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Abstract 

This paper presents an effective three-dimensional (3D) nonlinear explicit dynamic meshfree 

algorithm for the simulation of soft tissue mechanical responses. In the algorithm soft tissues are 

considered to be hyperelastic and nearly incompressible materials. The algorithm is based on the 

element-free Galerkin (EFG) method using total Lagrangian formulation and moving least square 

(MLS) approximation. This approximation uses a relatively large number of nodes for shape 

functions creation, which can significantly delay mesh distortion in large deformation computations. 

Essential boundary conditions are imposed exactly by coupling MLS shape functions with a finite 

element (FE) interpolation in the close region of essential boundary. Although volumetric 

integration is not exact, the large support domains of the MLS shape functions alleviate some of the 

key weaknesses of FE methods such as hour-glassing and volumetric locking. Explicit integration is 

performed in time domain, using a recently proposed method to calculate the critical time step. 

Verification against the results obtained using the established nonlinear finite element procedures 

available in the ABAQUS code confirms the accuracy of the presented meshfree algorithm. 

Application of the algorithm in modeling of the brain indentation indicates its ability to facilitate 

robust and accurate prediction of the organ responses subjected to large localized deformations 

consistent with the loading due to surgery.  
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1. Introduction 

Surgical simulators present a safe and potentially effective way for surgical training, and can also be 

used in robot and computer assisted surgery for operation planning. Robust, fast and accurate 
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numerical algorithms for predicting soft tissue deformations have been identified as the key 

technology for the development of practical surgical simulators [1]. In the context of computational 

biomechanics, finite element (FE) algorithms accounting for both geometric (i.e. large deformations 

and strains) and material nonlinearities have been developed [2-4]. Although the literature indicates 

that the models implemented using FE algorithms can facilitate accurate prediction of the organ 

responses during surgery [5-7], they are still not widely adopted in surgical practice, mainly because 

of the difficulties in handling very large deformations and discontinuities due to surgical cutting. 

    With the latest developments, meshfree/meshless methods [8-10] have been suggested as a 

possible alternative to solve the above difficulties. A key feature of meshfree methods is that a 

predefined mesh is not necessary for field variable approximation/interpolation. Various meshfree 

algorithms have shown very good performance in handling mesh distortion for nonlinear problems 

[11-19]. However, there are still some open topics for nonlinear explicit dynamic analysis using 

meshfree methods, such as handling essential boundary conditions effectively, conducting 

numerical integration, and stable time step calculation. For the above reasons, only a few published 

works can be found on applying meshfree methods for nonlinear analysis of soft tissue simulation 

[20-24]. This work expands the meshfree total Lagrangian explicit dynamics (MTLED) algorithm 

presented in [20] through the use of coupled MLS and FE shape functions to accurately impose the 

essential boundary conditions, a more accurate volumetric integration, and the use of a new stable 

time step estimation method developed particularly for the explicit time integration in meshfree 

methods. These numerical techniques have been proposed elsewhere, and in this work we integrated 

them in a consistent verified meshfree algorithm for soft tissue modeling.    

In the next section we briefly introduce the formulations of total Lagrangian explicit dynamics 

meshfree algorithm, and then present three important implementation issues: numerical integration, 

treatment of essential boundary conditions and calculating stable time step. Verification results are 

presented next, followed by the example of application in modeling of the body organs (brain 

indentation), discussions and conclusions.  

 

2. Meshfree Total Lagrangian Explicit Dynamics Algorithm 

The presented algorithm is based on the meshfree EFG method using the total Lagrangian 

formulation, where stresses and strains are measured with respect to the original configuration 

allowing for pre-computing of most spatial derivatives before the time-stepping procedure. The 

stress (second Piola-Kirchoff stress) and strain (Green strain) measures used are appropriate for the 



treatment of large deformations. Explicit time integration eliminates the need for solving large 

systems of equations during the time-stepping procedure.  

2.1 Moving Least Square Approximation 

Details of the MLS shape functions construction are available in the literatures [25, 26]. The 

discrete MLS approximation of a function ( )u X , denoted by ( )hu X , is constructed by a 

combination of monomials using n nodal parameters as 
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where m is the number of terms of monomials (polynomial basis), ( )ip X  are basis functions, X  is 

the position of a material point in the initial configuration, and ( )ia X  are the coefficients of the 

approximation.  

