Antibody-mediated control of HIV-1 infection through an alternative pathway

Martyn French

UWA Medical School and School of Biomedical Sciences, University of Western Australia, Perth, Australia.

Correspondence:
Professor Martyn French
The University of Western Australia (M574)
35 Stirling Highway
Crawley, WA 6009
Australia
E-mail: martyn.french@uwa.edu.au

Word count: Abstract - 149; Body of text – 2585
Figures: 1
Tables: 0
Introduction

Strategies for controlling HIV-1 infection without antiretroviral therapy (ART) or depleting cellular reservoirs of HIV-1 infection, are likely to include augmentation of protective immune responses through passive or active immunization. Recently, greater attention has been paid to the role that antibodies might contribute to this process\(^1\), including augmentation of antigen presentation to T cells\(^3,4\) and synergy with innate immune responses activated via Toll-like receptor 7 (TLR7)\(^5\). Most attention has been paid to the role of IgG antibodies to HIV-1 envelope glycoproteins and their activity in virus neutralization or activation of natural killer (NK) cells to mediate antibody-dependent cell-mediated cytotoxicity (ADCC)\(^6,7\). While substantial progress has been made in developing immunotherapy for HIV-1 infection through passive immunization with combinations of monoclonal IgG antibodies to HIV-1 gp120 that exert broad neutralization activity\(^8\), such therapies might not be suitable for long-term use or deplete HIV-1 reservoirs. Development of therapeutic HIV vaccines that will enhance HIV-1-specific antibody responses alone or concurrently with HIV-1-specific T cell responses, and particularly those that target HIV-1 reservoirs, therefore remains a research priority.

The efficacy of therapeutic vaccines in enhancing antibody responses against HIV-1 envelope glycoproteins is likely to be compromised during, and after cessation of, ART, as indicated by observations that the frequency of circulating HIV-1 gp140-specific memory B cells (MBCs) and production of HIV-1 gp140 IgG antibodies in co-cultures of circulating T follicular helper (cT\(_{FH}\)) cells with MBCs is lower in patients with HIV-1 infection controlled by ART than in individuals who control HIV-1 infection without ART (controllers)\(^9,10\), and that HIV-1 gp140-specific MBCs are more abundant than normal in activated and exhausted subpopulations of MBCs in patients not receiving ART\(^11\). Furthermore, HIV patients
receiving ART also experience persistent B cell dysfunction[12] and abnormal IgG glycosylation[13].

While current research is focussed on increasing the efficacy of IgG antibodies to HIV-1 envelope glycoproteins in passive and active immunization strategies, evidence is mounting that IgG antibodies to HIV-1 matrix (p17) and/or capsid (p24) proteins, encoded by \textit{Gag}, might provide an alternative pathway of antibody-mediated control of HIV-1 infection. Here, the evidence for this is presented and compared with the evidence that HIV-1 envelope glycoprotein antibodies control HIV-1 infection.

\textbf{IgG antibodies to HIV-1 capsid and matrix proteins are associated with control of HIV-1 infection}

In primary HIV-1 infection, serum HIV-1 gp41 IgG antibodies are detectable first but appear to be more effective in reducing the transmission of HIV-1 rather than in controlling HIV-1 replication[14]. HIV-1 p24 IgG antibodies are detectable on average 5 days after HIV-1 gp41 IgG antibodies and on average 10 days before HIV-1 gp120 IgG antibodies[15]. Numerous studies in the ‘pre-HAART era’ demonstrated that higher serum levels and avidity of HIV-1 p24 or p17 IgG antibodies were associated with slower HIV disease progression in both adults and children whereas this was not observed for HIV-1 gp120 IgG antibodies (reviewed in French et al[16]). Furthermore, comparison of HIV patients defined as long-term non-progressors (LTNPs) with those who experienced disease progression demonstrated that absence of HIV-1 p24 or p17 IgG antibodies was associated with disease progression whereas retention of HIV-1 gp41 or gp120 IgG antibodies had little, if any, effect on disease progression[17]

