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Abstract 64 
Despite considerable research demonstrating that biodiversity increases productivity in forests 65 
and regulates herbivory and pathogen damage, there remain gaps in our understanding of the 66 
shape, magnitude, and generality of these biodiversity-ecosystem functioning (BEF) 67 
relationships. Here, we review findings from TreeDivNet, a global network of 25 tree diversity 68 
experiments, on relationships between levels of biodiversity and (a) tree growth and survival 69 
and (b) damage to trees from pests and pathogens. Tree diversity often improved the survival 70 
and above- and belowground growth of young trees. The mechanistic bases of the diversity 71 
effects on tree growth and survival include both selection effects (i.e., an increasing impact of 72 
particular species in more species-rich communities) and complementary effects (e.g. related to 73 
resource differentiation and facilitation). Plant traits and abiotic stressors may mediate these 74 
relationships. Studies of the responses of invertebrate and vertebrate herbivory and pathogen 75 
damage have demonstrated that trees in more diverse experimental plots may experience 76 
more, less, or similar damage compared to conspecific trees in less diverse plots. Documented 77 
mechanisms producing these patterns include changes in concentration, frequency, and 78 
apparency of hosts; herbivore and pathogen diet breadth; the spatial scale of interactions; and 79 
herbivore and pathogen regulation by natural enemies. Our review of findings from TreeDivNet 80 
indicates that tree diversity experiments are extending BEF research across systems and 81 
scales, complementing previous BEF work in grasslands by providing opportunities to use 82 
remote sensing and spectral approaches to study BEF dynamics, integrate belowground and 83 
aboveground approaches, and trace the consequences of tree physiology for ecosystem 84 
functioning. This extension of BEF research into tree-dominated systems is improving 85 
ecologists’ capacity to understand the mechanistic bases behind BEF relationships. Tree 86 
diversity experiments also present opportunities for novel research. Since experimental tree 87 
diversity plantations enable measurements at tree, neighbourhood and plot level, they allow for 88 
explicit consideration of temporal and spatial scales in BEF dynamics. Presently, most 89 
TreeDivNet experiments have run for less than ten years. Given the longevity of trees, exciting 90 
results on BEF relationships are expected in the future.  91 
 92 
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1. Introduction 100 
Tree diversity in natural forests varies tremendously across the globe and ranges from aspen 101 
stands dominated by a single genotype (Mock et al., 2008) to tropical assemblages of more 102 
than 400 tree species per hectare (Liang et al., 2016). Humans have a clear effect on this 103 
diversity, through both the intentional and unintentional effects of silviculture and 104 
overexploitation (Morris, 2010). Natural forests have in many cases been replaced with less 105 
diverse secondary forests (especially in tropical regions; Newbold et al., 2015; Sloan and Sayer, 106 
2015) or plantations (globally; Bremer and Farley, 2010; Spiecker, 2003) causing massive 107 
losses and, in some cases, some gains in forest-associated biodiversity (Betts et al., 2017; 108 
Lindenmayer et al., 2015). Historically, expectations of the consequences of reduced tree 109 
species diversity – including lower stand growth rates and increased vulnerability to damage by 110 
disease and herbivores – have been either based on observational data (Jactel and 111 
Brockerhoff, 2007; Liang et al., 2016; Paquette and Messier, 2011) or inferred from experiments 112 
in non-forested ecosystems (Cardinale et al., 2006; Hooper et al., 2012). Foundational 113 
biodiversity-ecosystem functioning (BEF) research in grasslands in particular provides a rich set 114 
of hypotheses about potential BEF relationships (Cardinale et al., 2011; Hooper et al., 2005; 115 
Tilman et al., 2014).  116 
 117 
The notion that diverse ecosystems might be more productive (McNaughton, 1977; Trenbath, 118 
1974; Vandermeer, 1981) or more resistant to disease or damage by herbivores 119 
(Elton, 1958; McNaughton, 1985) has periodically been proposed since Darwin (1859). Yet, the 120 
current era of BEF research dates conclusively to 1991, when discussion of the topic re-121 
emerged at a conference in Bayreuth, Germany and in a subsequent collection of papers 122 
(Schulze and Mooney, 1994). Research from grasslands (Tilman et al., 1996; Tilman and 123 
Dowling, 1994) and mesocosms (Naeem et al., 1994) soon provided the first evidence that 124 
biodiversity can enhance primary productivity beyond what would be expected based on 125 
monoculture yield (referred to as overyielding). This early BEF research mainly focused on 126 
primary productivity as a key ecosystem function that integrates the effect of biodiversity on 127 
other functions, such as resistance to pests and diseases (Cardinale et al., 2012). As such, 128 
productivity emerged as the most frequently studied metric of ecosystem functioning. Yet, 129 
additional studies of other ecosystem functions in grasslands quickly proliferated, consolidating 130 
the current consensus that biodiversity supports ecosystem functioning and multifunctionality 131 
(Cardinale et al., 2006; Hector and Bagchi, 2007; Hooper et al., 2005; Tilman et al., 2012). 132 
Advances over the first 20 years of BEF research have also raised new questions about the 133 
generality of and mechanisms behind BEF relationships (Tilman et al., 2014; Weisser et al., 134 
2017), the importance of different facets of biodiversity (e.g. species, functional and 135 
phylogenetic diversity) in shaping ecosystem functioning (Flynn et al., 2011), and the interacting 136 
effects of abiotic factors such as resource availability or drought (Craven et al., 2016). 137 
 138 
In response to criticism (for instance Aarssen 1997, Huston 1997), BEF researchers have 139 
attempted to demonstrate that findings from controlled diversity experiments, especially the first 140 
generation of synthetic grassland and mesocosm studies, are relevant to real-world ecosystems 141 
and generalizable across ecosystem types. Over the last two decades, BEF research has 142 
expanded into a variety of ecosystems other than grasslands, including farm fields, forests, 143 
streams, lakes, and marine environments. Though BEF dynamics vary across systems, diversity 144 
repeatedly has affected ecosystem functionality (Cardinale et al., 2011; Lefcheck et al., 2015). 145 
As such, whether biodiversity positively affects ecosystem functioning is no longer widely 146 
debated, and research has largely shifted to understanding the mechanisms and context-147 
dependency of BEF relationships. 148 
 149 



Globally distributed tree diversity experiments hold the potential to complement past work, add 150 
generality, and address criticisms, improving our mechanistic understanding of the relationships 151 
between biodiversity and ecosystem functioning. Networks of globally distributed experiments 152 
with common experimental methodology represent the future of BEF research. Since they 153 
capture much variation in species combinations and environmental conditions, they provide 154 
more generality to the findings and permit extrapolation to a large inference population (Bauhus 155 
et al., 2017). Mirroring the development of ecology as a discipline, BEF investigations originated 156 
as a series of single-site experiments (e.g. Naeem et al. 1994, Tilman et al. 1996) and are now 157 
routinely conducted through regional networks of experiments (Hector, 1999), meta-analysis 158 
(Hooper et al., 2012; Isbell et al., 2015), and synthesis of globally collected observational data 159 
(Liang et al., 2016). Global experimental networks, including the one reported on here, 160 
represent a new and promising trend in a variety of ecological disciplines, including BEF 161 
research. In their introduction of the grassland-based Nutrient Network, Borer and colleagues 162 
(2014) note that global networks complement studies at single sites and post hoc synthesis of 163 
data from single-site experiments by encouraging participating researchers to use consistent 164 
methodologies, which, when applied across global ecological gradients, allow for mechanistic 165 
causal inference, providing more realistic interpretation than other experimental methods. To 166 
date, many distributed ecological networks have been only regional in scope (Fraser et al., 167 
2013), although some, such as the Nutrient Network, have achieved global reach. Global, 168 
distributed networks will be critical if BEF researchers are to effectively counter criticisms related 169 
to realism and generality. 170 
 171 
We review here empirical work conducted in TreeDivNet, a global network of 25 tree diversity 172 
experiments, some at multiple sites, covering 817 ha and comprising over 1.1 million trees 173 
(Verheyen et al. 2016; www.treedivnet.ugent.be). Since 1999, TreeDivNet experiments have 174 
been established in boreal, temperate, Mediterranean, subtropical, and tropical sites (Fig. 1); 175 
together they constitute the largest network of experiments in the world in which biodiversity is 176 
systematically manipulated.  177 
 178 
All TreeDivNet experiments manipulate tree (and sometimes shrub) diversity and conduct 179 
ecological measurements to study a variety of ecosystem functions, processes, and services. 180 
The dimensions of biodiversity manipulated (e.g. genotypic richness, species richness, 181 
functional diversity, etc.), species used in experiments, and measurements taken vary within the 182 
network (Table 1). The most common approach is an experiment in which plots of trees vary in 183 
species, functional or genotypic richness and in which regular monitoring of tree growth and 184 
mortality is complemented by periodic or ad hoc measurements of other responses. 185 
Experimental plots are generally composed of species mixtures typical of native stands and/or 186 
plantations. Some experiments also allow the exploration of tree identity versus tree diversity 187 
effects through inclusion of multiple assemblages of equal richness (Ampoorter et al., 2015; 188 
Tobner et al., 2014). Across the network, consistency in methods has allowed for collaborative 189 
syntheses of findings across experiments (e.g. Pollastrini et al. 2014, Haase et al. 2015).  190 
 191 
To date, researchers working in TreeDivNet have produced 143 peer-reviewed publications and 192 
15 doctoral theses describing work at most of the network’s sites (Appendix 1). Though these 193 
reports detail the responses of a variety of ecosystem properties to tree diversity manipulations, 194 
we choose to focus on two particular ecosystem functions: tree growth and survival and 195 
herbivore and pathogen damage from (Fig. 2). These responses are measured across the 196 
network and are widely treated as critical, diversity-dependent ecological processes in the BEF 197 
literature. The consequences of plant diversity manipulations for diversity at other trophic levels, 198 
nutrient cycling, and other response variables will be systematically analyzed using formal meta-199 
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analysis in a future paper. Instead, here we review the diverse results emerging from the first 200 
generation of TreeDivNet papers and highlight both representative and striking results. 201 
 202 
In the present work, we review BEF research in the TreeDivNet network and describe a global 203 
experimental platform for assessing BEF dynamics in forests (this section), unpack several key 204 
concepts for understanding BEF findings (section 2), review research from the network 205 
published to date on the consequences of diversity for tree growth and survival (section 3) and 206 
tree damage by pests and pathogens (section 4), and highlight opportunities for (section 5) and 207 
challenges to (section 6) novel BEF research in tree diversity experiments.  208 
 209 
2. Key concepts underlying BEF research 210 
Prior to reviewing findings from TreeDivNet, we briefly unpack three concepts essential to 211 
understanding recent research in the network. First, the concept of mechanism in BEF research 212 
provides a central gap in knowledge and motivation for this review. Second, the partitioning of 213 
biodiversity effects into complementarity and selection effects has emerged as an essential 214 
concept in BEF research, and especially in studies of plant growth or productivity. Finally, most 215 
of the reports we reviewed that address the consequences of diversity for pest or pathogen 216 
damage do so in terms of associational effects and their bases in bottom-up and/or top-down 217 
effects. 218 
 219 
Since the first studies linking biodiversity to ecosystem functioning, ecologists conducting 220 
(Naeem et al., 1994; Tilman and Dowling, 1994) and criticizing (Huston, 1997; Wardle et al., 221 
1997) BEF research have emphasized the necessity of establishing mechanistic explanations 222 
for BEF relationships. We consider mechanistic explanations of BEF findings to be reductionist 223 
descriptions of the specific biophysical patterns that give rise to the observed changes in 224 
ecosystem functioning over a gradient of increasing biodiversity. Mechanistic explanations 225 
generally refer to the traits of study organisms (both morphological and physiological), 226 
biogeochemical cycling of nutrients between organisms and their environment (often soil, litter, 227 
or water), or multitrophic dynamics observed within the experiment (Forrester and Bauhus, 228 
2016). The most common explanation is that trait dissimilarity among associated organisms 229 
results in niche differentiation and allows the community of organisms to make better use of 230 
limiting resources (Loreau, 2000; Loreau and Hector, 2001; Tilman et al., 1997). For instance, 231 
Williams and colleagues (2017) attributed an observed increase in canopy growth at higher 232 
diversity (the BEF relationship) to niche differentiation among species with different strategies 233 
for light acquisition (the mechanism). Such mechanistic explanations of BEF are central to 234 
modern ecology (Schoener, 1986) and essential to our understanding of biodiversity (Cadotte et 235 
al., 2011; Eisenhauer et al., 2016; Mikola and Heikki, 1998). 236 
 237 
Positive net biodiversity effects on a given ecosystem function are frequently described in terms 238 
of complementarity and selection effects. This practice, though influential in the BEF literature, 239 
does not pertain to mechanism in a strict sense as complementarity and selection are not lower-240 
level processes explaining BEF effects. Hector and Loreau’s (2001) canonical formulation of 241 
these concepts, which was developed in response to criticism of the interpretation of early BEF 242 
findings (e.g. Aarssen 1997, Huston 1997, Heijden et al. 1999), remains widely used. Briefly, 243 
partitioning the net effects of biodiversity into complementary and selection provides a semi-244 
mechanistic interpretation by mathematically determining whether BEF relationships stem from 245 
additive impacts of particular species or non-additive impacts of interacting species (e.g. Potvin 246 
and Gotelli 2008, Lang’at et al. 2013, Bu et al. 2017). Complementarity effects of biodiversity 247 
occur when mixtures have a larger yield than the expectations based on the performance in 248 
monocultures. These effects can include niche partitioning and facilitation, though Loreau and 249 
Hector’s method does not allow for their separation and quantification. Furthermore, to use their 250 



