Other issues with the assortativity of preferential attachment

networks have been observed [6, 20].

More generally, it has been noted that growth models have systematic biases (of network

statistics) relative to configuration models [5, 21]. Indeed, networks of growth models usually

only attain the scale-free property asymptotically, and small networks display systematic

biases [16, 20]; configuration models need not have biases.

C. Maximum entropy processes

In this section we aim to define a process that generates scale-free networks in as pure

form as possible, that is, without any biases. This process is a maximum entropy process,

which can serve as a standard to which other processes can be compared to both recognise

and understand the nature of their biases.

As previously noted, scale-free is usually taken to mean that the node-degree histogram

has a power-law tail. We need to make this definition more precise. Let G be the set of

connected simple graphs with N nodes, and n(G) = (n1, . . . , nN−1), nk ∈ Z, be the degree
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histogram of G ∈ G, that is, nk is the number of nodes of degree k.

Definition 1. If p = (p1, . . . , pN−1), where pk ∈ [0, 1] and
∑N−1

k=1 pk = 1, then p has a

power-law tail if pk = c(k − d)−γ for k > m, where d,m ∈ Z, c, γ ∈ R, d,m ≥ 0 and γ > 1.

Definition 2. G ∈ G is a scale-free graph if n(G) ≈ Np, where p has a power-law tail.

What approximately equal means in n(G) ≈ Np is not always clear. It is usually taken

to mean that the form c(k − d)−γ fits n(G), in the sense of least-squares curve-fitting of

log nk against log k, or a multinomial fit of n against p.

Of interest are processes generating independent random scale-free graphs. A stationary

stochastic process P generating independent random graphs in G is equivalent to selecting

graphs according to a fixed probability mass function P : G → [0, 1], where
∑

G∈G P(G) = 1.

Write G ∼ P to denote that G ∈ G is selected according to process P . (Since the process is

completely defined by its probability mass function, use the same symbol P to denote the

process and its probability mass function.)

Definition 3. A process P generates scale-free graphs (on average), if

E[ n(G) | G ∼ P ] = Np, (1)

where p has a power-law tail.

Such a process generates scale-free graphs, as Defn. 2, with the notion of approximately

equal, n(G) ≈ Np, implicitly defined by P . For example, one can compute the variance

E[
∑N−1

k=1 (nk − Npk)2 | G ∼ P ], or compute the probability of a histogram n(G) deviating

from Np in some norm by more than a threshold ε, that is, Pr(‖n(G)−Np‖ > ε | G ∼ P).

Preferential attachment PPA, as defined by Barabási and Albert [1], is one example of

such a process; a network is growth by random preferential attachment until a graph with N

nodes is obtained. This process implicitly defines the probability mass function for G ∈ G,

which depends on m and how the seed network is choosen. Other growth models (with link

aging, initial attractiveness, shuffing) will usually obtain different probability mass functions.

A difficulty with growth processes, like PPA, is although they satisfy Defn. 3 of scale-

free processes, the power-law γ is implicitly defined. Nor is it clear that γ is necessarily

the same for all graphs generated for fixed growth parameters. One of the advantages of
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configuration models is the mean histogram Np is prescribed: the process combines nodes

with pre-defined degrees into a network [11].

Even if two processes generate scale-free graphs by Defn. 3, or have the same power-law γ,

or have the same expected histogram Np, the expected value of other graph statistics such

as assortativity, clustering, diameter, may be quite different as noted in the previous section.

If we are to understand the nature of scale-free graphs, and the nature of the processes

that generate them, then it is useful to establish some benchmark or standard against which

processes are compared. To some extent PPA has served that propose, principally because it

is a simple growth process. Unfortunately, it is not a satisfactory standard for many reasons

we already indicated: it has a limited range of γ; p and γ are implicitly defined; it has

known biases of statistics like assortativity.

We propose that the best standard against which to compare processes that gener-

ate scale-free networks is a maximum entropy process PME(p) with prescribed mean his-

togram Np. A maximum entropy process samples all scale-free graphs with mean his-

togram Np with the least bias or emphasis of structures and features that are not common

features of all such scale-free graphs.