Similar observations were made in HIV controllers in comparison with non-controllers. Banerjee et al. reported that serum levels of HIV-1 p24 IgG1 antibodies were higher in elite
controllers (ECs) than non-controllers\cite{18} and both French et al\cite{19} and Tjiam et al\cite{20} reported that serum levels of HIV-1 p17 and/or p24 IgG1 and/or IgG2 antibodies were higher in HIV controllers than non-controllers and, importantly, that this was more pronounced in viraemic controllers than ECs\cite{20}. Furthermore, when the strong association of HLA-B*5701 carriage with control of HIV-1 infection was excluded, the association of HIV-1 p24 IgG1 and IgG2 antibodies with control of HIV-1 infection was only seen in viraemic controllers\cite{21}.

In contrast, serum levels of HIV-1 gp120 IgG antibodies in controllers were reported not to differ from, or to be lower than, non-controllers\cite{22,23}. However, Madhavi et al. reported that serum levels of HIV-1 gp140 IgG antibodies were higher in ECs than non-controllers\cite{24}, which had also been reported by Tjiam et al but for IgG2 and not IgG1 antibodies\cite{20}. One explanation for these findings is that HIV-1 gp140 contains the ectodomain region of gp41\cite{25} and HIV-1 gp41 IgG2 antibodies were reported to be higher in LTNPs than progressors\cite{26} and in ECs carrying ‘protective’ HLA-B alleles compared with ECs not carrying those alleles\cite{27}.

The association of HIV-1 IgG antibodies with control of HIV-1 infection has also been studied by examining antibody functional activities. Comparison of the neutralization activity of HIV-1 antibodies in HIV controllers and non-controllers in multiple studies has not demonstrated a relationship between neutralization activity and control of HIV-1 infection\cite{22,28-30}. Indeed, controllers generally exhibit low or undetectable antibodies with neutralization activity, probably reflecting low antigenic stimulation of B cells. However, LTNPs in the French ALT cohort (which contains individuals with CD4+ T counts >600/µL for at least 5 years and various HIV viral loads) who possessed IgG antibodies to the 3S motif of HIV-1 gp41 exerting neutralizing activity exhibited lower plasma HIV RNA and cellular HIV-1 DNA levels as well as higher CD4+ T cell counts\cite{31}.
Studies of HIV-1 envelope IgG antibodies that mediate ADCC and/or NK cell activation have been inconclusive. Lambotte et al reported that HIV-1 gp120-specific ADCC responses were higher in controllers than non-controllers\[^{22}\], especially controllers not carrying HLA-B57\[^{32}\]. However, Ackerman et al. did not demonstrate a difference between ECs and non-controllers, nor for any other functional activity of HIV-1 gp120 IgG antibodies\[^{23}\]. Madhavi et al reported that HIV-1 gp140 IgG antibodies that activate NK cells and mediate ADCC were higher in ECs than non-controllers\[^{24}\] but studies from the same group demonstrated that HIV-1 gp140 IgG antibodies that activate and degranulate NK cells correlated only weakly, or not at all, with rate of CD4\(^+\) T cell decline\[^{33, 34}\].

As p24 is the major component of the HIV-1 capsid, HIV-1 p24 IgG antibodies cannot elicit virus neutralisation. HIV-1 p24 IgG antibodies also appear not to activate NK cells\[^{35}\] and, therefore, ADCC is an unlikely mechanism by which they might control HIV-1 infection. Given that IgG antibodies complexed with HIV-1 virions can be phagocytosed by plasmacytoid dendritic cells (pDCs) via Fc\(\gamma\)RIIa and augment innate responses that result in interferon-alpha (IFN-\(\alpha\)) production\[^{36}\], and that IgG antibodies complexed with capsids of some non-enveloped RNA viruses can activate pDCs via Fc\(\gamma\)RIIa to produce IFN-\(\alpha\) in humans and animals\[^{37-41}\], the most likely functional effect of HIV-1 p24 IgG antibodies is opsonisation of HIV-1 capsids (containing HIV-1 RNA), released from abortively-infected CD4\(^+\) T cells undergoing pyroptosis\[^{42}\], leading to their phagocytosis by pDCs via Fc\(\gamma\)RIIa and augmentation of IFN-\(\alpha\) production, via TLR7, that suppresses HIV-1 replication in other CD4\(^+\) T cells (Figure). This proposal is supported by observations that over 80% of plasma HIV-1 p24 is complexed with IgG antibodies in chronic HIV-1 infection\[^{43}\] and that a large proportion of HIV-1 p24 appears to be non-virion associated\[^{44}\]. In addition, infectious HIV-1 virions are isolated from less than one third of immune complex samples\[^{45}\].

