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We employ reservoir computing for a reconstruction task in coupled chaotic systems, across a range of dynam-
ical relationships including generalized synchronization. For a drive-response setup, a temporal representation
of the synchronized state is discussed as an alternative to the known instantaneous form. The reservoir has
access to both representations through its fading memory property, each with advantages in different dynam-
ical regimes. We also extract signatures of the maximal conditional Lyapunov exponent in the performance of
variations of the reservoir topology. Moreover, the reservoir model reproduces different levels of consistency
where there is no synchronization. In a bidirectional coupling setup, high reconstruction accuracy is achieved
despite poor observability and independent of generalized synchronization.

Generalized synchronization is a nonlinear func-
tional relationship between the states of two or
more coupled dynamical systems. This functional
dependence can have a complicated shape, even
for simple systems. Moreover, the presence or ab-
sence of generalized synchronization forms only
part of a much richer phenomenology. We use
reservoir computing to model general dynamical
relationships between coupled chaotic systems.
The method itself relies on the synchronized re-
sponse of a large dynamical system — the reser-
voir — to an input signal. We observe high mod-
elling accuracy up to fundamental limits in a wide
range of different dynamical regimes. The key
to this performance is the fading memory prop-
erty of the reservoir, which allows it to access a
simplified representation of the complex relation-
ships. We show through different coupling con-
figurations how the reservoir-computing scheme
reconstructs the interacting systems effectively,
whereas the classification of synchronization plays
a minor role.

I. INTRODUCTION

Synchronization refers to the entrainment of the states
of two or more coupled systems such that they evolve to-
gether with time'. Several forms of synchronization have
been studied, ranging from phase synchronization (PS)
to complete synchronization (CS), the latter in which the
states of the interacting systems are identical after tran-
sients®3. Here, we address generalized synchronization
(GS), which can be considered an extension of CS to
non-identical systems?®. In its original definition, GS is
characterized by a nonlinear function H(x(t),y(t)) = 0
linking the states x(t), y(¢) of the interacting systems.
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This function defines the GS manifold, which may be a
very complicated subset of phase space. Systems which
appear unrelated may in fact be in a state of GS®. One
distinguishes between weak GS, where the manifold is
fractal, and strong GS with a smooth manifold®. The
distinction can be made based on the Lyapunov spec-
trum. Due to the presence of a potentially complicated
functional relationship, the detection of GS is a non-
trivial task, and specific methods are required”. These
include the auxiliary system method®, nearest-neighbour
methods*? and extracting the conditional Lyapunov ex-
ponents (CLE)!0:1 Alternatively, one can directly esti-
mate the functional dependence H[:], and thus infer the
existence of GS'2. The method of choice depends on
experimental accessibility and the amount and type of
available recordings, amongst other factors!s.

The understanding of GS has now moved beyond the
original concept, to include phenomena like common-
signal-induced synchronization!1®  strong and weak
chaos in delay systems'6, consistency and reliability'"'®,
or a general response theory of dynamical systems!'?20,
The common theme is a type of coupling-induced inter-
dependence of dynamical states, within a range of shapes
and degrees, even though it often cannot be expressed as
a function between state space variables. We aim here
to unify the broad spectrum of dynamical dependencies
in coupled nonlinear systems with the concept of recon-
struction®' 23, Specifically for GS, such reconstruction
was shown in Ref.!2, where Volterra kernels are used to
model GS manifolds for several systems. We extend these
ideas here by studying a type of statistical modelling of
the (functional) relationships between chaotic systems,
based on echo state networks (ESN).

Echo state networks form one of the roots of the
present field of reservoir computing (RC)?%25. They are
a type of recurrent neural networks (RNN) with simpli-
fied training rules, and as such belong to artificial neural
networks?6 2%, Reservoir computing is a computational
paradigm whereby a large nonlinear dynamical system —
the reservoir — acts as a computational substrate for a
driving input signal. The output is trained by linear re-
gression or classification methods to approximate a given
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target signal. As such, the training algorithm can be con-
sidered a truncated backpropagation method?® 3!. The
basic principles of RC have been laid out in its second
root in neuroscience, where the concept of a liquid-state
machine was introduced3?. It is now widely accepted
that several hard and soft criteria need to be satisfied by
the reservoir to perform its function. These include fad-
ing memory33>34 and consistency35’377 amongst others.
A generic practical guide to setting up ESNs is given in
Ref.?®, but design principles may vary strongly among
tasks. In particular, a wide range of successful physi-
cal reservoir implementations demonstrates the power of
the concept?®31:39746  Theoretical research in the field is
devoted to the identification of key parameters and con-
struction principles which predict the performance and
improve general reservoir design®” 4. Although nonlin-
ear time series tasks have always been a benchmark in the
field?5, reservoir computing has more recently been stud-
ied in greater depth on tasks such as prediction and re-
construction of nonlinear dynamics and chaos?! 23:50-56

In this work, we use ESNs for reconstruction tasks in
some low-dimensional coupled chaotic systems, with a
focus on the properties of GS states. Previously, the de-
tection of GS has been addressed by using ESNs as a
binary classifier to distinguish between synchronous and
asynchronous states®”. In contrast, for the reconstruc-
tion task an observable of one system serves as input for
the ESN, and the readout is trained to approximate a
variable of the other system. Our study of this scheme
has a twofold aim. First, RC is itself based on GS, what
is usually referred to as the echo state property. In this
sense, the task to model GS is a natural choice, and we
elaborate on whether this analogy is of advantage. By se-
lected experimentation with the coupled systems, as well
as with the properties of the reservoir, we aim to learn
both the nature of the GS state and the function of the
reservoir itself. We give a particular focus on the role of
fading memory, which is inherent to GS and also essen-
tial for the operation of RC. Second, the RC scheme re-
sembles a naive approach to the functional relationships
which is not biased by the categories derived from the
Lyapunov spectrum. The reservoir model synthesizes its
output based on correlations, in the broadest sense (see
e.g. Ref.5®) in order to minimize the error to the tar-
get signal. The result is the reproduction of a continuum
of entrainments, including limited levels of consistency
as an extended form of GS!7:19:%9:60  The reconstruc-
tion performance can thus be interpreted as a measure
of ‘generalized correlations’, forming a significant part of
the phenomenology of coupled systems.