method, investigators must be able to quantify the contributions of individual tree species to a 251 
plot-level ecosystem response. This is relatively straightforward when summing up biomass 252 
produced by a group of plants in a plot. It can also be done by using meaningful weighting 253 
coefficients to represent species-specific contributions to ecosystem functioning (Grossiord et 254 
al., 2013). Yet emergent properties that can only be measured for the community as a whole 255 
(e.g, ecosystem resilience, structural complexity) require a different methodological approach. 256 
For instance, a random partition design, as in EFForTS-BEE (Teuscher et al., 2016), makes it 257 
possible to quantify the importance of species interactions versus identity effects even if the 258 
relative contributions of each species are unknown, and to estimate the level of change in 259 
ecosystem functioning if one particular species would be added to or lost from a composition 260 
(Bell et al., 2009). As tree diversity experiments involve measurements on individual plants, a 261 
more complex analysis that goes beyond the partitioning of complementarity and selection as in 262 
grassland studies is possible (e.g. Chamagne et al., 2016).  263 
 264 
Associational effects describe the consequences of neighbourhood composition for the amount 265 
of damage caused by pests and pathogens to a plant (Moreira et al., 2016; Underwood et al., 266 
2014). Associational effects range from associational resistance when a plant suffers less 267 
damage when surrounded by heterospecific neighbours (e.g. Vehviläinen et al. 2006, Cook-268 
Patton et al. 2014, Damien et al. 2016, Jactel et al. 2017) to associational susceptibility when 269 
plants with heterospecific neighbours suffer more damage (e.g. White and Whitham 2000, 270 
Schuldt et al. 2010). Mechanistic explanations of associational effects reviewed here include the 271 
consequences of bottom-up effects (host concentration, host apparency, pest and pathogen diet 272 
breadth, and spatial scale) and one top-down effect (natural enemies) for damage to plants. 273 
 274 
The resource concentration hypothesis (Hambäck and Englund, 2005; Root, 1973) states that 275 
herbivores are more likely to immigrate into and less likely to emigrate from patches where their 276 
resources are more concentrated. In addition to host concentration, the specific composition of 277 
tree species mixtures may influence herbivore and pathogen damage through changes in tree 278 
apparency. Plant apparency, initially defined at the species level, describes a plant’s likelihood 279 
of being found by herbivores (Feeny, 1976). The apparency concept has more recently been 280 
adapted to the case of individual trees in the BEF context and is viewed as neighbour-mediated 281 
apparency in the sense that a particular plant’s neighbours can modify its likelihood of being 282 
found (Castagneyrol et al., 2013a; Damien et al., 2016). The strength and direction of 283 
associational effects likely depends on the scale at which tree diversity influences herbivore 284 
foraging and host selection (Hambäck et al., 2014). Moreira et al. (2016) recently stressed that 285 
herbivore mobility could be a key driver of associational effects, highly mobile herbivores being 286 
more likely to disperse and choose among individual trees and patches of trees (Bommarco and 287 
Banks, 2003; Moreira et al., 2016). Tree species diversity at larger spatial scales may therefore 288 
be of greater importance for highly mobile herbivores.  289 
 290 
In addition to the direct, bottom-up effects of plant community composition and diversity, 291 
herbivores face a wide range of natural enemies that prey upon them or alter their behaviour. 292 
These top-down effects can significantly change key ecosystem processes, such as plant 293 
biomass production and nutrient cycling (Schmitz, 2008). Ecological theory and early studies in 294 
agricultural systems indicated that plant diversity modifies top-down effects (Andow, 1991; Root, 295 
1973), with stronger control of herbivores expected when plant diversity is high (the enemies 296 
hypothesis; Root 1973). While some BEF studies in non-forest ecosystems have shown clear 297 
support for the enemies hypothesis (e.g. Haddad et al. 2009), others have indicated that plant 298 
diversity has much weaker effects on predators than on herbivores (Scherber et al., 2010); 299 
support for the enemies hypothesis in forested ecosystems is mixed (Zhang and Adams, 2011). 300 
So far, relatively few studies have addressed the relationship between tree diversity and 301 



predators in controlled experiments and, often, only specific predator taxa or functional groups 302 
were studied, which limits our ability to draw broad generalizations. Also considering that 303 
predators are taxonomically, ecologically, and behaviourally very heterogeneous and can 304 
strongly affect each other via horizontal intraguild interactions (Finke and Denno, 2005; Grass et 305 
al., 2017), the net effect of tree diversity-mediated top-down effects on herbivores might thus 306 
depend on how tree diversity influences these intraguild interactions (see also Schuldt and 307 
Staab 2015). Predator abundance or diversity might therefore not necessarily be the best 308 
measures of predation pressure. 309 
 310 
3. Tree growth and survival across diversity gradients 311 
Tree mortality and growth are assessed across the TreeDivNet network (Tables 1,2). The 312 
surveyed literature included 36 publications on the relationship between diversity and tree 313 
growth and/or survival from 11 experiments. Specific responses assessed (e.g. stem growth vs. 314 
root growth) are detailed in Table 2 and vary among studies such that some experiments 315 
contributed data to multiple publications. These reports, over the first 15 years of the tree 316 
diversity experiments, generally document either no or positive effects of tree diversity on the 317 
two responses. In a single study from the BEF-China experiment (Yang et al., 2013), tree 318 
mortality was initially higher at higher species richness; the effect disappeared after replanting 319 
and, according to the authors, was due to the greater on-the-ground challenges of planting high-320 
diversity plots. In the early stages of the Indonesian EFForTS-BEE experiment, the diversity of 321 
planted tree species had a negative effect on tree growth but a positive effect on tree survival 322 
(Gérard et al. submitted). Although a number of authors reported on root growth, studies of 323 
aboveground growth predominated in the reviewed works. The relationship between biodiversity 324 
and tree growth (Fig. 2) was often described in terms of complementarity and selection effects 325 
(section 3.1), niche differentiation (3.2), facilitation through mitigation of abiotic stress (3.3), and 326 
trait-dependent responses (3.4). 327 
 328 
3.1 Complementarity and selection effects 329 
In some cases, authors use Hector and Loreau’s (2001) formal partitioning method to quantify 330 
complementarity and selection effects (section 2). In others, complementarity and selection are 331 
invoked as conceptual explanations of diversity-growth/survival relationships and deployed to 332 
explain observed patterns (Peng et al., 2017; Sun et al., 2017; Van de Peer et al., 2016). 333 
Evidence for both complementarity and selection effects has been reported from TreeDivNet 334 
experiments (Table 2). These findings are consistent with grassland studies, in which 335 
aboveground overyielding in biomass production has been attributed to both. 336 
 337 
Some authors presented evidence (or a lack of evidence) for complementarity- or selection-338 
driven BEF relationships though they did not carry out formal analyses. For instance, Van de 339 
Peer and colleagues (2016) found that tree seedlings in the FORBIO experiment experienced 340 
lower variation in mortality at higher species richness. Yet this buffering effect simply stemmed 341 
from species-specific differences in mortality; more diverse plots were were less likely to contain 342 
a high share of species that tended to die easily. As such, the effect of diversity on mortality 343 
occurred through selection. Conversely, Sun et al. (2017) found that roots were more evenly 344 
distributed through the soil profile at higher species richness in the BEF-China experiment, 345 
suggesting a more complete use of soil resources, a sign of complementarity. Below, we review 346 
several concrete mechanisms that underlie these findings of complementarity- and selection-347 
based overyielding. 348 
 349 
3.2 Niche differentiation 350 
In contrast to studies that measure the gross effects of tree diversity on growth and yield 351 
(through selection and/or complementarity effects), there were few published TreeDivNet 352 