Definition 4. The Maximum entropy process PME(p) uniformly samples n by the multi-

nomial distribution of p, and uniformly samples graphs with the histogram n. That is,

Pr(G | G ∼ PME(p)) = Pr(G | n) Pr(n | p), where

Pr(G | n) = |{G ∈ G | n(G) = n}|−1, (2)

and

Pr(n | p) = N !
N−1∏
k=1

pnk
k

nk!
. (3)

The process PME(p) has maximum entropy for the following reasons. It partitions all

graphs in G into equivalence classes by histogram n, and uniformily samples these (2),

hence, achieving maximum entropy within these equivalence classes. The sampling of n

uses a multinomial distribution (3), which is the maximum entropy process for filling a

histogram with frequencies p. Hence, even though the degrees of nodes within a graph are

not independent, the degrees of nodes of a successive randomly generated graphs behave as

though they were independent.
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D. Implementing PME(p)

The Maximum entropy process PME(p) could be implemented by as a Monte Carlo Markov

Chain (MCMC) [15]. However, a naive MCMC implementation converges slowly and would

not be effective for large graphs [25–27]. In this section we state a sufficient algorithm to

generate large graphs efficiently. The key ingredients are edge switching [28], connectivity

testing [15], and constructing graphs from degree sequences [30, 31]; eee appendix A for

implementation details.

For G ∈ G let d(G) = (d1, . . . , dN) denote the degree sequence, that is, di > 0 is the degree

of node i. A arbitrary degree sequence d ∈ ZN is called graphical if there exists G ∈ G such

that d(G) = d.

Algorithm 1. Let p be a target probability mass (with power-law tail).

1. Generate a sample n from the multinomial distrubtion of p.

2. Generate a uniformly sampled random degree sequence d from n.

3. Use the Havel-Hakimi process to test d is graphical and construct the canonical graph G

with d(G) = d. If d is not graphical, then return to step 2.

4. Test G is connected; if not, then return to step 2.

5. Apply edge-switching to G to uniformly sample the equivalence class of n(G).

II. A HUB OF HUBS IS MORE THAN A RICH CLUB

In this section we use algorithm 1 to explore what are the typical properties of scale-free

networks, and moreover, infer that PA networks exhibit an atypical “hub-centric” structure.

Power-law distributions alone imply that the degree distribution has a long tail and some

nodes in the tail must have high degree, but the presence of “hubs” implies something more

and are often said to “hold the network together”. What we observe in the following is

something more than this. There are three properties to which we refer with the term

“hub-centric” (which we define later in an algorithmic sense): (i) the distribution of hubs

throughout the network, (ii) their interconnection, and (iii) their connection with low-degree

nodes. The presence or absence of these three properties determine, to a very great extent,
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many of the global properties of a scale-free network. Moreover, we observe that PA networks

exhibit properties which are atypical of the broader class.

However, before moving to the conclusion that the difference between these two types of

networks is due to the hub-centric properties of PA networks, we first present a numerical

study of the various main measures of network geometry: assortativity, clustering coefficient

and diameter. We apply these measures to various different families of scale-free networks

to highlight the wide variation which is possible. We will also explore other prominent

features — most importantly: (i) the robustness to targeted worst-case attacks (i.e. “attack

vulnerability” [32]) on hubs; and (ii) a detailed motif analysis.

For classical preferential attachment procedure proposed by Barabasi and Albert [1], the

exponent of the resulting network is only controlled by m (the number of edges added at

each step). As a result, we produce four types of PA networks, with m = 1, 2, 3, 4, and then

use the formula given in [22] to estimate the exponent:

γ̃ ' 1 +N

[
N∑
i=1

log
di

dmin − 1
2

]−1
(4)

where d = (dmin, . . . , dn), where dmin = m, is a degree sequence which satisfies the power-law

distribution.

For a particular N and m we generate 40 PA networks. With the corresponding estimate

of γ we substitute these values into the algorithm 1 and generate the an ensemble (of 40)

corresponding uniformly sampled graphs (we call such graphs UniS networks hereafter).

Results reported below have N = 2000 and m = 1, 2, 3, 4. Computation with other values

produced comparable results. In the following subsections we examine each of the network

properties outlined above, starting with motif rank and then robustness.