In Section II we explore two different representations
of GS, then outline our approach, and define the RC
scheme with ESN. In Section III we consider reconstruc-
tion in a unidirectionally coupled Rossler-Lorenz system.
In Section IITB we investigate the relationship between
the timescale of the GS function and the ESN memory
capacity. In Section IV we consider bidirectional coupling
in a pair of slightly dissimilar Rossler systems.

Il. MODELLING DYNAMICAL RELATIONSHIPS

We first consider two complementary representations
of GS, as well as a simplified description of the generic
shape of the functional dependence, which is relevant for
understanding the performance of statistical models with
memory. We then introduce the RC scheme with ESN
which we use throughout this work.

A. Different perspectives on generalized synchronization

In order to illustrate the idea of different representa-
tions of a functional dependency between dynamical sys-
tems, we first consider an M-dimensional chaotic map X
driving a low-pass filter ). This joint system reads

Xn+1 = f(xp)
Yn+1 = KYn + g(xn) .

(1)

The map f : RM — RM is invertible, and ¢ : RM — R
is a projection, for instance selecting a single component
of the M-component map. The parameter k € (0,1)
is the filter constant. We consider a stationary drive,
meaning that the sequence x,, is a chaotic trajectory on
an attractor.

The filter is always in a state of generalized synchro-
nization, meaning that its current state is a function of
the current state of the dynamical system

Yn = H(xn) . (2)

This property can be shown by unwrapping Eq. (1) back-
wards in time

Yn = Z Klilg(xn—l) : (3)
=1

The initial conditions of ) are an additional transient
term of the form yox™, which is decayed for large n.

Through the inverse map of the drive system, £, all
points in time can be formally expressed as a function of
the present one. This leads to

yn =y &g (£ (%))
=1

= H(x,) .

(4)

Thus the iterates of the dynamical system collect all past
time steps in the sum in Eq. (3) and reduce the depen-
dency to the present state only, revealing the function
H : RM R, from Eq. (2). The temporal representa-
tion, Eq. (3), is a simpler function in the sense of a lower
degree of nonlinearity, while the complicated instanta-
neous relationship is implicitly contained in the backward
iterations of X'. The trade-off in this representation lies
in the increased dimension. Due to the exponential ker-
nel, however, a finite cutoff after L > 1 time steps will
sufficiently well represent the infinite sum.
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From a time-series analysis point of view, the tem-
poral representation, although high-dimensional, may be
preferred. For the task of detecting GS, methods which
utilise a delay embedding only need to model the sim-
pler representation of the functional relationship, mean-
ing that they can be very effective!?. Echo state net-
works naturally perform an embedding on an input sig-
nal and so fall into this category. We demonstrate a
simplified form of the modelling process on the above
coupled map system, using a linear model with a delay-
embedding of dimension D. We assume that the input
signal, u,, = g(x,), and the output signal, s,, = y,,, are
given. The model is of the same form as Eq. (3), but
with a truncated sum

Jn = Z oA T (5)

For any finite value of D, there is a mismatch between the
original response ¥,, and the model approximation ,,
which we measure by the normalized root-mean-square
error (NRMSE)

((Yyn — Qn)2>n .
((yn — <yn>n)2>n

If the drive signal is uncorrelated noise, u, € N(0,1),
one can analytically quantify the remainder of the infi-
nite sum, yielding an error of £ o< k. This means, that
the model error with increasing embedding dimension fol-
lows the same exponential trend as the convolution of the
filter. We have verified this convergence of the model for
a low-pass filter driven by a component of the chaotic
Hénon map x1 py1 =1— 1.41‘%7”4-&62)”, Ton+1 = 0.321,n-
There is a clear exponential trend indicating the filter
constant (not shown). The extension of the result from a
noise drive to a chaotic map is not obvious in view of the
characteristic correlations of the chaotic signal. However,
an argument in favour of a strong analogy is based on ho-
mogeneity in time: The remainder of the infinite sum is
always the same, except for a time shift and a scaled
magnitude. Correlations of the chaotic signal within the
remaining convolution tail depend only on the time dif-
ference to a reference point, e.g. the cutoff position D.
Thus, each embedding increment leads to an equivalent
situation up to a constant scaling factor.

(6)

B. Modelling drive-response relationships

Considering the case of general unidirectionally cou-
pled systems,

¥(t) = g(y(1). x(0)) ")

we ask the following questions: Can we identify the dif-
ferent representations of a GS state? What do they imply

for modelling approaches based on an extended embed-
ding, as given by a reservoir-computing scheme? What
can be said about the dynamical dependencies beyond
the presence of a functional relationship?