By introducing a weight function ( )IW −X X  and minimizing the weighted L2 norm ( MLSJ ) as  
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where n is the number of nodes within the support of X. Finally by calculating the coefficients 

through the minimization, the MLS approximation is obtained by 
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where sU  is the vector collecting the nodal parameters of the field variables for all the nodes in the 

local support domain, and ( )Iφ X is the MLS shape function. 

In this work, we create the MLS shape functions by using a linear polynomial basis and quartic 

spline weight functions, defined as 
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where wId  is the radius of the spherical influence domain of node IX . We calculate wId  using the 

average distance between node IX  and its neighboring nodes, multiplied by a dilatation parameter. 

This technique leads to high quality MLS shape functions even for irregularly distributed field 

nodes. 
 



2.2 Total Lagrangian Explicit Dynamics Algorithm 

After introducing MLS approximation into the weak form of governing equations of solid 

mechanics using the total Lagrangian formulation, the global system of discretized equations 

describing the behavior of the analyzed continuum is:  

ext int damp= − −MU F F F  (5) 

where M is the mass matrix, U is the vector of nodal displacements and intF  is the vector of internal 

nodal forces assembled as: 
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where, IPN  is the total number of integration points (IP) distributed in the problem domain, 0
ˆt S  is 

the second Piola-Kirchoff stress vector at time t, 0
t F  is the deformation gradient between the un-

deformed configuration and the configuration at time t, IW  is the weight corresponding to 

integration point xI, 0V  is the initial volume of the problem domain, and 0 0
t

LB  is the matrix of shape 

functions derivatives in reference to the initial configuration in the following form 
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in which ,xφ , ,yφ  and ,zφ  are derivatives of shape functions with respect to x, y and z, respectively.  

As the purpose of this work is to verify the algorithm rather than to conduct a complete 

simulation of actual surgery, a simple Neo-Hookean hyperelastic model is a logical choice. The 

Neo-Hookean strain energy potential as used in ABAQUS is adopted in this work [27].  

( ) ( )2Neo-Hooken 0 0
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where 0µ  is the initial shear modulus, 0κ  is the initial bulk modulus, J  is the elastic volume ratio 

which equals to the determinant of deformation gradient, and ( )
2
3

1 trI J
−

= C  is the first deviatoric 

strain invariant of the right Cauchy-Green deformation tensor T=C F F . 

    So the second Piola-Kirchoff stress in Eq. (6) is calculated as  
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where δ  is the 3 3×  identity matrix. 

In Eq. (5) extF is the vector of externally applied forces (volumetric forces, surface and nodal 

forces) assembled as 

( ) ( )ext d dT T
I IΩ Γ

= Ω + Γ∫ ∫F Φ x b Φ x τ  (10) 

where b is the body force vector and τ  is the predefined surface traction on the boundary. The 

damping force damp c=F MU , where c is the damping coefficient, introduces a mass proportional 

damping which can be used to obtain the steady state solution, as presented in the next subsection. 
 

2.3 Dynamic Relaxation Solution Algorithm 

We introduce the damping force to dissipate the kinetic energy when that the steady state of the 

deformed continuum needs to be obtained, such damping does not have to be based on actual 

phenomena related to e.g. material viscosity. To increase the convergence speed towards the 

deformed state, we use the dynamic relaxation (DR) technique detailed in [28-30] and solve the 

damped equation of motion using the central difference method for integration in time domain. The 

resulting equation describing the iterations in terms of displacements, derived from Eq. (5), is: 

( ) ( )1 1 1 ext intβ α+ − −= + − + −k k k kU U U U Μ F F  (11) 

In the above equation ( )22 2h chα = +  and ( ) ( )2 2ch chβ = − + , where h is a fixed time 

increment and k indicates the kth time increment. The iterative method defined by Eq. (11) is 

explicit as long as the mass matrix is diagonal. Therefore, we use a lumped mass matrix and a mass 

scaling algorithm that increases the convergence speed of the method. The accuracy of the solution 

is evaluated using a termination criterion which gives information about the absolute displacement 

error [28]: 
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where *U  is the solution, ω  is the spectral radius which approximates the reduction in error, and λ  

is the imposed accuracy. More details about the adaptive computation of these parameters in order 

to increase the convergence speed are given in [28].        