To investigate the possibility that opsonophagocytic antibody responses against HIV-1 capsids might control HIV-1 infection by activating pDCs, Tjiam et al examined IgG
antibodies that opsonise particles coated with HIV-1 p24 and are phagocytosed by a pDC cell line (Gen2.2 cells) via FcγRIIa and demonstrated that this type of antibody response is higher in controllers than non-controllers, especially viraemic controllers and individuals not carrying HLA-B*5701[^20,^21]. Furthermore, such antibody responses were also associated with control of early HIV-1 infection[^46]. The effect of this type of antibody response on pDC function downstream of phagocytosis is yet to be defined.

Antibodies to capsid and matrix proteins may elicit immune responses against HIV-1

The association of HIV-1 p24 and p17 IgG antibodies with control of HIV-1 infection has been attributed to their being markers of CD4+ T cell ‘help’ for HIV-1 Gag-specific CD8+ T cell responses[^17]. However, several studies have provided evidence that they might act independently of T cell responses. Firstly, serum HIV-1 p17 and/or p24 IgG1 and/or IgG2 antibody levels were similar in non-controllers and controllers carrying HLA-B*5701, which is strongly associated with CD8+ T cell-mediated control of HIV-1 infection, while being higher in controllers not carrying ‘protective’ HLA-B alleles than in non-controllers[^16,^21]. Secondly, Chung et al demonstrated that plasma HIV RNA levels in South African patients with untreated HIV-1 subtype C infection inversely correlated with HIV-1 p24 IgG1 antibody levels independently of Gag-specific CD8+ T cell responses and ‘protective’ HLA-B alleles[^47]. Thirdly, a study of over 4,000 Swiss patients established to examine predictors of HIV-1 antibody neutralization breadth[^48], demonstrated that the strongest inverse correlations with plasma HIV RNA levels were serum levels of HIV-1 p17 and p24 IgG1 antibodies and, to a lesser extent, HIV-1 p24 IgG2 antibodies. These correlations were independent of CD4+ T cell counts. Interestingly, there was an inverse correlation between plasma HIV RNA levels and levels of IgG3 antibodies to HIV-1 gp41 but not HIV-1 p24.
These findings suggest that HIV-1 p17 and/or p24 IgG antibodies might contribute directly to the control of HIV-1 infection. In support of this, Tjiam et al reported that plasma HIV-1 p24-specific IgG antibodies that opsonised HIV-1 p24-coated particles and were phagocytosed by a pDC cell line (Gen2.2 cells) inversely correlated with plasma HIV RNA levels in chronic HIV-1 infection\[^{[20]}\]. In addition, the findings of a small study provided preliminary evidence that vaccine-induced HIV-1 p24 IgG antibody responses might contribute to control of HIV-1 infection. Administration