A. Comparison of motif rank

The motif, defined as a small connected subgraph that recurs in a graph, is the basic

building block, or functional unit, of complex networks [33]. In real-world networks (e.g. gene

regulatory networks), the relative frequencies with which motifs appear represent different

functions of the network [34, 35]. Moreover, it sheds light on the structure of the whole

network. We restrict our analysis here on the four-node motifs, and classify them into three

groups: {A,D}, {B,E}, {C,F} (shown in Fig. 1), which suggests they are the building
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FIG. 1. Each figure shows the frequencies of six types of four-node motifs, for a corresponding

networks with m ∈ {1, 2, 3, 4}. On the left, are the results for preferential attachment, on the right,

the uniform sampling algorithm.

blocks of the sparse, mild, and dense networks. The result of the motif analysis is also shown

in Fig. 1.

From Fig.1, there is an apparent difference between the motif distribution of these two

type of networks: as m increases, the motif frequencies of PA networks become larger, and

the “dense” motifs of type C occur more frequently than the less dense type E — suggesting

that the PA networks are denser than the corresponding UniS networks. This would be a

natural consequence of the PA networks becomes more hub-centric (more cross links between

hubs) as m increases, while the hubs of the UniS network remain more evenly distributed

(less cross-links between hubs, and correspondingly fewer “dense” motifs).

B. Robustness and attack vulnerability

Due to the heavy tail of the power-law distribution, scale-free networks are often claimed

to be simultaneously robust to the random loss of nodes (i.e. “error tolerance”) and fragile

to targeted worst-case attacks [32]. The robustness is seen to be a consequence of the

extremely high number of (“unimportant”) low degree nodes, the fragility is due to the

extremely important role of the hubs. This property is also called the “Achilles´ heel” of

PA networks, or the “robust yet fragile” feature. Intuitively, the inhomogeneous connectivity
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distribution of many networks caused by the power-law distribution would possess these two

properties. However, from our analysis, UniS networks generated by sampling uniformly

from the family of all scale free networks do not exhibit this second property. Again, we

may attribute this to the hub-centric nature of PA networks.

We quantify the robustness to targeted attacks by specific removal of the most highly

connected (or important) nodes until the network is disconnected. We then take the number

of the nodes removed as a measure. In Fig. 2 (a), we use degree to quantify relative

importance of a vertex, while in (b), we use the betweenness centrality (BC) of a vertex

as a measure, which is roughly defined as the number of geodesics (shortest paths) going

through a vertex:

BC(v) =
∑

i 6=j,i6=v,j 6=v

givjgij

, where gij is total number of shortest paths between node i and j, and givj is the number

of those paths that pass through v.

The case of targeted attack is trivial for m = 1, in which situation the networks are

highly likely to be trees. Hence, we restrict our analysis for the case where m = 2, 3, 4. these

results are shown in Fig. 2. From Fig. 2, it is safe to conclude that UniS network is much

more robust than the corresponding PA network when facing targeted attack. This is the

consequence of the fact that PA networks are more hub-centric, while the UniS networks are

not. The fragility of the PA networks is due to the placement of hubs within the network

— not the scale-free-ness of the network per se.

C. Numerical statistics of network

In this section we present the difference between the PA networks and UniS networks by

computing the widely quoted numerical network properties:

• diameter : the maximal shortest path length.

• global clustering coefficient : the proportion of the number of closed triplets divided

by the number of connected triples of vertices, which is a measure of degree to which

nodes in a graph tend to cluster together.

• local clustering coefficient : the proportion of links between the vertices within its

neighborhood divided by the number of links that could possibly exist between them,
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FIG. 2. Numerical estimates of histograms showing the number of nodes required to be removed

to induce collapse of the network giant component. Nodes are selected for removal via node degree

or node betweenness centrality (there is very little differences between the two selection criteria

— here we plot removal via node degree). Panels (from top to bottom) are for different minimum

degrees m = 1, 2, 3. Results for PA are plotted as a solid blue line and and results for UniS are

plotted as a red dashed line. Histograms are computed with logarithmically equally space bins —

the same binning is used for both network construction methods. Clearly, UniS networks are, in

all circumstances, more robust to targeted attack than typical PA networks.

which quantifies how close its neighbors are to being a clique.

• assortativity : the Pearson correlation coefficient of degree between pairs of linked

nodes, which measures the preference for a network’s nodes to attach to others that

are similar in degree.