investigations of the specific mechanisms underlying complementarity effects in tree 353 
monocultures and mixtures. Results from a short-term experiment, using different genotypes of 354 
willows, indicated that the expression of traits related to nitrogen use efficiency differed between 355 
mixture and monoculture (Hoeber et al., 2017). Similarly, recent work at the IDENT-Montreal 356 
site (Williams et al. 2017) has demonstrated canopy niche differentiation, resulting in a more 357 
efficient space use and light interception in mixtures than in monocultures (Pretzsch, 2014).  358 
 359 
Differential use of available belowground resources (e.g. water and nutrients) has been shown 360 
to contribute to complementary interactions in assemblages of multiple coexisting species 361 
(Ashton et al., 2010; McKane et al., 2002; Meinzer et al., 1999). In research conducted in the 362 
BEF-China experiment, Bu et al. (2017) and Sun et al. (2017) offer examples of overyielding 363 
driven by such belowground resource use differentiation. Additionally, several ongoing studies 364 
in TreeDivNet experiments address resource use issues in order to test the mechanistic role of 365 
trait diversity in ecosystem productivity and identify the processes that explain why different 366 
community components (species or genotypes) promote resource use efficiency, productivity, 367 
and ecosystem functioning (Isbell et al., 2011). These insights will be useful in designing 368 
resource-use efficient and productive tree-based production systems (cf. Malézieux 2009 for 369 
agro-ecosystems). 370 
 371 
3.3 Facilitation through amelioration of abiotic stress 372 
Increasingly, tree diversity experiments have been designed to include manipulation of abiotic 373 
stressors in concert with diversity gradients. The three relevant TreeDivNet studies published to 374 
date have not provided evidence of strong interactions between abiotic stress and the diversity-375 
growth/survival relationship. Local microclimate in BEF-China (Kröber et al., 2015) and an 376 
imposed drought gradient in FORBIO (Dillen et al., 2016) did not mediate the relationship 377 
between tree diversity and aboveground growth, nor did localized nutrient enrichment affect 378 
belowground productivity in the BIOTREE experiment (Lei et al., 2012). Several experiments in 379 
the network (Table 1; ORPHEE, IDENT, Ridgefield, Sabah, BEF-China) include further 380 
manipulations of abiotic variables thought to have an impact on BEF dynamics, but there has 381 
yet to be published work addressing the topic. As such, it remains to be seen whether findings 382 
from these experiments will corroborate work from grassland diversity experiments documenting 383 
interactions between diversity, plant performance, and abiotic stressors (Adair et al., 2009; 384 
Craine et al., 2003). 385 
 386 
3.4 Traits and tree growth and survival 387 
It has become commonly accepted over the last two decades that the functional traits governing 388 
how plants affect and respond to their environments do play and will continue to play a central 389 
role in the ongoing efforts to link the physiology of individuals to population dynamics and 390 
ecosystem functioning (McGill et al., 2006; Violle et al., 2007). Accordingly, some of the earlier 391 
mechanistic interpretations of biodiversity-growth/survival relationships have revolved around 392 
functional traits. For instance, communities composed of a higher diversity of functional groups 393 
(e.g. legumes, warm-season grasses, cool-season grasses, etc.) overyielded in productivity 394 
consistently in the first generation of grassland diversity experiments (Hector, 1999; Tilman et 395 
al., 1997). Extension of the trait-based BEF perspective to tree diversity experiments now allows 396 
for the assessment of how both the mean trait values and trait diversity of communities as well 397 
as individual trees’ traits may affect community performance. 398 
 399 
While early BEF research in grasslands has consistently indicated that community-level 400 
diversity of functional traits (e.g. a wide range of leaf nitrogen contents) improves community 401 
performance, several tree diversity experiments have provided evidence that mean trait values 402 
contribute more than trait diversity. For instance, in two sites in the IDENT experiment, 403 



communities dominated by species with highly branching roots (Tobner et al., 2016) and low 404 
leaf nitrogen content (Grossman et al., 2017) showed higher aboveground overyielding in 405 
productivity. Similarly, Kröber et al. (2015) found community-weighted mean trait values to 406 
explain crown growth at the community level better than functional diversity. In these cases, it 407 
appears that the prevalence of species with particular traits, rather than a diversity of traits, is 408 
responsible for positive diversity effects. Such results can indicate a selection effect, in which a 409 
given trait value promotes growth regardless of local diversity, or a complementarity effect, in 410 
which species with a particular trait value are best able to take advantage of diverse conditions. 411 
It is unclear whether the effect of the mean trait value, rather than trait diversity, is because of 412 
the early stage of stand development in these tree diversity experiments (e.g. Reich et al. 2012). 413 
The contribution of functional diversity to overyielding has been reported from the BEF-China 414 
and Gazi Bay experiments, with, for example, root trait diversity (e.g. rooting depth and specific 415 
root length) predicting greater overyielding in biomass, potentially through niche differentiation 416 
(Bu et al., 2017; Lang’at et al., 2013; Peng et al., 2017). Most TreeDivNet experiments are still 417 
in the early stages of growth, and it is expected that some traits will become more relevant with 418 
time. For instance, diversity in or a high trait mean for shade tolerance may become important 419 
as tree diversity experiments enter canopy closure and the self-thinning stages of stand 420 
development. 421 
 422 
4. Herbivore and pathogen damage across diversity gradients 423 
Of the reviewed TreeDivNet literature, 36 publications presented research from 12 experiments 424 
assessing herbivore and/or pathogen damage (hereafter “damage”; Tables 1,3). As was the 425 
case for measurements of tree growth and survival, some experiments were included in multiple 426 
reports as different responses (Table 3) were measured. The studies were distributed relatively 427 
evenly across tropical, boreal, and temperate sites and focused on a wide variety of invertebrate 428 
leaf herbivory, including broadleaf chewing and skeletonizing, hole feeding, galling, mining, 429 
rolling, and sucking as well as needle herbivory. Relatively few reports addressed pathogen 430 
damage (five papers) or vertebrate herbivory (four), and none addressed woody stem herbivory. 431 
No study to date has addressed tree diversity effects on belowground herbivores or pathogens. 432 
Investigators documented associational resistance, associational susceptibility or neutral effects 433 
of tree diversity on herbivores and pathogens, which calls for a better understanding of the 434 
mechanisms at play. Proposed mechanisms for the relationship between biodiversity and 435 
damage (Fig. 2) generally pertained to either pest and pathogen access to hosts (section 4.1) or 436 
to top-down effects from natural enemies (section 4.2). Several studies assessed integrated 437 
assessments of the relationships between tree diversity and tree growth and survival as well as 438 
between tree diversity and damage (section 4.3). 439 
 440 
4.1 Bottom-up effects change host accessibility to herbivores and pathogens 441 
To date most research on biodiversity-damage relationships has emphasized a suite of likely 442 
interacting bottom-up effects that influence tree vulnerability to damage from pathogens and 443 
heribvores, including: host concentration and frequency, plant apparency, the degree of 444 
specialization (diet breadth) of herbivores and pathogens, and the spatial arrangement of trees 445 
within and among mixed forest patches. 446 
 447 
The resource concentration hypothesis (section 2) has received mixed support from TreeDivNet 448 
studies. For instance, in tree neighbourhoods with a low diversity where host trees are more 449 
concentrated, herbivory was more intense for oaks and pines in the ORPHEE experiment 450 
(Castagneyrol et al., 2014, 2013b; Damien et al., 2016), but less intense in the BEF-China 451 
experiment (Schuldt et al. 2015) and the IDENT-Freiburg site (Wein et al. 2016). For pathogen 452 
infestation, which is also expected to increase with host concentration (Civitello et al., 2015), the 453 
few available studies from TreeDivNet yielded inconsistent results as well (Hantsch et al., 2013, 454 