First, it is not feasible to write down a closed form of a
function like Egs. (4) and (A1) when dealing with chaotic,
or even noisy trajectories. We may assume, however, that
the property of simplifying the functions in the extended
representation still applies. This should be understood
at least in the sense that, in the case of weak GS, the
function in the temporal representation will be smooth.
Further, understanding nonlinearity in terms of the order
of an expansion necessary to approximate the functions,
this order is expected to be reduced through embedding.
In the above examples with low-pass filters as response
systems, the embedded representation was entirely linear,
while all nonlinearity in the instantaneous representation
stems from the backward iterates of the drive system.

Second, as far as observations from the simple exam-
ples are representative for the general case, it is reason-
able to identify the maximal CLE with the filter con-
stants. It is not clear, however, where to expect the sig-
nature of the maximal CLE in the model performance
as a function of the embedding depth D, as other ef-
fects will overlay the trends. The rest of the conditional
Lyapunov spectrum, which contributes only partially to
the dimension, if at all, will play a role. We propose a
simplified decomposition of the GS manifold, in which
the approximately adiabatic part of the response is sep-
arated by y(t) = Hi(x(t)) + Ha(x(t)), where H;(-) is a
convolution related to the maximal CLE, or the active
part of the spectrum contributing to the dimension, and
H:(-) is a smooth function related to the inactive de-
grees of freedom. In the performance over D, the first
part should dominate the asymptotic behavior, while the
second manifests at low dimensions. Despite being over-
simplified, the model may account for some of the phe-
nomena beyond the classification by the maximal CLE,
and provide guidance for numerical experiments. An-
other interpretation of the second part of the function is
a large-scale nonlinear response, which is not directly re-
lated to the conditional Lyapunov spectrum. This coarse
structure in phase space can be assigned to the individual
geometry of the attracting set in phase space, which may
be quantified by the mutual information between instan-
taneous drive and response variables at low resolution.

Finally, if there is no GS manifold because of a posi-
tive CLE, the concept of consistency applies to charac-
terize the conditional probability density'”'”. From the
modelling perspective, this poses no material difference,
except for the consistency limit being an upper bound of
the performance3”. Below this limit, similar rules may
apply as for the GS case, and the maximal CLE from the
negative part of the spectrum may take over the role of
maximal CLE when modelling GS. We address such as-
pects in Sec. III, using ESN to reconstruct the dynamical
dependencies between drive and response.
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C. Reconstruction by echo state networks

A reservoir computer is a dynamical system r(t) =
f(r(t),u(t)) driven by a set of M input signals u(t),
together with a projection §(¢t) = R - r(t) of its high-
dimensional state which is adjusted in a training pro-
cess to approximate a target signal s(¢). The role of the
RC in this work is to imitate a response system as in
Eq. (7) by mapping the input u(t) = z;(t) to the out-
put s(t) = y,;(t), for a choice of components i,j. We
use for this task ESNs, which are discrete-time RCs. An
ESN consists of N degrees of freedom, represented as
nodes of a network. The nodes are connected accord-
ing to an internal connection matrix W € RV XV whose
non-zero entries define the links of the network. An in-
put signal u(n), sampled on discrete time n € N, is in-
jected into the network according to a vector of incom-
ing connection weights V. € RY. We adapt a popular
choice of the update equation for the state of the net-
work r(n) = [r1(n),r2(n),...,rn(n)]" which reads

r(n) =tanh(W-r(n—1)+V-u(n)+08). (8)

The tanh(-) is the nonlinear activation function which
is applied element-wise. The vector 3 € R contains
biases which set the offset of each node. For the ESN
training procedure, W, V, and 3 are fixed, and only a
linear readout R is trained to approximate a given target
signal s(n), typically according to linear regression

R = argerlin (R -r(n)— s(n))2>n )
Once set up in a suitable operating regime, the nodes of
the ESN each contain a function of the input with fading
memory r;(n) = h;(u(n), u(n —1),u(n —2),...). As such,
the nodes of the ESN can be thought of as the elements
of a basis for a function space. The readout R is a set
of coordinates in this space which selects and combines
the elements of this basis to best approximate the func-
tion which maps u(n) to s(n). Throughout this work we
split the data into distinct training, validation, and test-
ing sets for model fitting, hyperparameter optimization,
and performance evaluation, respectively. This includes
Tikhonov regularization to avoid overfitting. The regu-
larization parameter A € [0, 1] is set to optimize out-of-
sample performance.

There is an ongoing discussion in the community on
the best design principles for RC. There are few definitive
rules, but mostly general guidelines and principles?”-38,
Typically, the elements of W, V and 3 are chosen ran-
domly. Here, we choose W to be a sparse matrix with
probability p = 1—1\? of a non-zero entry, indicating a con-
nection between two nodes. This ensures an average de-
gree of 10 across networks of different sizes. We then set
the weights of those connections to random values from
N(0,1). The matrix W is scaled by a prefactor to achieve
a desired spectral radius p(W). The spectral radius is the
largest absolute value of the eigenvalues of W and is an
important parameter in ESN design. It determines the

gain on the internal dynamics of the ESN, with larger
spectral radii causing signal to propagate in the network
for a longer time, meaning the ESN has longer mem-
ory of past input states. The elements of V are chosen
uniformly from the interval [—o,o], with larger values
of o leading to greater nonlinearity in the transforma-
tion of u(n). The bias elements are chosen uniformly,

ﬁi S [—1, 1].