The application of these four statistics is summarise in Fig. 3.
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FIG. 3. Boxplot of the four network statistics described in the text. The boxplot depicts maximum,

minimum, upper quantile (75%), median and lower quantile (25%) of the data. The left box in each

pair is the summary of the UniS network, while the right one represents PA networks. Computation

is depicted for m = 1, 2, 3, 4. Note that, for example assortativity has an increasing negative bias

for PA networks, while UniS approaches 0 as m is increased.

We select cases with m = 2 and m = 3 to visualize the curve of these statistics for the

pair of networks in Fig.4. Although not shown, we note here that the case with m = 1 is

similar to the case m = 2, while m = 4 is similar to m = 3.

From the curves of various network statistics depicted above, we find that PA networks

are atypical. In particular, PA networks have: (i) more negative assortativity compared

with corresponding UniS networks; (ii) increasing clustering coefficient as m increases; and,

(iii) in the case m = 3 and m = 4 the two clustering coefficient curves separate from each

other. All these discrepancies point to the fact that as m increases, the PA network becomes
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FIG. 4. Distribution of the statistics of networks with m = 2 (upper four panels) and m = 3 (lower

four panels)
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diameter global cc local cc assortativty motif rank

m=1 PA 19.47(1.71) 0 0.67(0.01) -0.095(0.017) BECFDA

m=1 UniS 15.55(4.33) 0.0037(0.0033) 0.73(0.03) -0.18(0.05) FECBDA

m=2 PA 7.05(0.22) 0.0059(0.0005) 0.061(0.011) -0.14(0.014) FCEBDA

m=2 UniS 9.45(1.53) 0.014(0.004) 0.093(0.14) -0.095(0.052) FECBDA

m=3 PA 5.28(0.45) 0.011(0.0004) 0.12(0.014) -0.19(0.015) FECBDA

m=3 UniS 7.57(0.54) 0.0087(0.0021) 0.017(0.014) -0.038(0.019) FCEBDA

m=4 PA 4.93(0.27) 0.014(0.0004) 0.18(0.017) -0.24(0.019) FECBDA

m=4 UniS 6.67(0.47) 0.0072(0.0019) 0.011(0.011) -0.021(0.017) FCEBDA

TABLE I. Summary of numerical statistics for the four pairs of networks (m = 1, 2, 3, 4).

more and more hub-centric, while the UniS network remain highly uniform – and the high

degree nodes remain evenly distributed throughout the UniS networks.

We now introduce algorithms to modify the specific aspects of the network which con-

tribute to this hub-centric property. Note that the hub-centric structure is a global property

of the network, since only modification on small portion of PA networks (such as the case

with the so-called “rich-club” phenomena [36]) is not sufficient: when we only make the

modification described in [36] to manipulate rich-club connections the PA and UniS network

statistical distributions remain disparate. Therefore, the modification scheme we propose

in the following applies across the entire network structure — from super-rich nodes and

hubs, to the poorest nodes. To maintain conciseness and focus, we present the brief idea

of our modifications scheme here, and leave the details of the algorithm to Appendix B. In

the following paragraphs we outline these two modification schemes — one to remove what

we call the hub-centric features of PA networks and a second scheme to add these features

to UniS realisations. The aim of these computations is to show that these modifications

alone are sufficient to align the corresponding distributions of network structural properties

(assortativity and so on).

The modification scheme for an initial PA network is the following. First, we cut the

links within the group of rich nodes and between rich nodes and the group of poor nodes as

far as possible while preserving the connectivity of the network. Then, we use the algorithm

described in [36] among the giant nodes (which we define as the nodes whose degree is even
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FIG. 5. (Modification on PA) The curve of the statistics for UniS networks (solid lines), PA

networks (bold dotted gray lines), modified PA networks (termed PA´ with bold dotted black

lines) and modified fitted PA networks (termed PA´ ´ with dotted black lines), where m = 3.

larger than the typical rich nodes), to reconstruct the structure of the rich nodes. That is, we

obtain networks with minimal interconnection between hubs, minimal connection from hubs

to low degree nodes, but a similar rich-club structure (the interconnection among the super

hubs). After setting the thresholds α1 = 60%, α2 = 5% and α3 = 0.5% in the Modification

A (see appendix), we apply this modification to the case with m = 3 and m = 4. The result

with m = 3 is shown in Fig. 5, and for conciseness, the result with m = 4, although similar,

are omitted.