of DNA vaccines encoding a fowlpox virus (FPV) vector with HIV-1 Gag-Pol and interferon-gamma (IFN-\(\gamma\)) (n=12) or HIV-1 Gag-Pol without IFN-\(\gamma\) (n=11), or a placebo (n=12), to patients with HIV-1 infection controlled by ART, demonstrated that only the vaccine including IFN-\(\gamma\) was associated with control of HIV replication after ART was ceased\[^{[49]}\]. It could not be shown that IFN-\(\gamma\) in the vaccine augmented HIV-1 Gag-specific T cell responses\[^{[50]}\] but amongst patients who received the FPV/Gag-Pol/IFN-\(\gamma\) vaccine, the most robust control of HIV-1 replication occurred in those who produced HIV-1 p24 IgG2 antibodies and carried a high affinity genotype of Fc\(\gamma\)RIIa\[^{[51]}\]. While the findings of this study must be interpreted with caution because of small patient numbers, they could illuminate novel mechanisms of antibody-mediated control of HIV-1 infection. Thus, IFN-\(\gamma\) augments IgG2 production by B cells\[^{[52]}\] and in concert with B cell receptor co-stimulation, induces IgG2 class-switching in IgM\(^+\) MBCs, which express high levels of IFN-\(\gamma\)R1\[^{[53]}\]. Furthermore, IgM\(^+\) MBCs play a role in producing non-neutralising IgG antibodies to structural proteins of some RNA viruses that control their replication, as exemplified by rotavirus\[^{[54]}\]. Stimulation of IgM\(^+\) MBCs by the FPV/HIV-1 Gag-Pol/IFN-\(\gamma\) vaccine resulting in an IgG antibody response against HIV-1 p24, including IgG2 antibodies, may therefore explain the findings of Emery et al\[^{[49, 50]}\].
Furthermore, as IgM+ MBCs enter germinal centre (GC) reactions to a greater extent than IgG+ MBCs[53, 55], the findings of several studies suggesting that T\textsubscript{FH} cells regulate HIV-1 p24 and p17 IgG antibody responses are of particular interest. Thus, amongst lymph node T\textsubscript{FH} cells from patients with untreated HIV-1 infection, the frequency of Gag-specific T\textsubscript{FH} cells was at least twice as high as the frequency of HIV-1 gp120-specific T\textsubscript{FH} cells[56], and in ECs, the frequency of HIV-1 Gag-specific cT\textsubscript{FH} cells was over four times higher than in patients with HIV-1 infection controlled by ART[10]. Also, in South African patients with acute HIV-1 infection, the frequency of cT\textsubscript{FH} cells with a Th1 phenotype correlated with serum levels of HIV-1 p24 and p17 IgG antibodies at one year, and to a greater degree than HIV-1 gp41 or gp120 IgG antibodies[57]. Moreover, HIV-1 p24 IgG antibodies at one year inversely correlated with HIV-1 viral load set point. An inverse correlation was also observed between HIV-1 viral load set point and HIV-1 gp41 but not HIV-1 gp120 IgG antibodies.