 



3. Numerical Implementation 

3.1 Numerical Integration 

Compared to finite element method (FEM), which has well defined rules regarding numerical 

integration, accurate numerical integration for meshfree methods is still an open topic. Meshfree 

shape functions are generally not polynomials and are constructed using support nodes located 

beyond the boundaries of integration cells, which makes the numerical integration in meshfree 

methods much more challenging [31]. For meshfree methods, Gaussian quadrature over a 

background mesh is typically used for numerical integration [9, 20, 31]. Some efforts have been 

made on the numerical integration issue of meshfree methods, for example, the stabilized 

conforming nodal integration technique proposed by Chen et al. [32-34]. By developing the 

generalized gradient smoothing technique and using point interpolation method for field function 

approximation [35, 36], Liu et al. have developed a series of meshfree smoothed point interpolation 

methods (S-PIM) [37-40], which conduct stabilized numerical integrations on the generated 

smoothing domains.   

    In [20, 41] we used regular (equally spaced) hexahedral background grid to conduct the 

numerical integration in space. Such integration grid can be easily constructed, which offers 

simplicity and flexibility [20]. However, for complex geometries (such as those of many body 

organs) it may introduce volume inaccuracy when the hexahedra are intersected by a domain 

boundary. On possible solution to this problem can be to use tetrahedral background grids that can 

be automatically generated with integration cells conforming to the boundary of analyzed 

continuum even for complex geometries. Therefore, the meshfree algorithm we present in this study 

facilitates application of tetrahedral background integration grids.  

    For tetrahedral grid, we use four Gauss points per cell, which provides exact integration for 

polynomial up to 2nd order. Unfortunately, the MLS shape functions are not polynomials and the 

Gaussian volumetric integration is not exact. Although there is no rigorous proof theory, some 

authors claimed [13] that the inaccuracy of numerical integration in meshfree methods can have 

similar effects to the reduced integration used in FEM to suppress volumetric locking for nearly 

incompressible materials. Although in FEM the reduced integration can lead to other numerical 

difficulties (hour-glassing), such problems can generally be avoided in meshfree methods by 

making influence domains larger. 



3.2 Imposing Essential Boundary Conditions 

A critical feature of MLS shape functions is that they do not possess the Kronecker delta property 

(they are not interpolating). Consequently, essential boundary conditions cannot be imposed in the 

same way as in FEM. A number of techniques have been developed to overcome this problem, 

including the penalty method [42], the use of Lagrange multipliers in the Galerkin weak form [43] 

and the transform method [11].  

In the explicit time integration framework, the most efficient and accurate method for imposing 

essential boundary conditions appears to be the coupling of MLS and FEM shape functions near the 

essential boundary [44]. Because the modifications are only made at shape functions level, the 

method can be easily applied to all kinds of problems and allows direct imposition of prescribed 

values to the field variables on the essential boundaries, just like in FEM. The coupling between 

FEM and MLS shape functions is accomplished by defining a boundary region that includes 

elements containing the nodes for which the essential boundary conditions are prescribed. The 

problem domain is divided into two regions, the boundary region BΩ  and the rest of the domain 

called the meshfree region MΩ . The displacement approximation in the boundary region is 

calculated as: 
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where MLSu  is the displacement field approximated using the MLS shape functions as in Eq. (3), 
FEMu  is the displacement field approximated using the FEM shape functions, and R is a ramp 

function [44]. 
 

3.3 Stable Time Step Calculation 

We use explicit time integration in the present numerical algorithm because of its efficiency and 

suitability for parallel implementation. However explicit time integration is only conditionally 

stable and requires an estimation of the maximum stable time step. The critical time step of a 

numerical algorithm is directly related to the maximum frequency of free vibration, which is 

determined by the mass and stiffness of the system. Belytschko et al. developed critical time step 

bounds for meshfree methods, but their results are only valid for 2D problems with regularly 

distributed nodes [45]. Furthermore, the bounds become indefinite, due to division by zero, for 

interpolating shape functions or shape functions that are not strictly positive [46].  