11l. UNIDIRECTIONAL COUPLING

We follow the approach by Schumacher et al.'? and
consider a unidirectionally coupled pair of non-identical
oscillators. A Rossler system drives a Lorenz system with
diffusive coupling according to

X, =—-(V1+2)

V=X +aVy

Zy=b+ Z (X1 —¢)
071Xy = op(Yo — Xo) — K(Xo — f(X1,Y1,21))
07'Ys = Xa(pp — Z2) — Y2 — K(Ya — f(X1,Y1,21))

0 Zy = XoYo — B Zo — K(Z5 — f(X1,Y1,21))

(9)
The parameters are a = 0.45, b = 0.2, ¢ = 4, o =
10, pr =28, B, = 8/3. The coupling strength K > 0 is
varied to obtain different levels of entrainment, including
weak and strong GS regimes. The timescale parameter
0 = 0.2 ensures that the relatively slow Rossler system
does not drive the Lorenz system adiabatically. The cou-
pling function is f(X1,Y1,21) = X1 + Y1 + Z3, though
other configurations would be possible which may lead
to different behavior.

We set up an ESN to model the relationships, including
GS, between this pair of drive and response. A sampling
time step of ¢t = 1 is chosen to translate the contin-
uous dynamics to the discrete-time reservoir. The first
variable of the Rossler system is used as the input. Nor-
malization to zero mean and unit variance is applied, so
that u(n) = Xi(t,) is the resulting input signal, with
t, = ndt, and X 1 denoting the normalized X;. The size
N of the ESN is in the range of hundreds of nodes. Input
scaling is set to o = 1, and the spectral radius p = 1.5.
With regard to the latter, we always test for the echo
state property to discard unstable reservoirs. The out-
put of the ESN is trained to approximate the X5 variable
of the driven Lorenz system.

The accuracy of the approximation of the target s(n) =
Xa(tyn) by the actual output §(n) = R-r(n) is quantified
by the NRMSE according to Eq. (6). We perform this
procedure for K € [0,100], which encompasses regimes
of no GS, weak GS and strong GS. In order to track
the state of synchronization, we calculate the CLE of the
response system, using the QR orthonormalization pro-
cedure!®6!. If the maximal CLE is negative, the driven
system is conditionally stable and thus in a state of GS.
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FIG. 1. Demonstration of the ESN’s ability to unfold the

synchronization manifold for the Rdssler-Lorenz system in a
state of no GS (a-b), weak GS (c-d), and strong GS (e-f). The
synchronization regimes are verified by the maximal CLE,
with Amax = 0.19, —0.08, —4.00 respectively. The left column
shows a projection of the trajectory of the combined system to
the input-output relationship being modelled. The right col-
umn shows the reservoir output with the target signal. The
correlations for K = 0.1,1,30 are Cs s = 0.01,0.99,1.00 re-
spectively.

For weak GS, the functional dependence is extremely
complicated in the instantaneous representation (Eq. 4),
whereas in the temporal representation (Eq. 3) the re-
lationships may become sufficiently simple according to
the model considerations in Sec. II. This means that the
ESN, which naturally performs an embedding on the in-
put signal, is expected to approximate the GS state well.

Figure 1 shows portraits of input and output for the
coupled Rossler-Lorenz system in each of these three
regimes, together with the reservoir approximation. In
the first regime of no GS (K < 0.2), the ESN is not able
to infer the state of the response system reliably, and the
NRMSE is of the order of one. For the weak GS regime
(0.2 < K < 20), some structure appears betwen drive
and response coordinates (Fig. 1¢). The ESN unfolds this
complicated manifold, with a correlation between output
and target of Cs s = 0.99 (Fig. 1d). For the strong GS
regime (K > 20), the relationship between the two sys-
tems is apparently much simpler (Fig. le), and the ESN
achieves extremely high modelling accuracy with corre-
lations of one (Fig. 1f).

6 : 0
107 10° 10t 10°
K

FIG. 2. The reconstruction accuracy for the Rossler-Lorenz
system (Eq. 9) by ESNs of various sizes (top panel) with
the Lyapunov exponents (black) and Kaplan-Yorke dimension
(red) of the combined system (bottom panel). The recon-
struction accuracy is averaged over the results of 10 separate
ESNs. The dashed lines show the Lyapunov exponents and
KY dimension of the Rossler system, which are independent
of the coupling strength K.

Figure 2 summarizes the performance together with
the CLE as a function of the coupling K. We also show
the Kaplan-Yorke dimension®? of the combined system,
by which one can distinguish between weak and strong
GS. The reconstruction accuracy begins to increase
sharply at K =~ 0.2, as the maximal CLE becomes nega-
tive and the system transitions from no GS to a state of
GS, (Xo(t), Ya(t), Zo(t) = H(Xy(£), Yi(t), Z1 (1)), which
persists for all larger couplings. The transition is ac-
companied by a small decrease in the dimension of the
combined system, which however is still larger than that
of the drive only, indicating the fractal relationship of
weak GS. As K increases, the CLE decrease further, un-
til a state of strong GS is reached at K =~ 25. At this
point, the dimension collapses to that of the drive, which
is a signature of the smooth instantaneous relationship.
With the notation of Sec. II B, strong GS is given by
H(-) = Hx(-). Throughout the three different regimes,
the reconstruction accuracy varies over many orders of
magnitude, with the ESN able to achieve a very high
level of accuracy, especially for large K.
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The performance starts to saturate around K =~ 3,
while an intermediate drop, indicated by the short spike
in the NRMSE at K ~ 8, appears to slightly shift the
saturation level. On the one hand, these patterns are as-
sociated with qualitative and quantitative changes of the
response behavior of the Lorenz system. Such changes
may already be traced back to the Lyapunov spectrum,
but we will not further investigate the detailed behav-
ior here. Overall, the GS manifold becomes simpler and
more linear with increasing K (see Fig. 3), until in the
limit of K — oo the response follows the drive signal
adiabatically. On the other hand, the performance satu-
ration, despite this increasing simplification, is related to
the reservoir becoming ill-matched with the properties of
the GS function, in particular with the fast timescale. We
investigate this matching in the following with variations
of the ESN structure.