From Fig. 5, the range of the distributions for the modified graphs overlap with the

unmodified target distribution (UniS) — indicating that our modification provides a good

fit to the distribution of PA networks, with the additional of hub-centric links. Moreover,

we test the modified curves of the PA networks and the curves of UniS networks. For this

purpose, we add the following random factors. First, we choose α1 randomly from the set
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[50%, 80%], and then the result for m = 3 is also depicted in Fig. 5. The results for m = 4

are similar, but omitted for conciseness.

From the calculations of Fig. 5 we see that the modification of the PA scheme (removing

the hub-centric properties of such networks) allows us to produce network statistics which

have a distribution similar to the unmodified uniform sampling scheme (for the local cluster-

ing coefficient and assortativity, at least) or bracketing the expected distribution for UniS

(for the maximum diameter). Although this bracketing — by modifying the hub-centric

nature of the PA network we go from smaller than UniS to larger that UniS — does not im-

mediately provide indistinguishable statistical distributions, it is clear that this is due only

to the unselective manner in which we choose the threshold parameters for this algorithm.

Changing these parameters effects a continuous change in these statistical distributions.

This is sufficient to make our case that these hub-centric groups of nodes are what causes

the PA networks to be atypical. We do note, however, that the parametric changes we have

explored are insufficient to modify the PA network sufficiently to reproduce the full distri-

bution of observed global clustering coefficients for the UniS network: there appears to be

still further unexplored richness in the variety of these networks — scale-free networks with

close to zero clustering (very tree-like networks [15]).

To further support our claim, we also present here a reverse modification algorithm on

UniS networks to generate interconnection among hubs, which would result in the adjusted

curves of the statistics for UniS networks approaching that of the PA networks. Leaving

the details to the appendix, we introduce the idea briefly here. At first, we delete the edges

among the poor nodes and relink these edges to rich nodes with probability proportional to

the degree of the rich nodes. Moreover, we use the algorithm described in [36] to make a club

of super-rich (“giant”) nodes (the definition is similar to the one in the first modification)

connected. By this way, we are able generate the hub-centric structure in networks. Setting

α1 = 80%, α2 = 5% and α3 = 0.5%, the result for m = 3 is shown in Fig. 6. The calculation

for m = 4 is similar and omitted for conciseness.

From Fig. 6, after generating hubs by artificially reconstructing the structure of networks,

the numerical analysis of UniS networks indicates statistical distributions of structural prop-

erties which approach that of PA networks — supporting our claim that hub-centric structure

in PA networks makes them atypical of random scale-free graphs.
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FIG. 6. (Modification on UniS) The curve of the UniS networks (solid lines), PA networks (bold

dotted gray lines) and modified UniS networks (termed UniS´ with dotted lines) in the case m = 3

By modifying the properties of a uniformly sampled network we are able to produce

distributions of maximum diameter and global clustering coefficient very similar to that

observed for the PA. That is, we add hub-centric structure to the UniS network and achieve

statistical features similar to that typical of PA networks. We do not achieve such good

agreement for assortativity and local clustering coefficient. Nonetheless, taken together Fig.

6 and 5 show that matching distributions can be achieved by either add or removing the

hub-centric features in each of the four statistics that we examine here. Hence, the features

which we modify with the algorithms described in the appendix are exactly the properties of

PA networks that are atypical of the broader distribution of properties of uniformly sampled

scale free networks. The only caveat being that the two algorithms are not exactly inverses

of one another, and, in particular, measures of global clustering hint at further unexplored

diversity in the global structure of typical scale free networks (as the networks become more

tree like, even for m > 1).
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D. Hub-centric structure in PA networks

To conclude this section, we now collate the results of our analysis. We see that the hubs

of a PA network “hold” that network together. The strength of interconnection among hubs

(and connection with low degree nodes) may be explained by the preferential attachment

itself. In that growth model, once nodes and links are added, they wont ever be altered

again. This, we claim, causes inhomogeneity in PA networks. The largest hubs will always

(with probability approaching one) be the earliest nodes in the growing network and these

nodes are necessarily closely interlinked. Conversely, the last nodes added to the network

will have minimal degree and yet these nodes will (with very high probability) be directly

connect to the hubs. In fact, it s clear that the last nodes added (those ith the lowest degree)

are most likely to be connected directly to the hubs [2]. These are precisely the properties

we alluded to earlier with our description of “hub-centric” networks, and, these are precisely

the properties which are adjusted by the modification schemes described above.