2014b; Schuldt et al., 2017). In the following sections, we will discuss how deviations from the 455 
original resource concentration hypothesis can be partially accounted for by taking into account 456 
the degree of specialization of herbivores and pathogens and the scale at which tree diversity 457 
effects occur. 458 
 459 
Before herbivores or pathogens can damage a focal tree, they need to find or reach it. Working 460 
on the ORPHEE experiment, Castagneyrol et al. (2013) showed that oak colonization by 461 
specialist herbivores increased with the relative size of oaks with respect to their neighbours: 462 
oaks that were relatively taller than their immediate heterospecific neighbours were more 463 
heavily attacked. Similarly, in the BEF-China experiment, Schuldt et al. (2015) showed that 464 
herbivory became more pronounced as trees grew larger.  As such, the effect of tree diversity 465 
on herbivore damage viz a viz host apparency ultimately depends on the relative growth rate of 466 
associated species in a mixture. These apparency-mediated effects of tree diversity on 467 
herbivory have since been reported for other tree and herbivore species (Damien et al., 2016; 468 
Guyot et al., 2015). 469 
 470 
In the BEF-China experiment, tree species richness promoted generalist herbivore abundance 471 
(Zhang et al., 2017), which resulted in associational susceptibility (Schuldt et al., 2015). 472 
Interestingly, analyses by Brezzi et al. (2017) in natural forests located near the experiment 473 
found that herbivory interactively depended on tree species richness and phylogenetic diversity. 474 
Herbivory increased with tree species richness only when phylogenetic diversity was low. On 475 
the contrary, when phylogenetic diversity was high, tree species richness had no effect on 476 
herbivory. Brezzi et al. (2017) proposed that this was because in high diversity conditions, even 477 
generalist herbivores were not able to exploit all tree species (e.g. from species with vastly 478 
different leaf chemistry and structure) and benefit from dietary mixing - the consumption of 479 
multiple foods by generalists (Bernays et al., 1994). Therefore, phylogenetically diverse plant 480 
communities have the potential to bolster local generalist herbivore density and activity by 481 
providing nutritional diversity and diluting the negative effects of chemical defences in herbivore 482 
diets. Although dietary mixing is often given as a potential mechanism behind diversity-herbivory 483 
relationships, it has not been empirically demonstrated in the TreeDivNet literature. 484 
 485 
It is likely that tree diversity effects on herbivores and pathogens are mediated by spatial scale, 486 
and specifically by the distribution of different tree species within mixtures. For instance, the 487 
regular planting design of the ORPHEE experiment is such that each individual tree has a 488 
similar neighbourhood in a given mixture (Castagneyrol et al., 2013a). In contrast, random 489 
distribution of trees within plots may create monospecific patches of trees and immediate 490 
neighbours embedded within mixed plots. In the TreeDivNet experiments where it was possible 491 
to test the effect of tree diversity on herbivores and pathogens across scales, tree diversity 492 
effects were found to be stronger in the immediate tree neighbourhood scale than at the plot 493 
scale (Satakunta: Muiruri et al. 2016, FORBIO: Setiawan et al. 2014, BIOTREE: Hantsch et al. 494 
2013, Kreinitz: Hantsch et al. 2014a). In one well-documented example of the consequences of 495 
scale for pest damage, Damien and colleagues (2016) found that pine processionary moth, a 496 
specialist herbivore, increased in abundance with pine concentration and thus caused more 497 
damage in monocultures than in mixtures. This finding agrees with the prediction of the 498 
resource concentration hypothesis for specialists (section 2). However, at the individual pine 499 
level, the probability of a pine being attacked by the pine processionary moth displayed the 500 
opposite general pattern, being lower in monocultures than in mixtures. This finding matches the 501 
resource dilution hypothesis (Otway et al., 2005), which predicts that herbivore abundance can 502 
be diluted among many hosts at high host frequency, and may be explained by the aggregation 503 
of attacks on the fewer and more apparent pines in mixed stands (Bañuelos and Kollmann, 504 
2011; Plath et al., 2012; Régolini et al., 2014). As such, tracking the origins of colonizing 505 



herbivores and pathogens is a major challenge of future studies on associational effects in 506 
TreeDivNet. In particular, investigators will need to know the proportion of herbivores and 507 
pathogens that reproduce and stay within plots, and the proportion of herbivores and pathogens 508 
that newly colonise plots every year. 509 
 510 
4.2 Top-down control by enemies 511 
As TreeDivNet experiments currently represent relatively young forest stands, relationships and 512 
interactions across trophic levels might differ from more mature forest ecosystems with 513 
established predator and herbivore population cycles. Correspondingly, most of these studies, 514 
which were conducted across a range of environmental conditions from boreal to tropical, did 515 
not find evidence for an increase in predator abundance or diversity with increasing tree 516 
diversity (Riihimäki et al. 2005, Vehviläinen et al. 2008, Schuldt and Scherer-Lorenzen 2014, 517 
Campos-Navarrete et al. 2015, Moreira et al. 2016, Yeeles et al. 2017, Zhang et al. 2017, but 518 
see Setiawan et al. 2016 and Esquivel-Gomez et al. 2017). Although effects of tree diversity can 519 
be more difficult to detect with observational approaches (Kambach et al., 2016; Nadrowski et 520 
al., 2010), studies conducted along tree diversity gradients in mature forests have often 521 
revealed no or even negative effects of tree diversity on predator abundances or species 522 
richness (e.g. Schuldt et al. 2008, 2011, 2014, Oxbrough et al. 2012, Zou et al. 2013). 523 
Nevertheless, some groups of predators and parasitoids can be promoted by tree diversity (e.g. 524 
Sobek et al. 2009, Staab et al. 2014, 2016), although the exact mechanisms are still unclear. 525 
 526 
Direct or indirect measurements of predation rates may provide better insight into whether and 527 
how predator top-down effects change with tree diversity (Roslin et al., 2017), as indicated by 528 
several recent studies quantifying predation pressure exerted by insectivorous birds or 529 
predatory arthropods. Bird predation was unrelated to tree diversity at the plot level in the 530 
ORPHEE and Satakunta experiments (Castagneyrol et al., 2017; Muiruri et al., 2016) and along 531 
a tree diversity gradient in a mature tropical forest (Leles et al., 2017). In the BEF-China 532 
experiment, predation rates were influenced by tree species richness on only one of the three 533 
tree species studied (Yang et al., 2017b). However, at a finer spatial scale, Muiruri et al. (2016) 534 
found that bird predation rates on focal trees increased with neighbour tree diversity, indicating 535 
that diversity effects can be scale-dependent (see also Bommarco and Banks 2003, which 536 
might explain some of the deviating results from agricultural and grassland systems). 537 
Assessments of predation and parasitism rates by arthropods again showed mixed results, with 538 
positive (Leles et al., 2017; Staab et al., 2016), inconsistent (Riihimäki et al., 2005), or no 539 
detectable effects (Abdala-Roberts et al., 2016) of tree diversity on predation and parasitism 540 
rates. 541 
 542 
Overall, tree diversity does not unambiguously promote predators and the top-down control of 543 
herbivores, and the predictions of the enemies hypothesis (section 2) may not be generally 544 
applicable to forest ecosystems. This is underscored by the finding that insect herbivory 545 
increased with tree diversity in several systems, including forests and several TreeDivNet 546 
expeirments (e.g. Schuldt et al. 2010, 2015, Haase et al. 2015, Wein et al. 2016) and that higher 547 
predation rates do not necessarily result in reduced herbivory (Castagneyrol et al. 2017; see 548 
also Grass et al. 2017).  549 
 550 
4.3 Connections between tree growth and damage 551 
Tree growth is intimately and reciprocally related to damage by herbivores and pathogens. 552 
When viewed from the bottom-up, plant vigor (Cornelissen et al., 2008) can either increase 553 
damage by providing more resources for herbivores and pathogens (Price, 1991) or reduce 554 
damage through robust defenses and lower concentrations of available nutrients (White, 1984). 555 
Alternatively, from the top-down, damage can reduce growth by forcing plants to devote 556 



resources to defenses (Coley et al., 1985) or increase it by favoring compensatory growth 557 
(McNaughton, 1983). As such, expectations for the direction and strength of the relationship 558 
between growth and damage are not clear. To date, most published TreeDivNet publications 559 
address either tree growth and mortality or damage by pests and pathogens, but not both; only 560 
five papers present integrated findings on both growth and damage. In two of these studies 561 
(Dillen et al., 2016; Plath et al., 2011), diversity did not have a consistent effect on either growth 562 
or damage, whereas the authors of the other three publications (Haase et al., 2015; Muiruri et 563 
al., 2015; Riedel et al., 2013) documented complex and interacting relationships between 564 
diversity, growth, and damage.  565 
 566 
In their systematic review of data from three TreeDivNet experiments, Haase and colleagues 567 
(2015) found that trees growing in mixtures experienced both higher height growth and higher 568 
rates of invertebrate herbivory than expected based on observations from monocultures. They 569 
concluded that higher diversity may have led to increased growth in spite of reductions in plant 570 
health caused by herbivory. Riedel et al. (2013) assessed this possibility through an additional 571 
experimental manipulation: the application of insecticide to polycultures in the Sardinilla 572 
experiment. Their finding that tree growth was highest in insecticide-treated polycultures, 573 
intermediate in monocultures, and lowest in untreated mixtures suggests that insect herbivory 574 
can indeed reduce growth, and sometimes can do so enough to cancel out positive diversity-575 
growth effects. The relationship between tree diversity and herbivore damage at one trophic 576 
level can also interact with herbivory at a different trophic level. Muiruri and colleagues (2015) 577 
found that the consequences of tree diversity for both tree growth and insect herbivory 578 
depended on the intensity of moose browsing experienced by trees in the Satakunta 579 
experiment. Progressively more intense moose browsing ultimately canceled out any signal of a 580 
positive diversity-growth relationship and converted a negative diversity-insect herbivory 581 
relationship to a positive one. Under light moose browsing, trees in diverse stands grew more 582 
and experienced less insect herbivory than in monoculture; under high moose browsing, on the 583 
other hand, trees in diverse stands grew equivalently and experienced more herbivory than in 584 
monoculture. 585 
 586 
5. Opportunities: moving forward in BEF experiments 587 
Grassland diversity experiments, and especially a few located in the American Midwest and 588 
northern Europe (e.g. Hooper et al. 2005, Hautier et al. 2015, Weisser et al. 2017), have 589 
advanced BEF research since its inception. Tree diversity experiments share and extend some 590 
key elements with the field’s grassland-dominated past, while also complementing past work 591 
with novel elements. Specifically, we propose that experiments in TreeDivNet build on and 592 
extend to tree-dominated ecosystems several ongoing themes in grassland diversity research: 593 
the use of remote sensing to scale from individual trees to plots and stands in the construction 594 
of stand models and estimation of water use and plant traits (section 5.1), the exploration of 595 
above- and belowground compartments of ecosystems (5.2), the mechanisms connecting plant 596 
physiology with ecosystem functioning (5.3), and the broadening of BEF research to include 597 
dimensions of biodiversity beyond species richness (5.4). Furthermore, tree diversity 598 
experiments also make possible new avenues of research. These experiments provide unique 599 
insights compared to grassland experiments because forests develop over longer time scales 600 
and are structurally more complex than grasslands. Changes in community structure over these 601 
developmental times scales is expected to precipitate changes in BEF dynamics in ways that 602 
may not be analogous to grassland dynamics (5.5). Pertaining to each of these research 603 
trajectories is the observation that, unlike grasslands, tree diversity experiments allow 604 
growth/survival and damage to be assessed for individuals as well as at the community level. 605 
The location of individuals in grassland experiments is unknown, very difficult to track, or 606 
transient; in tree diversity experiments, the exact location of each individual is known, allowing 607 