A. Memoryless reservoir

The ESNs achieve high modelling accuracy of the GS
manifolds through their fading memory, which allows
them to access even the nonlinear convolutions of the
weak GS regime. We hypothesize that this advantage
in weak GS will be detrimental for strong GS, where
memory is not essential to approximate the smooth in-
stantaneous functions. In order to investigate the role of
memory, we consider first a modified ESN without any
memory and compare it to the standard ESN. Such a
network can be created by removing all internal connec-
tions by setting W = 0. This way the ESN effectively
reduces to a type of feedforward network with one hid-
den layer containing randomly fixed activation functions,
and a trained linear output. We note that this special
architecture is also known as extreme learning machine
(ELM)5%:64. Although ELMs are not a state-of-the-art
method among feedforward structures, they still perform
well on some non-trivial tasks®®. The fact that ELMs
are a limit case of ESNs makes them ideal candidates for
our comparison. For coherence with the paradigm of this
study, we will refer to the ELM as a memoryless ESN, or
memoryless reservoir.

When applying the memoryless ESN, the full state of
the drive system needs to be used as input, as the net-
work does not create the minimal embedding signal to
represent the drive state space®®. We write the memory-
less ESN as

r(n) = tanh(V - u(n) + B8).

with V € RV*3 to account for the three Réssler coordi-
nates, u(n) = (X1(tn), Y1(tn), Z1(tn)) ", and the bias 3
remains as before. We repeat the same task, namely ap-
proximation of s(n) = Xs(t,,) for K € [0,100]. A simple
linear regression model §;;,,(n) = so + Ry - u(n) is also
compared to indicate the linear correlation between drive
and response. The results are shown in Fig. 3.
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FIG. 3. Reconstruction accuracy for the full reservoir, the
memoryless reservoir and a linear model.

For low K, before the onset of synchronization, none
of the models are accurate because of the fundamental
consistency limit. After the onset of GS at K =~ 0.2, the
accuracy of both reservoirs increases significantly with
K, but the full ESN outperforms the memoryless ESN.
This indicates the ability of the full ESN to access the
simpler, temporal form of the GS manifold, while the
fractal dependence in the instantaneous representation
limits the ability of the memoryless ESN. For larger cou-
pling, the accuracy continues to increase for all models,
but we recognize the aforementioned plateauing effect of
the full ESN. The memoryless ESN overtakes the stan-
dard ESN near the transition to strong GS, and reaches
a plateau of much better performance around K =~ 30.
The dominance of each reservoir type can be explained
in terms of the capacity of the network. The memoryless
ESN reserves its entire capacity for instantaneous func-
tions, which is of advantage in strong GS, whereas the
full ESN distributes capacity over its memory tail, allow-
ing for reconstruction of the long-range dependencies in
weak GS.

B. Lyapunov time and memory capacity

We investigate further the relationship between
timescales of the GS functional and memory of the reser-
voir. The simple models in Sec. II have shown timescale
signatures in the performance when the memory depth
of the model is varied. Here, we imitate this variation
with controlled modifications of the ESN memory. Fad-
ing memory is commonly quantified by the memory ca-
pacity®? (MC), which is calculated by driving the ESN
with uncorrelated noise and training it to reproduce the
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past input u(t — 7) for a range of lags 7. The reconstruc-
tion accuracy M (7) indicates the amount of information
held in the network for that lag. The memory capacity
is then calculated by summing the square of the correla-
tions between target and approximation over all lags

M(1) = (s7(t)5- (1))t

MC = i M(T)?,
T=1

where s, (t) = u(t—7) and 8. (¢) is the trained reservoir’s
approximation of s, (¢). The MC cannot be directly con-
trolled in typical ESN, instead it is indirectly affected
by the design of the network. In particular, spectral ra-
dius p and network size N have a strong influence on the
MC. We choose to obtain a range of MC by generating
networks of different size N while keeping p constant.

A second method to adjust memory is related to the
unfolded representation of RNN within the backpropa-
gation through time algorithm. A recurrent network can
be represented as a layered structure, where each layer
represents one time step, and the recurrent connections
are replaced by connections between the layers. We gen-
erate typical ESN and unfold them in this way. Such an
unfolded network leads to an infinite amount of layers, as
shown in Fig. 4b. The update equation for layer j reads

r()(n) = tanh (W U (n — 1)+ Vu(n) + ,3) .

In this sense, the network can again be considered re-
current, even though there are no recurrent connections
within each layer. The time increment is included in
the inter-layer connections, with the ESN’s dependence
on the input history arising from the propagation delay
through the layers. This means that the current input
u(n) must be injected at each layer, unlike feedforward
versions of this unfolding, which incorporate the time in-
crement into the different inputs for each layer.

The result of this unfolding is an extended state vec-
tor r*(n) = (r'(n),r"(n),...)T and modified connection
matrices W* and V* as
0 0
W 0 ...
0 0

0
0
W* = W

which can be used in the standard ESN update equation
(Eq. 8) to implement this unfolded representation. Note
that the readout is only trained on the final layer, not
the extended state.

Memory can be controlled by truncating the layered
structure, see Fig. 4c, which is similar to the model
Eq. (5). The layers of this finite chain hold the tran-
sient activations of the reservoir. If the echo state prop-
erty holds, and the number of layers is significantly larger
than the MC, the upper layers will hold almost identical

(a)

u(n)

u(n) u(n)

Vv \Y
Cads

FIG. 4. Recurrent (a), unfolded (b) and truncated (c) repre-
sentation of an ESN.

activations. Otherwise, by truncating the layered net-
work within the memory tail of the original ESN, the
memory can be reduced with minimal effect on the other
properties of the network. An example of the memory
profile of such a finite stack of layers is shown in Fig. 5a.