The consequences of this hub-centric structure of PA networks is two-fold. First, since

PA is an elegant and intuitive way to generate graphs, there may exist some generation

procedures in the real world which are similar to preferential attachment, and thus we

can use this claim to illustrate the hub-centric structure in such growth networks. This

observation has potential for practical use — for example, with hub detection in control of

disease transmission, or, to control of a network by manipulating the hubs. Second, such

a claim also indicates that there is systematic bias with PA networks. This bias will lead

to difficulty when using PA networks to explain real world networks which do not result

from such a constrained growth process — even when the degree sequence of each network

satisfies the power law distribution.

III. APPLICATION TO PARTICULAR PUTATIVE SCALE-FREE SYSTEMS

In this section, we introduce a variant of the surrogate data test, proposed for nonlinear

time series analysis, to interpret real world networks. We proceed by generating an ensemble

of random networks, both similar to the observed data-based network (in that they share the

same degree distribution) and yet, at the same time, random. By comparing the properties of

the real network with the corresponding distribution of UniS networks (sampled uniformly
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from the whole set of networks conforming to that particular power law distribution) we

can determine whether the particular network is typical. Our observations here are both

a consequence of the previous section and a motivation for the development of a network

surrogate test.

We will start with a brief discussion of robustness. As we saw above, PA networks are

vulnerable to targeted attack, while UniS networks don’t have such an evident “Achilles’

heel”. Recent research into the structure of several important complex networks shows that,

even if their degree sequence could have an approximately power law degree distribution,

the networks in question is robust to targeted attack to some degree: the most highly

connected nodes do not necessarily represent an “Achilles’ heel”. In particular, recent results

of modeling the router-level Internet has shown that the core of that network is constructed

from a mesh of highbandwidth, low-connectivity routers, and [37] concludes that although

power-law degree sequences imply the presence of high-degree vertices, they do not imply

that such nodes form a necessarily “crucial hub”. A related line of research into the structure

of biological metabolic networks has shown that claims of SF structure fail to capture the

most essential biochemical as well as “robust yet fragile” features of cellular metabolism and

in many cases completely misinterpret the relevant biology — for example, [38] indicates the

removal of high degree nodes leaves the biosynthetic pathways fully intact. Hence, real-world

scale-free networks do, indeed, exhibit absence of the much-touted “robustness” properties.

Our model provides an explanation for that absence.

In the following, we will probe the limitation of the explanative power of PA networks

via numerical statistics. We find that many real complex networks appear more “uniform”

under our surrogate test. Also, based on this result, we propose a simplistic classification of

real world networks.

Our surrogate tests are developed in this way: for a real world network which satisfies

the power-law distribution, we estimate its minimum vertex degree and power law exponent

by using the algorithm described in [22]. We then use equation (??) in Section 1 to estimate

its initial attractiveness, and then generate PA networks with controlled γ and m. We

then substitute γ and m into Algorithm 1 to generate the UniS networks. For each set of

parameter values, we generate 40 networks for UniS and PA networks respectively. In Fig. 7,

we draw the boxplot of numerical statistics of the real networks, as well as its corresponding

PA and UniS networks.
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FIG. 7. Network characteristics: (a) diameter; (b) global clustering coefficient; (c) local clustering

coefficient; and, (d) assortativity. Boxplot analysis for collaboration and information networks,

depicting maximum, minimum, upper quantile (75%), median and lower quantile (25%) of the

data. 1. CS PhD collaboration 2. Erdös collaboration 3. a symmetrized snapshot of the structure

of the Internet at the level of autonomous systems 4. the S.cerevisiae protein-protein interaction

network 5. metabolic network, 4. US Airport connection.