for spatial analysis across scales and analysis of patterns in mortality and growth. Such analysis 608 
contributes novelty to the extension of BEF research into tree diversity experiments. We review 609 
these potential areas of innovation below with specific examples from TreeDivNet sites. 610 
 611 
5.1 Remote sensing of tree function, diversity and performance 612 
Recent methodological advancements in remote sensing allow detailed spatial analysis relating 613 
individual tree growth, survival, or physiological function to tree neighbourhood and local 614 
environment, which facilitates the detailed investigation of biotic interactions. They also allow for 615 
monitoring and analysis of broad areas of forest encompassing both tree diversity experiments 616 
and entire forest ecosystems. Tree diversity experiments also have the advantage of controlling 617 
plant density, which is critical for separating biomass and diversity and can be confounded in 618 
statistical methods for detecting diversity using remote sensing methods (Wang et al., 2016). 619 
Spectral diversity using hyperspectral data are increasingly used to detect plant functional types 620 
(Ustin and Gamon 2010), and spectral diversity appears to correlate strongly with functional and 621 
phylogenetic diversity in grassland systems (Gholizadeh et al in review; Schweiger et al in 622 
review). In controlled tree experiments, spectral profiles have been shown to accurately 623 
differentiate species and even genotypes within species (Cavender-Bares et al., 2016) and to 624 
predict critical functional traits, such as plant water potential (Cotrozzi et al., 2017), 625 
demonstrating promise for remote detection of functional identity,  diversity, and productivity. 626 
Such detection capacity will likely prove useful in forest systems (Foody and Cutler, 2003; 627 
Somers and Asner, 2014). In natural forest systems, recently developed methodological 628 
approaches for harnessing hyperspectral data to detect taxonomic identity (Féret and Asner, 629 
2014) and functional diversity (Schneider et al., 2017) have been quite successful and can also 630 
be applied to forest experiments. 631 
  632 
5.1.1 Tree and canopy models from laser scanning 633 
Local neighbourhood analysis has been revolutionized using terrestrial laser scanning allowing 634 
a three-dimensional analysis of individual crown shapes (Metz et al., 2013; Olivier et al., 2016; 635 
Seidel et al., 2015, 2011a) and canopy space filling (Seidel et al., 2013). Compared to traditional 636 
methods, neighbourhood analyses using terrestrial laser scanning account for detailed crown 637 
characteristics of individuals that typically vary depending on the species, environmental 638 
conditions and plasticity (Metz et al., 2013; Olivier et al., 2016). Such a precise tool is promising 639 
for spatially explicit analyses of competition and interactions on the single-tree level in 640 
heterogeneous and mixed systems, such as tree diversity experiments. Terrestrial laser 641 
scanning can also be used for estimation of above-ground biomass (Seidel et al. 2011b, 642 
Kankare et al. 2013, Nölke et al. 2015). Because younger trees typically show greater crown 643 
plasticity (Muth and Bazzaz, 2002), canopy interactions can be analysed using a terrestrial laser 644 
scanner in the early phase of a tree diversity experiment (e.g. ongoing research in EFForTS-645 
BEE). Furthermore, detailed analysis of canopy expansion using terrestrial laser scanning has 646 
been used to disentangle competition for light and abrasion (Hajek et al., 2015), improving our 647 
understanding of the mechanisms of canopy interactions that are needed to generalize findings 648 
from tree diversity experiments. Compared to traditional measurements, data acquisition using 649 
terrestrial laser scanning is more accurate and less time-consuming, even if multiple scans of 650 
the forest scene are recommended for detailed neighbourhood analysis (Seidel et al., 2015; Van 651 
der Zande et al., 2011). Using airborne laser scanning allows for quantification of individual tree 652 
growth, allometry, and competition over a spatially extensive area (Ma et al., 2017; Pedersen et 653 
al., 2012), but the high survey cost is a major limitation for the use of this technology in tree 654 
diversity experiments. Low-cost unmanned aerial vehicles equipped with laser scanners 655 
(Wallace et al., 2012) or digital cameras (Mikita et al., 2016; Wallace et al., 2016) allow for the 656 
derivation of three-dimensional models of the canopy. Such models can be used to assess the 657 
relationship between crown interaction, ground-based measures of tree growth, and local 658 



neighbourhood density.  Airborne laser scans are still limited in detecting canopy characteristics 659 
below the canopy surface, so that their use would be limited to mixtures with co-dominant 660 
species. However, recent improvements (Ayrey et al., 2017) promise to facilitate for the use of 661 
airborne LIDAR to perform neighbour analysis in TDN sites 662 
 663 
5.1.2 Assessing tree water use through thermal imaging  664 
Recent advances in thermal imaging from remote sensing allow researchers to assess tree 665 
water stress (Bellvert et al., 2016, 2014; Zarco-Tejada et al., 2012) and evapotranspiration 666 
(Brenner et al., 2017; Hoffmann et al., 2016). Evapotranspiration is a key ecosystem function 667 
that is often estimated using surface heat models since the spatially distributed measurements 668 
of evaporated water are cumbersome. The TreeDivNet experiments offer a unique opportunity 669 
to build and validate land surface heat models accounting for vegetation and soil properties. 670 
Indeed, such experiments allow for measurements of the effect of canopy structure on surface 671 
temperature in identical meteorological conditions and often provide additional supporting 672 
information such as soil water content and standard meteorological variables. First attempts at 673 
the estimation evapotranspiration and water stress at plot- or tree- level with a combination of 674 
thermal, visible and/or infrared cameras mounted on unmanned aerial vehicles have been 675 
performed in some TreeDivNet sites (IDENT-Montreal; IDENT-Macomer; FORBIO; EFForTS-676 
BEE) and more are planned in the near future. Cross-site measurements at TreeDivNet 677 
experiments would allow for testing the hypothesis that more diverse communities more 678 
efficiently use water resources. Additionally, some of the TreeDivNet experiments include an 679 
irrigation treatment so that they can be used to assess whether more diverse communities are 680 
more resistant to drought and to test the stress gradient hypothesis.  681 
 682 
5.1.3 Hyperspectral methods in tree diversity experiments 683 
The development of methods to efficiently quantify leaf functional traits affecting key canopy 684 
processes, such as photosynthesis, is a key priority for ecologists. Variation in functional traits 685 
at a range of scales - within individuals, within species, across species—contributes to 686 
ecosystem function. However, in practice there are large trade-offs in collecting information at 687 
these different levels (e.g. Baraloto et al. 2010, Violle et al. 2012, Asner et al. 2015). For 688 
instance, measurement of leaf nitrogen by elemental analysis is common because of the strong 689 
relationship between leaf nitrogen and photosynthesis, but is destructive, challenging and time 690 
intensive in tall vegetation, making it difficult to cover large areas at a range of sampling scales. 691 
Non-destructive spectroscopic methods offer a solution to this problem. As many leaf properties 692 
such as foliar carbon, nitrogen, phenolics, or leaf dry matter content show specific near infrared 693 
reflectance spectra, target leaf traits can be easily assessed at different scales, from ground leaf 694 
powder to fresh leaves, entire tree canopies or forest ecosystems, once compound-specific 695 
calibrations have been established (Couture et al., 2016; Eichenberg et al., 2015; Foley et al., 696 
1998). 697 
 698 
Methods relating the reflectance of canopies to their biochemical and biophysical properties, 699 
either through empirical or physical modelling approaches, are at the forefront of a rapidly 700 
evolving field of research creating novel opportunities for the quantification of key canopy traits 701 
(Asner et al., 2017; Cavender-Bares et al., 2017; Homolová et al., 2013). Hyperspectral imaging 702 
from unmanned aerial vehicles holds much promise for the study of interactions between 703 
individual trees and their neighbourhoods. Furthermore, in comparison to field spectrometry, 704 
there is great potential for efficient replication within and across individuals—achieving similar 705 
replication with a field spectrometer from branch samples would be challenging and destructive, 706 
while capturing spectra from a mobile crane would be slow. Data collection at this scale can 707 
allow development of models for functional traits and the detection of species (Somers and 708 
Asner, 2014), facilitating descriptions of community taxonomic and functional composition at the 709 



ecosystem scale (Rocchini, 2007).  There is also strong potential to map forest disease and 710 
pathogen outbreaks (Hanavan et al., 2015; Pontius et al., 2005; Pontius and Hallett, 2014). 711 
Combining different remote sensing technologies (laser scanning, hyperspectral, thermal) 712 
provides great potential to study interactions at the tree- and community-level between tree 713 
diversity, tree growth and survival, and pathogen and herbivore damage (Broadbent et al., 714 
2014). 715 