Could HIV-1 p24 IgG2 antibodies complement HIV-1 p24 IgG1 antibodies in controlling HIV-1 infection?

While IgG1 is the predominant subclass of HIV-1 IgG antibodies in chronic HIV-1 infection[23, 48], other IgG subclasses likely complement IgG1 antibodies in particular functional activities, as exemplified by IgG3 antibodies in the neutralisation and/or NK cell activating activity of HIV-1 gp120 IgG antibodies[23, 58]. The findings of several studies suggest that HIV-1 p24 IgG2 antibodies might complement HIV-1 p24 IgG1 antibodies in controlling HIV-1 infection[19-21, 48, 51]. However, this was not demonstrated in a small group (n=16) of predominantly ECs[18], patients with early HIV-1 infection[46] or South African patients with chronic HIV-1 subtype C infection[47]. Notably, the association of HIV-1 p24 IgG2 antibodies with control of HIV-1 infection was observed after vaccination[51] or in
chronic HIV-1 infection with active viral replication, including viraemic controllers and particularly after excluding the effect of HLA-B*5701[19-21, 48]. These findings suggest that antigen stimulation of B cells is required to observe the association of HIV-1 p24 IgG2 antibodies with control of chronic HIV-1 infection, though South African patients may be an exception[47].

Investigations of how IgG2 antibodies might enhance HIV-1 p24 IgG antibody responses should focus on functional activities that are characteristic of IgG2. While IgG2 antibodies bind poorly to antigens with a low epitope density[59] and possess Fc domains that exhibit FcγR binding that is predominately limited to high affinity genotypes of FcγRIIa[60], IgG2 aggregates and forms covalent dimers more than IgG1, through greater inter-chain disulphide bond connectivity[61, 62], and is normally the predominant IgG subclass in plasma IgM-IgG immune complexes, where it enhances binding to mononuclear leucocytes[63]. Therefore, HIV-1 p24 IgG2 antibodies might enhance HIV-1 capsid/antibody complex formation and their phagocytosis via FcγRIIa. Investigations of this demonstrated that FcγRIIa-binding immune complexes isolated from plasma of HIV controllers exhibited a much higher proportion of IgG2 than IgG1, which was similar to HIV seronegative subjects, whereas plasma FcγRIIa-binding immune complexes from non-controllers did not[19]. Of note, patients with chronic HIV-1 infection exhibit much lower serum IgG2/IgG1 ratios than normal[12]. However, using HIV-1 p24-coated beads opsonised ex vivo with HIV-1 p24 IgG antibodies from patients with HIV-1 infection, Tjiam et al could not demonstrate that IgG2 antibodies complemented IgG1 antibodies in phagocytosis by pDCs via FcγRIIa[20].

Conclusions and future perspectives

The evidence that HIV-1 p17 and/or p24 IgG antibodies are associated with natural
control of HIV-1 infection is at least as convincing as the evidence that HIV-1 gp120 and/or HIV-1 gp41 IgG antibodies control HIV-1 infection. However, that evidence is largely correlative in nature and studies to examine the effect of augmenting HIV-1 p24 IgG antibody responses, by passive or active immunization, on the replication of HIV-1, or simian-human immunodeficiency virus infection in non-human primates, are required. Active immunization using vaccination strategies and/or vaccines that induce strong HIV-1 p24 IgG antibody responses[64, 65] is a potential means of doing this.

Although HIV-1 p17 and/or p24 IgG antibodies are unlikely to mediate neutralization of HIV-1 or ADCC of HIV-1 infected cells, it is feasible that they mediate an opsonophagocytic antibody response against virion- and cell-free HIV-1 capsids (containing HIV-1 RNA) that augments pDC and IFN-\(\alpha\) responses against HIV-1-infected cells. Further investigation of (a) the proposed role of IgM\(^{+}\) MBCs in generating an effective HIV-1 p24 IgG antibody response, (b) the effects of HIV-1 p24 IgG antibody responses on pDC function downstream of phagocytosis, and (c) the proposed activities of HIV-1 p24 IgG2 antibodies in enhancing HIV-1 capsid/antibody complex formation and binding to Fc\(\gamma\)RIIa, may strengthen the hypothesis that there is an alternative pathway of antibody-mediated control of HIV-1 infection and lead to novel therapeutic approaches for controlling HIV-1 infection, including vaccination strategies that enhance antibody and T cell responses against Gag-encoded antigens concurrently.

Acknowledgements

The contributions of many colleagues and students to the formulation of this hypothesis is acknowledged, particularly Chris Tjiam, who contributed to many invaluable discussions and produced the figure, and Sonia Fernandez, who co-supervised laboratory studies. Funding
provided by the National Health and Medical Research Council of Australia and Royal Perth Hospital Medical Research Foundation is also gratefully acknowledged.
Diagramatic representation of a proposed alternative pathway for antibody-mediated control of HIV-1 infection. HIV-1 capsids released from virions into the cytoplasm of CD4+ T cells enter the extracellular environment after abortive infection and pyroptosis of the cell and are bound by HIV-1 p17 and/or p24 IgG antibodies. HIV-1 capsid/antibody complexes are phagocytosed by pDCs via FcγRIIa and HIV-1 RNA released from capsids binds to TLR7 in the endosomal compartment of pDCs. The downstream effects of HIV-1 RNA binding to TLR7 leads to the production of type I interferons (T1 IFN), particularly IFN-α. IFN-α produced by pDCs induces interferon-stimulated genes (ISG) in CD4+ T cells productively infected with HIV-1 leading to suppression of HIV-1 replication (indicated by the green lines).
References