20



FIG. 8. The first panel shows the motif distribution and the lower panels the curves of statistics of

the UniS networks (solid lines), PA networks (dotted lines) and Erdös collaboration network (bold

mixed lines). The motif rank in ascending order is shown below the graph.
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From Fig.7 we can conclude that, in terms of interpretation of real networks, UniS

networks provides a significantly better model for data from the Internet topology, and

metabolic and protein interaction networks. For CS PhD collaboration and US airport con-

nection networks, UniS is slightly better than PA. However, for Erdös collaboration network,

neither UniS nor PA networks is good, although the statistics of PA networks are closer to

that of the Erdös network than UniS networks.

To examine the case of Erdös collaboration network more closely, we plot the motif

rank and various other statistics of the Erdös collaboration networks in Fig.8. This figure

suggests that the hub-centric structure in the Erdös collaboration network is much more

significant than PA allows: the Erdös collaboration network is a densely connected core

along with loosely coupled radial branches reaching out from that core. Erdös practiced

what he preached – he was a weaver of social networks and thus a builder of social capital.

Moreover, this collaboration network is specifically Erdös-centric — it is specifically focussed

on that one unique hub and its connections. Hence, the nodes closer to Erdös benefit most

and become the strongest hubs (after Erdös himself) in the resultant network.

The cases in which the UniS algorithm performs better would suggest, for instance, that

the structure of protein interaction networks is more uniform, because the cellular ecosystem

necessitates such stableness; and, in the case of the the Internet on the level of automatic

system, the system is balanced and distributed in a rather deliberate way. Both these

systems have been “engineered” for robustness. Finally, we note that neither the UniS nor

PA networks performs well in reproducing the diameter of the biology networks. It is curious

that biological networks present abnormally large diameters — we speculate that this may

be due to a certain functional role that these networks play in biological systems.

Based on our results, we also note (via analysis of robustness, motif and numerical statis-

tics of a network, and comparison with its corresponding PA and UniS networks) that one

can classify the real network in the sense of hub-structure: if its property is closer to the

PA networks, we can conclude it is hub-centric and typically the result of a growth process.

Conversley, networks that are not PA are more likely to be purposefully widely distributed.
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IV. CONCLUSION AND DISCUSSION

We have proposed a new algorithm which allows us to randomly sample finite size graphs

with degree histogram being probabilistic realisations of a specified degree distribution. We

focus on scale free networks and use this method to generate random, and uniformly sampled,

networks with truncated power-law degree distributions of arbitrary γ (exponent) and m

(minimum degree). This provides a simple alternative to the various generative processes

in the literature. However, our approach has the benefit that it make no particular biasing

assumptions (such a preferential attachment). To emphasis the need for this algorithm

we compare our results to distributions of networks obtained from the widely applied PA

scheme of [1]. PA provides an excellent model of growth of a static network, however, we

find that many real world networks do not conform to this model. We found the high-degree

nodes in PA networks are hub-centric, and that this hub-centric-ness has a greater influence

on the overall structure than attributable only to the high-degree nodes themselves. This

result helps us assess the contribution of hubs in real world networks to the overall network

structure.

Appendix A: Details Algorithm 1

This appendix provides details of the implementation of Algorithm 1.

Step 1 requires a sample n from the multinomial distribution of p, and step 2 a uniformly

sampled degree sequence d for n. Let qk =
∑k

i=1 pi, q0 = 0, and Ik = [qk−1, qk]. Choose

uniform random variants xi ∈ (0, 1), i = 1, . . . , N . Then let di = k if xi ∈ Ik and nk =

|{xi ∈ Ik}|.

Havel [30] and Hakimi [31] independently developed a test of d being graphical. The test

implicitly constructs a canonical graph G if d is graphical. Let N ≥ 2 and d̂ = d.

1. Choose i such that d̂i > 0.

2. If d̂ does not have at least d̂i entries d̂j > 0, j 6= i, then d is not graphical.

3. Subtract 1 from the d̂i entries d̂j, j 6= i, of highest degree. Set d̂i = 0.

4. If d = 0, then d is graphical. Else return to step 1.
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The canonical realisation of G ∈ G for a graphical d is implied by step 3 of the test: the

node i is connected to those other nodes j selected in step 3. The graph G can be built as

the test proceeds by constructing its adjacency matrix A.

Step 4 of Algorithm 1 requires testing whether a graph G is connected. Let A be the

adjacency matrix of G, and define Cp = I +A+ · · ·+Ap. Then G is connected if Cp has no

zero elements for some p ≤ N − 1.