Recently Joldes et al. developed an effective method of estimating the stable time step for 

meshfree methods [47]. This estimation method is valid for a specific case of lumped mass matrix 

construction, where the mass associated with an integration point is distributed equally to the nodes 

influencing that integration point. This approach works well for the explicit time integration 

algorithm based on the EFG and is used in the present work for calculating the critical time step as 

max

2mincrit II
t

λ

 
 ∆ ≈
 
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where maxλ I  is the maximum eigenvalue of the stiffness matrix contribution from integration point I, 

estimated as 2
max 0 0( ) ( )I I I

w L jI L jInc≤ ⋅ B Bλ  , in which n  is the number of support nodes for integration 

point I, wc  is the dilatational wave speed and 0LB is the matrix of shape function derivatives. 

Following [48], the dilatational wave speed wc  was calculated as , where λ  and µ  

are Lamé’s constants.          

 

4. Numerical Verification 

A cylinder of height 0.1m and radius 0.05m is studied, as shown in Figure 1. The cylinder is 

deformed by rigidly constraining one face (z = 0), while the opposite face (z = 0.1 m) is displaced. 

We use the mass density of 1000 kg/m3. As there is vast body of evidence [2, 49-60] that soft 

tissues can be regarded as hyperelastic (or hyperviscoelastic) nearly incompressible continuum, we 

used Neo-Hookean material with Young’s modulus in undeformed state equal to 3000 Pa, Poisson’s 

ratio of 0.49, and density of 1000 kg/m3. The loading (displacements) were applied using a smooth 

curve that ensures zero velocity and acceleration at the start of loading: 

( ) ( )2 310 15 6maxd t d t t t= ⋅ − + ⋅  (15) 
 



 
Figure 1. Thy cylinder is of height 0.1 m and radius 0.05 m. 

 
        Three basic experiments are presented: compression, extension and shear of the cylinder. The 

computations were first performed using the proposed meshfree algorithm with a maximum applied 

displacement 0.02 mmaxd = . The obtained results were compared to those from the commercial 

finite element software ABAQUS [27] using a fine mesh of 20-node quadratic brick, hybrid, linear 

pressure elements (C3D20H) and the dynamic implicit solver.  

For the meshfree algorithm, the dilatation parameter for influence domain was taken as 1.6, the 

problem domain was discretized using 7,619 nodes and time step calculated using Eq. (14) is 8.2e-5 

s. The reference solution of this problem was obtained with ABAQUS using a mesh consisting of 

33,897 nodes and 7,680 elements. Table 1 lists the displacement in x direction at the middle node of 

the right edge of plane y=0 and the total reaction force on the displaced face in the direction of the 

applied displacements (along the z axis for compression and tension, and along the x axis for shear). 

Compared with the reference solution, the maximum relative difference in both displacement and 

reaction force is smaller than 5%, which conforms the accuracy of the results obtained using the 

presented algorithm. In Figure 2, we plotted the deformation shape of plane y=0, the displacements 

on the right edge of this plane and time history of the total reaction force on the displaced face. The 

results obtained using the presented meshfree algorithm closely agree with the reference solution 

from ABAQUS FE solver. 

  
 
 
 
 
 
 
 
 



Table 1  

Displacement at the node (0.05, 0, 0.05) in x direction and reaction force on the displacement face.  

 Compression Extension Shear 
Displacement 
(m) 

Force 
(N) 

Displacement 
(m) 

Force 
(N) 

Displacement 
(m) 

Force 
(N) 

Reference  0.00703 -6.9823 -0.00508 4.6673 0.00951 1.1188 
Meshfree 0.007315 -7.2351 -0.005144 4.7128 0.009614 1.1405 
Difference 4% 4% 1% 0.9% 1% 2% 
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Figure 2. Compression, extension and simple shear of a cylinder. Left column: plane y=0 of the 

deformed cylinder. Middle column: displacements on the right edge of the plane y=0. Right 
column: time history of the total reaction force on the cylinder’s displaced face.    