5.2 Aboveground and belowground approaches to BEF 716 
BEF studies in both grassland and forest ecosystems have more often tended to focus on 717 
measuring aboveground functions, such as plant aboveground productivity and leaf herbivory 718 
rather than belowground functions (but see Eisenhauer et al. 2012, Domisch et al. 2015, 719 
Seabloom et al. 2017). Yet a considerable part of the total plant biomass is located below 720 
ground and soil processes such as decomposition and nutrient mineralisation play a key role in 721 
biogeochemical cycles, soil biodiversity, and functioning (Eisenhauer, 2012; Nico Eisenhauer et 722 
al., 2012b). A recent synthesis study in the framework of a large long-term grassland BEF 723 
experiment analysed the effects of plant diversity on the performance of 50 ecosystem 724 
variables, including a considerable number of belowground functions (Meyer et al., 2016). 725 
Notably, belowground variables mostly comprised environmental variables and only one plant-726 
related variable, whereas among the aboveground variables, plant variables predominated. This 727 
may reflect the negligence but also the difficulty of measuring biotic functions in opaque and 728 
cryptic belowground systems. Other investigators have also made first efforts toward balancing 729 
above- and belowground variables in BEF studies (Allan et al., 2013; Eisenhauer, 2012; Isbell et 730 
al., 2011). 731 
  732 
The above- and belowground compartments of ecosystems inherently rely on each other, with 733 
the aboveground compartment serving as supplier of carbon resources to the belowground food 734 
web in the form of plant litter, whereas the belowground compartment and its biotic communities 735 
release nutrients to plants and the aboveground food web (Wardle et al., 2004). This contributes 736 
to correlations of above- and belowground diversity that have been found in several studies 737 
(Hooper et al., 2000; Wardle and van der Putten, 2002). However, most studies lack 738 
mechanistic interpretations of these observations. 739 
 740 
Despite the strong relationships among the aboveground and belowground compartments and, 741 
thus, potential coupling of ecosystem functions, there is evidence that their functional 742 
characteristics substantially differ. For instance, the two compartments are influenced by 743 
different environmental variables. Aboveground, one of the most crucial variables is light 744 
availability, an important driver for niche differentiation in plants (Morin et al., 2011; Yachi and 745 
Loreau, 2007), with minor direct effects on the belowground system. In a grassland experiment, 746 
it was found that effects of plant diversity on soil animal abundance and diversity are weaker 747 
compared to those aboveground (Scherber et al., 2010; Weisser et al., 2017). Accordingly, in 748 
the BIOTREE and Satakunta experiments, tree species diversity did not affect belowground 749 
plant biomass and production (Domisch et al., 2015), though other studies found effects of tree 750 
species diversity on aboveground growth (section 3). Diversity effects may also change with soil 751 
depth as densities of roots and, thus, nutrient uptake and plant resource input into soil decrease 752 
gradually (Allan et al., 2013). Moreover, aboveground-belowground interrelationships need time 753 
to establish in BEF experiments (e.g. (Strecker et al., 2016; Weisser et al., 2017)). We therefore 754 
stress the need to perform long-term experiments that move beyond transient dynamics to 755 
capture more equilibrium-based results over the course of stand development (N. Eisenhauer et 756 
al., 2012). 757 
  758 



To better understand the role of the belowground system in BEF relationships and its 759 

interrelationships with the aboveground system, it is further essential to not only measure 760 

belowground ecosystem functions, but also to manipulate belowground traits in designs of 761 

diversity experiments. In the MyDiv, B-Tree, and BiodiversiTREE experiments within 762 

TreeDivNet, first steps have been made into this direction by crossing tree species diversity 763 

gradients with treatments of tree mycorrhizal type. Mycorrhizae play a critical role in plant 764 

nutrient and water uptake from soil and, consequently, in the plants’ competitive capabilities as 765 

well as in their overall performance.  766 

 767 
5.3 Linking tree physiology to ecosystem functioning 768 
Tree diversity studies offer opportunities to address fundamental questions in plant physiology 769 
and plant-plant interactions. These fundamental questions include elucidating responses to 770 
drought and other environmental changes, effects of above- and belowground resources and 771 
conditions on biomass allocation and morphological adjustment, and properties of mycorrhizal 772 
networks. Although some tree diversity studies have considered these topics (e.g. water 773 
relations; Lübbe et al. 2016), it is rare for the literature to consider them through the lens of 774 
diversity. Common to these three issues is a need to consider how the neighbourhood of target 775 
individuals influences their physiological responses, a challenge that can be partially addressed 776 
through the use of tree diversity experiments in the field. Utilising a network of experiments, 777 
across gradients of environmental change, potentially offers a chance to disentangle the relative 778 
importance of different drivers, as has been suggested for observational approaches with 779 
varying degrees of control (Baeten et al., 2013; Verheyen et al., 2017). Synthesizing results 780 
from such efforts may lead to greater understanding of physiological responses and ultimately 781 
ecosystem level effects. Identifying the “how” is only part of the challenge; understanding “why” 782 
plants adapt in particular ways will help to design the next generation of process-based models. 783 
Here we briefly describe trending questions in plant physiology and suggest how individual tree 784 
diversity studies, and networks, could add insight to these important challenges. 785 
 786 
5.3.1 Drought responses and water relations 787 
Research on the causes and consequences of drought-induced mortality and water relations 788 
within plants (e.g. Allen, Breshears et al. 2015, Corlett 2016, Landsberg, Waring et al. 2017) is 789 
often carried out through pot experiments with or without other environmental changes (e.g. 790 
Kelly et al. 2016, Rodríguez-Calcerrada et al. 2017) and on one or a few species across time or 791 
environmental gradients (e.g. Diaconu et al. 2016, Schuldt et al. 2016). There are instances of 792 
forest ecosystems being subjected to experimentally induced drought treatments (Binks et al., 793 
2016; Lempereur et al., 2015) and other environmental changes (Norby et al., 2016) but 794 
generally without consideration of the effects of diversity. Drought experiments have, however, 795 
demonstrated differential sensitivity of species in their ability to adjust to drought. There is, thus, 796 
a real opportunity to use tree diversity experiments with experimental drought treatments to 797 
investigate acclimated and ontogenetic response mechanisms. 798 
 799 
Water relations have been the interest of some in tree diversity experiments (Kröber et al., 800 
2015; Kröber and Bruelheide, 2014; Kunert et al., 2012; Lübbe et al., 2016a). Indeed, Lübbe et 801 
al. (2016b) have recently shown, using seedlings of five naturally co-occurring temperate 802 
broadleaved tree species grown in monocultures and mixtures, that neighbouring species 803 
diversity can significantly influence a tree’s hydraulic architecture and leaf water status 804 
regulation. For instance, common hornbeam and, to a lesser extent, sycamore developed a 805 
more efficient stem hydraulic system in heterospecific neighbourhoods when under drought, 806 
while common beech was generally more efficient in conspecific neighbourhoods. It might be 807 
expected that neighbourhood interactions given different species mixtures will scale in a 808 



complex manner to ecosystem level outcomes, due to intraspecific and interspecific variability in 809 
hydraulic traits and the potential for hydraulic redistribution (Anderegg, 2015; Blackman et al., 810 
2017). Further work is required across experiments, with different species, and at the individual 811 
plant level to assess how hydraulic traits respond to neighbourhoods and environmental 812 
conditions and thence scale up to the whole ecosystem. 813 
 814 
5.3.2 Biomass allocation and morphological adjustment 815 
Allocation of biomass/carbon within plants is an important area in plant physiological research, 816 
given the need for vegetation to co-ordinate nutrient, water, and carbon uptake, and the 817 
dependence of these processes on the biotic as well as the abiotic environment. Allocation is 818 
not the only way plants can respond to resources and conditions; they can also adjust 819 
morphologically and anatomically in their organs and alter the physiological characteristics of 820 
the cells that form them (Freschet et al., 2015; Poorter and Ryser, 2015). It is especially 821 
important to understand these adjustments in relation to parameterising vegetation models that 822 
aim to predict future responses to global change. Allocation also has economic implications 823 
where tree plantations are used for timber production e.g. determining how much net primary 824 
production is allocated towards stem wood production versus leaf and root growth and how 825 
changes in allocation may affect timber quality, for example through increased or reduced 826 
branch dimensions (Campoe et al., 2012; Forrester et al., 2017). 827 
 828 
How allocation changes and how morphology adjusts within tree plantations of differing diversity 829 
therefore remain important research topics, which tree diversity experiments can help to 830 
elucidate. This has been done for a limited number of species mixtures and sites (e.g. 831 
Nouvellon et al. 2012, Van de Peer et al. 2017, Williams et al. 2017) but clearly could be 832 
examined more widely. Understanding of environmental and physiological constraints on carbon 833 
allocation could be improved with in situ whole labelling experiments (Epron et al., 2012) or 834 
crown modeling from terrestrial laser scanning (Metz et al. 2013), but this remains a challenge. 835 
Massey et al. (2006) showed that one dipterocarp species grew taller in conspecific 836 
neighbourhoods, but that biomass was not different in the different treatments because of 837 
greater branching and leaf area in heterospecific stands. The propensity for greater branching in 838 
mixed stands has also be observed in older plantations (Potvin and Dutilleul, 2009), while recent 839 
evidence suggests that richness-productivity relationships are promoted by interspecific niche 840 
differentiation at early stages of stand development, enhanced by architectural plasticity of 841 
species (Williams et al. 2017). 842 
 843 
5.3.3 Mycorrhizal interactions 844 
Mycorrhizae are known to play a central role in facilitating nutrient uptake for plants in exchange 845 
for carbon subsidies (Jiang et al., 2017; Smith and Read, 2008; Treseder, 2013). Indeed, 846 
because of the reciprocal transfer of nutrients and carbon in particular, and potential differences 847 
among symbioses, plant-fungal interactions can mediate forest productivity, condition, and 848 
patterns of regeneration. Thus, mycorrhizae can influence forest vulnerability to herbivore, 849 
pathogen and drought damage (Smith and Read, 2008), and may lie behind the different effects 850 
of particular plant species’ combinations on carbon and nutrient dynamics (e.g. Wurzburger and 851 
Hendrick 2009). 852 
 853 
Both the environment and neighbouring hosts affect the formation of mycorrhizae on plant roots 854 
(Molina and Horton, 2015). Some studies have shown a strong influence of host identity on 855 
mycorrhizal communities (Aponte et al., 2010; Ishida et al., 2007; Morris et al., 2008; Smith et 856 
al., 2009; Tedersoo et al., 2008)that seems to increase with phylogenetic divergence of the 857 
hosts. Other studies have shown that generalist fungi can be expected to be present in greater 858 
numbers in mixed forests because of their ability to associate with multiple hosts (Cavard et al., 859 