Step 5 requires modifying a graph G by edge switching. Let A be the adjacency matrix

of G. Let i, j, k, l be distinct nodes, such that Aij = Akl = 1 and Ail = Akj = 0. Then the

edges are switched by setting Aij = Akl = 0 and Ail = Akj = 1. Edge switching does not

change n(G), and if repeated sufficently the resulting graph is a uniformly sampled from its

equivalence class [28, 29].

Appendix B: Modification algorithms

In this section we provide detailed modification algorithm described in the main text.

These algorithms are presented here to separate them from the more central UniS network

generation algorithm. The first modification algorithm 2 changes the distribution of PA

networks’ statistics, by “spreading hubs”, to make it closer to the UniS networks. Moreover,

after adding random factors on the first modification, we can fit the curve of the UniS

networks. We also present the contrary modification algorithm 3 to change the curve of

UniS networks to approach that of PA networks by “concentrating hubs”.

The following algorithm decentralises hubs by spreading the hubs of a network.

Algorithm 2. 1. Start with a simply connected network G (presumably generated with

the PA network).

2. Select three percentages α1, α2, α3 for the definition of the poor rich and giant nodes

in the algorithm.

3. Sort the degree sequence, select the α1 lowest degree, and define the corresponding

vertices as the poor nodes. Similarly, select the α2 and α3 highest degree, define them

as the rich and giant nodes.

4. Delete all the links between the poor nodes and rich nodes.
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5. Add the minimal number of links among the rich nodes to make them connected, and

define them as a “club”.

6. Check the poor nodes sequentially, if one is disconnected from the club, random choose

one member in club and link this member to the poor node and add the poor node to

the club, until the members of club includes all the vertices of G.

7. Randomly pick up 2 linked giant nodes g1, g2, and 2 linked non-giant nodes v1, v2 which

are disconnected from g1, g2.

8. Apply the edge-switching method among v1, v2, g1, g2 [36].

9. Repeat Step 7 and Step 8 until there is no links among the giant nodes.

In brief, Step 4-6 cut the links between the group of rich nodes and group of poor nodes,

and Step 7-9 change the structure among the rich nodes, since it is this group of rich nodes

possess most of the edges. Also, Step 7-9 preserves the degree sequence. The result is that

the PA networks become less hub-centric. We also note that, in Step 5, there is often no

need to add links, since the group of rich nodes is often already connected.

We choose α1 = 60%, α2 = 5%, α3 = 0.5% for our modification algorithm, and apply it

to the case with m = 3 and m = 4. The result with m = 3 is shown in Fig. 5, other results

are similar, but omitted for conciseness.

The following algorithm concentrates hubs by modifying the initial network to make the

hubs more strongly centralised.

Algorithm 3. 1. Start with a simply connected network G (presumably generated with

the UniS network).

2. Select three percentage α1, α2, α3 for the definition of the poor rich and giant nodes in

the algorithm.

3. Sort the degree sequence, select the α1 lowest degree, and define the corresponding

vertices as the poor nodes. Similarly, select the α2 and α3 highest degree, define them

as the rich and giant nodes.

4. Traverse the poor nodes of G.
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(a) For each poor node vi, if there exists another poor node among its adjacent nodes,

then select randomly one node among them, and delete the links between them.

Otherwise go to Step 5.

(b) For vi, select one node from the group of rich nodes with the assigned probability

proportional to their degree, link vi with it.

5. Randomly pick up 2 disconnected giant nodes g1, g2, and 2 disconnected non-giant nodes

v1, v2 which are connected with g1 and g2.

6. Apply the edge-switching method among v1, v2, g1, g2 [36].

7. Repeat Step 5 and Step 6 until the subgraph induced by giant nodes is complete.

This reverse modification algorithm on UniS networks aims to generate interconnected

hubs. Step 4 deletes the edges between the poor nodes and rich nodes as far as possible

under the constraint of connectivity, and relinks these edges among rich nodes, and Step 5

forces the giant nodes to connect with each other. Hence, we can generate the hub-centric

structure in networks, which results in the adjusted curves of the statistics for UniS networks

approaching that of the PA networks.

Setting α1 = 80%, α2 = 5% and α3 = 0.5% on this modification, the result for m = 3 is

shown in Fig.6.
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