We quantify the timescale of the GS interaction by the
Lyapunov time T\ = |A\yax| ™}, where A\yax is the max-
imal CLE. As shown in Fig. 5b, the timescale decreases
with the coupling, because Ay x x K for large K.

We repeat the previous GS task with the above two
reservoir architectures. Figure 5c¢ shows the results for
changing N of the standard reservoir. We observe a
broad trend that performance increases with memory.
However, by increasing N the reservoir capacity also in-
creases, meaning the set of nonlinear functions available
for the readout also increases, which has a strong effect
on performance. In contrast, for the truncated unfolded
representation, the number of nodes is held constant,
thus excluding the effect of capacity. The results for this
method are shown in Fig. 5d. Again, we observe the same
overall trend between memory and performance. How-
ever, for larger values of K, corresponding to shorter
timescales, the trend saturates and inverts. Optimum
performance for the layered ESN is located at a lower
memory than for the fully extended ESN (D — o).
This is the same effect that was observed in Fig. 3, as
functionality of long memory decreases the performance
when modelling short timescales.

Following the ideas of Sec. II, we expect to find signa-
tures of the maximal CLE (Ayax) in the NRMSE over
the embedding depth D. Indeed, we identify such a re-
lationship in Fig. 5d. The effect is subject to the limita-
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(b)

NRMSE

NRMSE

FIG. 5. (a) Fading memory profile of a 500 node ESN, from
which the memory capacity is derived. The dashed lines show
the typical memory profile for some truncations of the reser-
voir. (b) Timescale T of the response as a function of cou-
pling strength K. (¢) NRMSE for ESN with increasing mem-
ory, controlled by changing the network size. (d) NRMSE for
ESN with increasing memory, controlled by truncating the
unfolded representation. The red circles indicate the data
points selected to perform a linear fit.

tions of the ESN’s maximum memory capacity, leading
to a saturation. Furthermore, this relationship does not
apply to the instantaneous component Ho(+) of the GS
manifold, which manifests at the lowest D. We define a
method for selecting a scaling region by stipulating the
maximum error to be that of the memoryless ESN at
the corresponding value of K (Fig. 3). This error level
corresponds roughly to that of the layered ESN when
the minimum embedding depth for reconstruction of the
drive attractor is reached (D ~ 2,3). The lower cutoff
of the scaling region is chosen to be 1.5 x &,,;,, where
Emin 18 the minimum error over D at a given K. These

8
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FIG. 6. Decay time 1/c, extracted from the linear fits in
Fig. 5d, against the Lyapunov time T = |)\MAX|71. Identity
line is shown for reference.

selections are shown as red circles in Fig. 5d. In general,
they lead to appropriate scaling regions which are well
fit by a linear fit. However, for large K the timescale
of the response becomes small, and the benefits of tem-
poral processing decrease, with the memoryless reservoir
performing well relative to reservoirs with memory. This
means that the scaling regions for larger K are poorly
defined, and may lead to unreliable results.

Gathering the linear fits as shown in Fig. 5d over a
range of K, we compare the gradients o of the fits with
the Lyapunov time (Fig. 6). We observe that the decay
time constant a~! is in excellent agreement with 7 in
the moderate timescale regime, in accordance with the
considerations of Sec. II. At the extremes, the identity
does not hold. In the short timescale regime, scaling
regions are poorly defined because of the vanishing tem-
poral component H;j (+) of the GS functional. In the long
timescale regime, the relationship breaks down near the
transition point of GS, where the reservoir is limited by
its memory capacity and performance saturates at a fi-
nite level. Overall, the signature of T\ can be traced for
almost two orders of magnitude.

C. Consistency

Consistency can be understood as an extension to gen-
eralized synchronization, which incorporates cases where
the functional dependence is imperfect, in the sense of
a ‘blur’ which arises from noise or instabilities!7-36-67,
Moreover, consistency refers to the degree of dependence
of a dynamical node to its input, rather than the type
of dependence. That degree can be accessed through the
replica scheme, in which either a copy of the system is
driven simultaneously together with the original, or the
signal is repeatedly injected in a single system®%:%®. For a
scalar recording, the measure of consistency is the cross-
correlation between the response of original, s(t), and
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replica, s'(t), as

where 5(t) and §'(t) denote the time series normalized
to zero mean and unit variance. This definition of the
consistency correlation v2 gives credit to the fact that its
square-root v poses a fundamental limit to any approxi-
mation of the response from only the input signal®7:0.

The coupled Rossler-Lorenz system in Eq. (9) illus-
trates the regimes of no GS, weak GS, and strong GS,
where the latter two are accompanied with complete con-
sistency in a noise-free setup. The first regime, in which
there is no GS due to positive CLE, has a consistency
level 0 < 72 < 1 which depends on K. However, except
for a narrow region in the vicinity of the transition to
GS, 72 is very close to zero. We thus repeat the task for
a system of directionally coupled Rossler systems which
show a wider range of moderate consistency on different
levels.

Xi=-WM+2)
Yi=X+aY;

Zi=b+Z (X, —¢)
Xo=—(Yo+42Zy) — K(Xy — Y1)
Yy =Xy +aYs

Zy =b+ Zy(Xs—¢)

where @ = 0.45,0 = 2 and ¢ = 4 as before. The cross
coupling term ensures that this system displays GS rather
than CS.