2011). The mediation of carbon dynamics is particularly evident through common mycorrhizal 860 
networks i.e., connectivity between plant individuals through a common mycorrhiza (Teste et al., 861 
2009). Researchers in grasslands have suggested that particular fungal partners preferentially 862 
supply nutrients to those individuals best placed to provide carbon in return, i.e., those in the 863 
highest light environments (Weremijewicz et al., 2016; Zheng et al., 2015).  864 
 865 
There is clearly opportunity for tree diversity experiments to explore these ideas, particularly 866 
given the different light environments engendered by different diversity neighbourhoods 867 
(Sapijanskas et al., 2014). Tree diversity experiments could also offer insight into molecular 868 
mechanisms, given recent debates as to whether effector proteins are conserved across host 869 
species, or whether there are host specific pathways (Sedzielewska-Toro and Delaux, 2016). 870 
Tree diversity experiments can deliberately manipulate mycorrhizal status, and other nutrient 871 
acquiring mechanisms (e.g. cluster roots), to investigate their effects on plant growth and other 872 
ecosystem processes (e.g. Perring et al. 2012, Grossman et al. 2017). Whether plant-fungal 873 
relationships and trait expression depend on the neighbourhood of target individuals, as well as 874 
the composition at the plot scale, remains largely unknown, although in one TreeDivNet 875 
experiment, mycorrhizal diversity was linked to tree phylogenetic diversity (Nguyen et al., 2016). 876 
The recently established MyDiv, B-Tree, and BiodiversiTREE experiments will elucidate the 877 
interactive effects of tree diversity and mycorrhizal type (ecto- and endomycorrhizae) on 878 
ecosystem functioning. The positive BEF relationship is often attributed to niche differentiation 879 
among functional traits of different species, thereby e.g. increasing nutrient uptake. In these 880 
experiments, the significance of above-belowground interactions in BEF relationships will be 881 
studied. The rationale of this experiment is that tree communities associated with different 882 
mycorrhizal types perform better than those with only one, and that the type and diversity of 883 
association(s) with mycorrhizae will influence BEF relationships. 884 
 885 
5.3.4 Capacity of diversity to ameliorate abiotic stress 886 
Biodiversity loss has been demonstrated to contribute to changes in ecosystem functioning to 887 
the same or to a greater extent when compared with other global change factors (Hooper et al., 888 
2012; Tilman et al., 2012). Yet, factors such as climate change and nutrient enrichment are 889 
expected to alter species interactions, changing the ecological consequences of biodiversity for 890 
ecosystem functioning(Paquette et al., 2017; Tylianakis et al., 2008). Contemporary ecological 891 
theory and principles of plant ecophysiology suggest that abiotic stress should mediate 892 
biodiversity-ecosystem functioning effects. The stress gradient hypothesis (Bertness and 893 
Callaway, 1994) predicts that plant-plant facilitation will be more pronounced under abiotic 894 
stress - drought, frost (or cold temperatures), wind, or heat - and that competition will dominate 895 
under low-stress conditions (Wright et al., 2017). Under stressful conditions, the role of diversity 896 
in regulating plant performance may become stronger or weaker, or even switch directions (e.g. 897 
reducing productivity instead of increasing it). In grassland experiments in which biodiversity 898 
gradients have been crossed with manipulations of free-air CO2, water availability, or induced 899 
warming, these global change factors have interacted with diversity to affect ecosystem 900 
functioning (Cowles et al., 2016; Reich et al., 2001a). And in European forests, the relationship 901 
between diversity and growth has been shown to vary with environmental conditions. Across six 902 
regions, forest diversity was more strongly associated with a suite of 26 functions in drier sites 903 
with longer growing seasons than in moister and shorter-season sites (Ratcliffe et al., 2016). 904 
Diversity also reduced the negative consequences of climate and warming trends on saplings 905 
(Ruiz-Benito et al., 2017) and had a more pronounced positive effect on tree growth in less 906 
productive sites (Jucker et al., 2016; Toïgo et al., 2015). Though these findings generally 907 
conform to expectations from the stress-gradient hypothesis, this is not always the case in 908 
forested ecosystems (Forrester, 2014). And recent meta-analysis has also indicated that 909 
drought and nutrient availability, though they affected plant productivity, did not substantially 910 



interact with the positive diversity-productivity relationships documented in experimental 911 
grasslands (Craven et al., 2016) These findings may not be generalizable, however, across 912 
other ecosystem types, global change factors, and response variables.  913 
 914 
5.4 Dimensions of diversity – beyond species richness 915 
Species richness remains the default metric of biodiversity in most BEF experiments, despite 916 
ecologists’ growing awareness that other dimensions of biodiversity affect ecosystem 917 
functionality (Naeem et al., 2012). For some time, BEF investigators have explored the 918 
consequences for ecosystem functioning of diversity of functional traits (functional diversity; 919 
Tilman 1997, Reich et al. 2001) and diversity in the evolutionary relationships among sympatric 920 
individuals, from the intraspecific (genetic diversity; Crutsinger et al. 2006) to the lineage 921 
(phylogenetic diversity; Maherali and Klironomos 2007) level. In some cases, data from 922 
experiments designed around gradients in richness have been re-analysed, allowing for 923 
retrospective analysis of the contributions of, for instance, functional or phylogenetic diversity to 924 
productivity (Cadotte et al. 2009; some of the experiments in Flynn et al. 2011).  925 
 926 
More recent experiments have been designed to include a richness gradient, while also 927 
incorporating orthogonal gradients in functional group, functional and/or phylogenetic diversity 928 
(e.g. Reich et al. 2004, Gravel et al. 2012, Perring et al. 2012, Cadotte 2013, Ebeling et al. 929 
2014, Tobner et al. 2014, 2016, Grossman et al. 2017) or nesting a manipulation of genetic 930 
diversity within the richness gradient (e.g. Bruelheide et al. 2014, Moreira et al. 2014, Barsoum 931 
2015). Much less common are designs in which richness is held constant while another 932 
dimension, such as genetic (Barton et al., 2015; Fernandez-Conradi et al., 2017) or functional 933 
(Hantsch et al., 2014b; Scherer-Lorenzen et al., 2007; Tobner et al., 2014) diversity, is 934 
manipulated.  It is now quite common for BEF experiments – whether with herbaceous species 935 
or trees – to be designed to assess the consequences for ecosystem functioning of multiple 936 
dimensions of diversity, including trophic diversity (Cook-Patton et al., 2014; Parker et al., 2010; 937 
Verheyen et al., 2016). Because trees (and shrubs in the case of some experiments, including 938 
BEF-China) are often easier to monitor and manage at the level of the individual, such 939 
manipulations may, in some cases, be more tractable in tree diversity experiments. Experiments 940 
where genetic, phylogenetic, functional, and trophic diversity is manipulated rather than or in 941 
addition to species richness, will refine the developing consensus that biodiversity generally 942 
supports ecosystem functioning in many systems. 943 
 944 
5.5 Consequences of stand succession for BEF 945 
It has been documented in grassland diversity experiments, but not yet in tree diversity 946 
experiments, that BEF relationships change over time (Reich et al., 2012; Thakur et al., 2015). 947 
This is unsurprising given the critical role that succession plays in natural communities. Yet it is 948 
reasonable to expect that forest succession, and thus the temporal development of BEF 949 
relationships in forests, may take place over longer time scales than those relevant to grassland 950 
succession, and that differences in the structural complexity of forests and grasslands might 951 
also translate to differences in BEF relationships. 952 
 953 
Ecosystem development, or succession, takes place over different time scales in grasslands 954 
and forests. As temperate grasslands mature following disturbance or planting, secondary 955 
succession takes place through species turnover and both biotic and abiotic modification of the 956 
soil over the course of decades (25-75 years; Reynolds et al. 2003, Kahmen and Poschlod 957 
2004, McLauchlan et al. 2006). If there is a lack of disturbance (i.e., an absence of fire or only 958 
moderate grazing), this trajectory can terminate with a transition from grassland to forest. 959 
Secondary forest development in this context varies depending on location, but again, absent 960 
landscape-scale disturbance, may not stabilize as old-growth for hundreds of years (Franklin 961 