 

 



5. Application in Soft Organ Modelling: Brain Indentation 

To illustrate the performance of the meshfree algorithm introduced in this study in simulation of the 

body organs we applied in modelling of the experiments on the swine brain indentation conducted 

by [61].   
 
5.1 Model Description 

The swine brain used in the experiment had a mass of 89.9g and was approximately 92.5mm, 

62.5mm and 28.5mm in its major axis, minor axis and height respectively. During the experiments 

the bottom brain surface was glued to a glass plate and the brain was laterally supported using two 

moulds (Figure 3a) with the brain surface firmly sticking to the moulds. Therefore, the nodes 

defining the bottom brain surface and the areas in contact with the moulds were rigidly constrained 

(Figure 3b). As in this study we focus on evaluation of the performance of our meshfree algorithm 

rather than on detailed modeling of the interactions between the indentor and brain, the indentor 

was not directly simulated in the model. The indentor was an aluminium cylinder of diameter 10 

mm. The loading was applied by prescribing a constant velocity of 1 mm/s (velocity of the indetor) 

on the nodes located in the area that was in contact with the indentor when conducting the 

experiments.  

Geometry for the brain model was obtained from the magnetic resonance image MRIs acquired 

before the experiments and discretized using 21,498 nodes and 115,029 tetrahedral integration cells 

as shown in Figure 3b. In the meshfree algorithm, the dilatation parameter for influence domain was 

taken as 1.6 and time step calculated using Eq. (14) is 4.3e-4 S. Neo-Hookean hyperelastic model 

was used for the brain tissue for verifying the developed algorithm.  As explained in detail in [61], 

the subject-specific tissue properties (shear modulus of 210 Pa) were determined from compression 

of the cylindrical tissue samples extracted from the brain after the indentation experiments.  The 

Poisson’s ratio was 0.49 and the mass density was 103 kg/m3.   

 



 
 

(a) (b) 
Figure 3. the swine brain indentation modelled using the presented meshfree algorithm: (a) Set-up 
of the experiments, Figure based on [61]; (b) domain discretization with scattered field nodes and 

tetrahedral integration grid, where the pointed circle area including the nodes under prescribed 
displacement during the indentation.  

 
 

 
5.2 Results 
As shown in Figure 4, the indentor reaction force–indentation depth relationship predicted by the 

model implemented using our meshfree algorithm agrees very well with experimental results 

throughout the simulation. These results also confirm that the algorithm facilitates robust and 

accurate solution even for large local deformation of the analyzed continuum.  

    The likely reasons for the differences between the simulation and experiment results in Figure 4 

is that the pia mater (a think soft tissue layer surrounding the brain) was not included in the brain 

model we used (Figure 3b). As stated in Section 5.1, the purpose of this paper is to evaluate the 

performance of our meshree algorithm rather than to conduct a complete simulation of actual 

surgery. Given the fact that only very limited information about the mechanical properties of the pia 

mater is available [48] and that the anatomical structure of the soft tissue layers (meninges) 

surrounding the brain is still debated in the anatomical literature [62], attempt to include the pia 

mater in the model would obscure the algorithm evaluation with modeling uncertainties. 
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Figure 4. Comparison of the experimental and modeling results on the reaction force against 

displacement. 
 

6. Conclusions 

To address the need for simulating biological soft tissues under large deformations we presented a 

total Lagrangian explicit dynamics algorithm based on the element-free Galerkin method. The 

coupling between the moving least square (MLS) and finite element (FE) shape functions was used 

to impose essential boundary conditions, which is simple and guarantees exact results. The large 

support domains of the MLS shape functions eliminate some of the weaknesses of FE method, such 

as hour-glassing. Although the numerical volumetric integration is not exact, it seems to prevent 

volumetric locking for the studied nearly incompressible soft tissues materials. A dynamic 

relaxation scheme was used for the computation of the steady state solution and the critical time 

step estimation method ensures the stability of the present meshfree algorithm. The results of our 

computations compare very well with reference solutions obtained using the commercial FE 

software ABAQUS, confirming the accuracy of the presented algorithm. Application of the 

algorithm in modeling brain indentation indicates its ability to facilitate robust and accurate 

prediction of the organ responses. 
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