As well as calculating 72 from an exact replica, we also
estimate the consistency level by an imperfect replica,
which is created by adding a perturbation of 1073 to
each of the parameters a, b and ¢. The approximation
is denoted as 7*2. The same reconstruction task as in
Section III is performed using an ESN with N = 500, p =
1—1\?, p = 1.5 and 0 = 1. Here we quantify the reservoir’s
accuracy by a cross-correlation coefficient between the
reservoir output §(n) and target s(n), Cs ;. Consistency
levels and performance correlation are shown in Fig. 7.

At K ~ 0.18 the system transitions into a state of
GS, with complete consistency for stronger coupling and
moderate consistency for weaker coupling. Below the
transition, there is an almost linear increase of the con-
sistency level v(K). The mismatched consistency v* co-
incides almost perfectly with v, except for a deviation
around the transition point. This is related to the criti-
cal properties of the transition®®, due to which the exact
repetition is extremely sensitive.

The reservoir performance largely follows the consis-
tency levels. Similarly to the perturbed replica, the vicin-
ity to the critical point is a major limiting factor, which
was also evident in the previous setting (Fig. 2). In the
inconsistent regime (K < 0.18), the approximation of the
limit curve vy(K) is imperfect, although the consistency
correlation v2(K) of a single replica can be exceeded.

o
e
T

o
o
T

correlation

o
>
T

O 1 1 1
0 0.1 0.2 0.3 0.4

K

FIG. 7. Consistency correlation (dashed) and limit (solid) for
a range of coupling. Estimates of the consistency limit from
a mismatched replica are shown in blue. The correlation of
an ESN’s trained output is in red.

This effect is mostly due to an finite sample length for
training. We will not investigate this property further
here, but outline the underlying dynamical phenomena.
For the reservoir to reach the performance correlation of
7, it needs to not just imitate a single inconsistent replica
system, which alone would lead to the level 42 < . In-
stead, it needs to infer the ensemble mean 5(t) = (s;(t));,
where s;(t) is the response of the j-th replica system®,
or alternatively the j-th repetition of the task, via the
ergodic properties of a long time series. Our present ex-
perience indicates that the sample size requirements for
the convergence of such an average may be extreme.

IV. BIDIRECTIONAL COUPLING

A reservoir computer is compatible with the drive-
response scheme in a similar way to the replica test, in
which a perfect copy of the response system is attached
to the drive, indicating conditional stability and consis-
tency®°?. The reservoir can be considered an imperfect
replica emulating the response system with some accu-
racy. In a bidirectional coupling scheme, or in a con-
nected network of dynamical nodes, the replica approach
is in principle not applicable”™®. An attached replica sys-
tem will indicate conditional stability of the subsystem,
but not presence of GS, which is determined by the mu-
tual interaction. What is then the meaning of a reservoir
which computes variables of one subsystem from those
of another? Already for the unidirectional coupling, it
is evident that the reservoir-computing scheme is not a
classifier for the GS state. Hence we expect even less
specificity for GS manifolds in the case of mutual cou-
pling, because according to embedding theory GS is not
a requirement to reconstruct remote degrees of freedom.
Instead, reservoir computing with mutually coupled sub-
systems is a special case of the reconstruction task, which
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21,22,51,55
23,71

was investigated recently . The performance will

thus depend on observability

We apply the ESN toolkit of the previous section to
the time series from two detuned Rossler systems with
mutual coupling

Xi=—-(1-Aw)Y, — 7
Vi=(1-Aw)X; +aY; — K(Y; —Ya)
leb+Z1(X1—c)
Xo=—(14+Aw)Ys — Zy

Yo =(1+Aw) Xo +aYs — K(Ya — Y3)
Z1=b+ Zy(Xy —¢)

where a = 0.16, b = 0.1, ¢ = 8.5, K is the mutual cou-
pling strength, and Aw = 0.02 is the spiral frequency
detuning. This system is known to display phase and
generalized synchronization”73. Specifically, the system
transitions from an asynchronous state to phase synchro-
nization (PS) at K =~ 0.04 and to generalized synchro-
nization at K ~ 0.09. These transitions can be observed
in the Lyapunov spectrum and Kaplan-Yorke dimension
of the full system as shown in Fig. 8a.

In the unidirectional case, the coupling direction de-
termines which subsystem is the input and which is the
target, but here either may be used. We choose Y; as
the input variable for the reservoir, u(n) = Yi(t,), with
t, = ndt, and the sampling time §¢t = 1 analog to Sec. III.
The target variable for training is s(n) = Ya(t,). We
apply three different reservoir configurations. The first
one is a standard ESN with parameters N = 500, p =
1—1\?, p = 0.1, 0 = 1. The second type is the memoryless
ESN, which is set up in the same manner as described
in Section IIT with N = 500 nodes. As before, the full
state of one of the subsystems is required for the mem-
oryless reservoir, as it does not perform an embedding.
This allows the memoryless ESN to be sensitive to the
presence of GS, under the assumption that the detun-
ing Aw is small enough such that the manifold does not
deviate too much from unity. For the third method, ob-
servational noise £(¢) ~ N(0,0.01) is added to the state
of the combined system. Finally, we also compare the
reservoir methods with a simple linear model, which like
the memoryless ESN receives the vector state of one sys-
tem as input.

The results are shown in Fig. 8b for a range of coupling
strengths. Here we use the cross-correlation between the
reservoir output and target to quantify the reservoir’s
performance. In the GS regime, all methods are able to
accurately reconstruct the second subsystem, implying
the presence of an instantaneous functional dependence.
In the PS regime, where the phases of the two subsystems
are locked together but the amplitudes are unrelated due
to one positive transverse LE, all methods are still highly
accurate. We relate the high accuracy to the small de-
tuning and the small relative fluctuations in the ampli-
tudes. Below the PS regime (onset K =~ 0.04), where no
synchronization is present, the memoryless reservoir and
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FIG. 8. Top panel: the four largest Lyapunov exponents
and Kaplan-Yorke dimension of the bidirectionally coupled
Réssler systems (Eq. 10). Bottom panel: Reconstruction ac-
curacy for the three different reservoir configurations and a
linear model. The dark grey region marks the GS regime
and the light grey regime marks the PS regime. For weaker
coupling there is no synchronization present.

the linear model sharply decrease in accuracy. However,
it should be noted that the correlation for the memory-
less reservoir does not disappear completely, in contrast
to the linear model. This shows that the reservoir non-
linearities provide a significant improvement to the linear
model for modelling complicated patterns. The full reser-
voir and the reservoir with noisy input show a much more
gradual change of performance below the PS regime, with
the full reservoir maintaining a very high level of accu-
racy even for extremely small coupling.

The performance of the standard reservoir illustrates
how the embedding of the reservoir recreates the entire
system because of its full connectivity®!, see Fig. 9, re-
gardless of the change of dimension due to a GS manifold.
In contrast, when the reservoir is driven by an observable
of the drive subsystem in the drive-response configura-
tion, it is only able to embed that particular subsystem.
It is remarkable how for small K in Fig. 8b the reservoir
accesses the poorly observable signals. When the cou-
pling strength is below K ~ 1073, the gap between the
noise-free performance and the performance with noise
shows how the remote signal is hidden below the noise
level, and thus cannot be recovered.

The memoryless reservoir does not embed the input
signal, instead providing a basis of instantaneous nonlin-
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FIG. 9. Different coupling structures for the system with
bidirectional coupling (left, Eq. 10) and the system with uni-
directional coupling (right, Eq. 9). Each node has incoming
connections from all variables which are present in its equa-
tion of motion. Dashed lines represent the coupling terms in-
troduced to induce synchronization between the subsystems.

ear transformations. These transformations are sufficient
for high correlations in the GS and PS regimes, but in
the asynchronous regime, where the degree of correlation
decreases significantly, the lack of a representation of the
entire system means that the reconstruction accuracy de-
creases significantly relative to the full reservoir.

V. CONCLUSION

We have studied the reconstruction of coupled chaotic
systems by echo state networks, a form of reservoir com-
puter. Our focus lies on a unidirectional coupling scheme,
in which the reservoir takes the role of the response sys-
tem to replicate its output signals. The response can be
modelled with high accuracy throughout a wide param-
eter range.

In weak generalized synchronization, the fading mem-
ory of the reservoir allows it to access a simplified rep-
resentation of the functional dependence. This temporal
representation provides a clear advantage over the theo-
retically equivalent instantaneous representation. More-
over, we have identified a signature of the leading con-
ditional Lyapunov exponent in the convergence of the
performance with reservoir memory, where we applied a
truncated unfolded reservoir structure to control mem-
ory depth. In contrast, any memory emerged to be detri-
mental in the strong generalized synchronization regime,
where a smooth instantaneous relationship is better mod-
elled by a memoryless reservoir. In coupling regimes
without generalized synchronization, different levels of
consistency can be approximated by the reservoir com-
puter, close to the fundamental limit. The critical behav-
ior at the onset of generalized synchronization impedes
reservoir-based modelling, but also poses a challenge to
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perfect replicas.

Finally, we have applied the reservoir-computing
scheme to mutually coupled chaotic oscillators. While
this setup shows to be insensitive to synchronization, the
embedding of the reservoir allows for a reconstruction
of remote degrees of freedom despite very poor observ-
ability. In summary, we have shown how the embedding
properties of reservoir computers enable the reconstruc-
tion of coupled chaotic systems throughout different dy-
namical regimes, and we have identified the signatures of
generalized synchronization.

Appendix A: Generalized Synchronization in delay systems

A similar situation to that of a drive-response scheme
is given in delay systems, from which a basic form reads

x(t) = £(x(t)) +g(x(t — 7)),

with 7 > 0 being the delay time, and the functions f(-)
and g(-) are the vector fields of the nonlinear node and
the delayed feedback, respectively. The time-discrete ver-
sion may also be considered in this context. The de-
layed feedback acts as an external drive to the undelayed
subsystem, thus resembling the drive-response scheme®°.
Two examples of a scalar delay system with a linear local
term, £(t) = px(t) +g(x(t —7)), with © < 0, are given by
the Mackey-Glass system and the Ikeda system”™ 76, The
variation-of-constants formula, after decay of transients,
reveals a type of ‘self-GS’ as a convolution

x(t) = / dt'e" gzt — 7)) . (A1)

— 00

Noteworthy, this functional dependence exists only in the
‘embedded’ form, and a closed instantaneous expression
like Eq. (4) is not defined for the delay system, because
the instantaneous response x(t) is itself a component of
the state vector of the delay system, which as a whole
acts as drive. Modelling, however, the dependence be-
tween input (¢ — 7) and output x(t) with an embedding
ansatz is naturally reflecting the convolutional form of
Eq. (Al). Such an approach is most interesting in cases
beyond a simple scalar node, like the Lang-Kobayashi
equations for semiconductor lasers, in which non-trivial
transitions between negative and positive sub-LE occur,
together with different levels of consistency!6:6%:77,
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