and Spies, 1991; Tyrrell and Crow, 1994). Biodiversity supported productivity in both long-962 
running grassland BEF experiments at the Cedar Creek, Minnesota site after just one or two 963 
years after planting (Reich et al., 2001a; Tilman et al., 1997a) and this relationship was still 964 
becoming stronger 13 years after this (Reich et al., 2012). We speculate that BEF relationships 965 
observed in the first generation of tree diversity experiments (e.g. Vehviläinen and Koricheva 966 
2006) will also change in intensity, and perhaps direction, over time, and that the timescales of 967 
these changes will be longer than those relevant to grassland experiments. For instance, 968 
Damien et al. (2016) found that the early beneficial effects of pine-birch association on pine 969 
attack by a specialist herbivore (Castagneyrol et al., 2014) decreased with time as trees grew 970 
taller. In contrast, because the density of plants and relative abundances of species are fixed at 971 
establishment (though they may change over time) in tree diversity experiments, BEF dynamics 972 
may be more stable in mature experiments than in mature grassland experiments, in which 973 
density and composition can change. An exception in this regard is the Climate Match 974 
experiment that includes as part of its design different ratios of selected provenances to explore 975 
the long-term consequences of differing proportions of trees of distinct origin.  976 
 977 
Because forests differ from grasslands in various aspects, the mechanistic bases and dynamics 978 
of BEF relationships may be different than those documented for grasslands. Differences in 979 
structural complexity between the two biomes stem from differences in diversity of their 980 
dominant plant growth forms. Grasslands are dominated by herbaceous species, primarily 981 
grasses and forbs with maximum vegetation height rarely exceeding 2 m. Forests, in contrast, 982 
may consist of numerous vegetation strata ranging from canopy trees (potentially exceeding 983 
100 m in height) to subordinate tree and woody shrub layers and herbaceous understory 984 
vegetation at ground level. In reality, then, producer biodiversity in forests is defined not only by 985 
tree diversity, but also the diversity of shrubs and herbaceous plants. These components of 986 
producer biodiversity interact with each other (Barbier et al., 2008; Both et al., 2011) and are 987 
expected to interact to affect forest ecosystem functioning. In addition, in forests stand thinning 988 
and gap formation are typical features of stand development in both natural and managed 989 
forests. In some forests, thinning and gap formation result in significant alterations to the 990 
compositional and structural features of stands and consequently, BEF relationships. To date, 991 
most tree diversity experiments have focused on manipulating tree diversity, addressing 992 
understory diversity as a response variable. Notable exceptions include the BEF-China 993 
(Bruelheide et al., 2014; Yang et al., 2017a) and IDENT-Macomer experiments, which consist of 994 
both tree and shrub diversity gradients, providing further opportunity for exploration of these 995 
dynamics.  996 
 997 
Additionally, as the basis of forest productivity, trees not only dominate primary production in 998 
forests, but also play the role of ecosystem engineer (Jones et al., 1994; Seitz et al., 2016). 999 
Trees alter forest functioning through the extent to which they shade understory woody and non-1000 
woody species (Messier et al., 1998), alter the soil surface and sub-surface via litter deposition 1001 
(Hobbie et al., 2006; Reich et al., 2005) and root exudates (Grayston et al., 1997) and exert 1002 
afterlife effects through decomposition of necromass by fungal symbionts (Langley et al., 2006; 1003 
Read et al., 2004). Finally, tree diversity experiments present an opportunity to explore the 1004 
relationship between diversity and the temporal stability of key ecosystem processes at various 1005 
organizational levels, and to elucidate the drivers behind them. For instance, a recent 1006 
investigation documented greater stability in biomass production at the community level in 1007 
mixed forests than in monocultures, but a negative or neutral effect of diversity on biomass 1008 
stability at the species level (del Río et al., 2017). 1009 
 1010 
The maturation of tree experiments over time will also provide opportunities to address topics of 1011 
applied and basic ecological interest. Continued stand development will provide opportunities 1012 



for research linking diversity treatment to implications for management of mixed-species 1013 
plantations and forests, a key goal of TreeDivNet (Nock et al., 2017; Verheyen et al., 2016). 1014 
Forest managers will have the option of assessing the effectiveness of, for instance, pruning or 1015 
harvesting techniques across stands of varying diversity. And, as discussed above, tree-tree 1016 
interactions will continue to grow stronger as canopies close and self-thinning becomes more 1017 
common. In addition, though understory plant (Ampoorter et al., 2015; Germany et al., 2017), 1018 
microbial (Nguyen et al., 2016), herbivore (Vehvilainen et al., 2007), bird (Teuscher et al., 2016) 1019 
and predator (Esquivel-Gomez et al., 2017) communities have already responded, in some 1020 
cases, to tree diversity treatments, we expect that these associated communities will continue to 1021 
change, and perhaps stabilize, over time. The development of these communities will certainly 1022 
affect tree vulnerability to herbivore and pathogen damage as well as tree growth and survival. 1023 
 1024 
6. Challenges in future TreeDivNet research 1025 
Experiments in TreeDivNet have already contributed to our understanding of the relationships 1026 
between tree diversity and tree growth and survival and between tree diversity and herbivore 1027 
and pathogen damage to trees. Further research from the network will grapple with several 1028 
challenges, including tree mortality, design limitations, and appropriate integration of modeling. 1029 
 1030 
Tree mortality will present managers of tree diversity experiments with consequential choices 1031 
about how to maintain their experiments over the coming decades. In establishing TreeDivNet 1032 
sites, most investigators chose to replace transplants that died shortly after being planted. This 1033 
was essential as the identity and density of experimental trees are, in all cases, a key 1034 
independent variable for diversity experiments. Yet experimental managers will not be able to 1035 
respond to future mortality with replanting: new trees would be dramatically smaller and younger 1036 
than neighbours and, besides, mortality of adult trees in later years of the experiment will likely 1037 
result from important interspecific interactions rather than merely from seedling transplant 1038 
shock. Faced with this mortality, managers will need to decide whether to simply allow the 1039 
composition and density of plots to change or whether to systematically thin to retain the original 1040 
or near-original design of their experiments. These choices will affect the way experimental 1041 
results are interpreted. For instance, as trees die, the plot level of analysis may become either 1042 
less useful because of compromising the initial design or more useful because community 1043 
assembly mechanisms are then similar to natural forest ecosystems. In any case, 1044 
neighbourhood approaches to quantifying diversity will remain appropriate. 1045 
 1046 
A common feature of TreeDivNet experiments is that they follow a replacement design: total 1047 

tree density (i.e., number of trees per plot of the same area) is held constant along diversity 1048 

gradients such that the concentration (i.e., number of tree individuals) and frequency (i.e., 1049 

relative abundance) of each species decreases with tree species richness. Most species 1050 

mixtures in the TreeDivNet experiments are thus equiproportional such that species 1051 

concentration and frequency covary with tree species richness (but see BIOTREE-Simplex: 1052 

Scherer-Lorenzen et al. 2007). Yet, recent studies on non-tree systems and modelling 1053 

approaches stressed the importance of disentangling the relative effects of host concentration 1054 

and frequency to explain associational effects (Hahn and Orrock, 2016; Hambäck et al., 2014; 1055 

Kim and Underwood, 2015; Underwood et al., 2014). Allowing the relative share of tree species 1056 

in mixtures to vary, as in the SIDE experiment, will allow for a better understanding of the 1057 

mechanisms underlying host concentration effects. Another limitation of most, if not all, 1058 

TreeDivNet experiments is that trees are regularly spaced within each plot, which does not then 1059 

consider the possible effect of more heterogenous spacing, as is found in natural forests, on 1060 

many ecosystem processes.  1061 

http://www.treedivnet.ugent.be/ExpSIDE.html


 1062 
Tree plantation experiments obviously have limitations, which have often been discussed in 1063 
depth in reviews and reports of original results, but these findings could be greatly 1064 
complemented with simulation studies (e.g. Bunker 2005, Morin et al. 2014). Simulation models 1065 
could be used to extend the findings of experiments over both larger and longer scales. BEF 1066 
research has been developed mostly for systems at equilibrium and where demography is 1067 
responsible for dynamics. Tree plantations are restricted to a particular segment of tree life 1068 
cycle and therefore do not integrate all aspects of population dynamics. Models could partly 1069 
solve this issue, and we expect they will perform best when combined with such data-intensive 1070 
experiments. On the other hand, building a model forces an experimentalist to rigorously identify 1071 
relevant processes, along with appropriate measurements of some critical quantities such as 1072 
growth rates, biomass allocation, and competition mechanisms (Grimm et al., 2017). We 1073 
envision that the co-development of TreeDivNet experiments with models should be part of the 1074 
future and will benefit both fundamental and applied research.  1075 
  1076 
 1077 
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Figures 
 
Figure 1. The 25 experiments of TreeDivNet in the boreal (bo), temperate (te), Mediterranean (me), subtropical (st) and tropical (tr) 
regions of the world; see Table 1 for the characteristics of the experiments. Experiments in grey consist of sites in different countries. 
Experiments in bold are the experiments from which early results on tree growth and survival and damage are discussed in this 
paper. 
 
 

 

  
 
 
 



Figure 2. Consequences of biodiversity (green) for tree mortality and growth and damage (from herbivores and pathogens). 
Relationships between biodiversity and each response (orange) can vary from underyielding/associational resistance to 
overyielding/associational susceptibility. Research reviewed here both documents the direction and strength of these responses and 
the underlying mechanisms (blue) that give rise to them. 
 
 



Tables 

 
Table 1. The 25 experiments of TreeDivNet are established in different ecoregions around the globe (Code, see Fig. 1) to investigate 

the relations between forest ecosystem functioning and tree diversity: species richness (SR), functional diversity (FD), genetic 

diversity (GD), phylogenetic diversity (PD), and evenness (EV). Different aspects of tree growth, survival, and damage are monitored. 

See www.treedivnet.ugent.be for more information on the experiments. 

Cod

e 
Experimenta Plant Year 

no 

Sites 

no 

Plots 

Diversity 

Manipulationb 

Species 

Pool 

Tree Growth & 

Survivalc 

Tree Damaged 

bo1 Satakunta 1999 4 163 SR, GD, PD  5 

Growth (AG) 

Mortality 

Herbivory (Insects, 

Vertebrates) 

Pathogen Damage 

Natural Enemies 

te1 IDENTa 
2009, 2010, 

2012, 2013 

5 1192 SR, FD, PD 20 

Growth (AG, BG) 

Mortality 

Form 

Phenology 

Stress Tolerance 

Yield Stability 

Herbivory (Insects) 

Pathogen Damage 

te2 SIDE 2012 1 182 SR, EV 14 Growth (AG) Branch & Shoot Damage 

te3 BiodiversiTREE 2013, 2014 2 139 SR, FD 16 Growth (AG) Herbivory (Insects, 

http://www.treedivnet.ugent.be/


Mortality 

Phenology 

Resource use 

Vertebrates) 

Pathogen Damage 

te4 ORPHEE 2008 1 256 SR, FD 5 

Growth (AG) 

Mortality 

Form 

Stress Tolerance 

Phenology 

Yield Stability 

Herbivory (Insects) 

Pathogen Damage 

Natural Enemies 

Pest Resistance 

te5 Communitree 2009 1 90 GD 1 Growth (AG, BGe) Herbivory (Insects) 

te3 Climate Matcha 2011 2 177 SR, GD 4 

Growth (AG) 

Mortality 

Phenology 

Herbivory (Insects) 

Pathogen Damage 

te7 BangorDIVERSE 2004 1 92 SR, FD 7 

Growth (AG, BG) 

Mortality 

Form 

Resource Use 

- 

te8 FORBIOa 2010, 2012 3 127 SR, GD 10 

Growth (AG) 

Mortality 

Form 

Herbivory (Insects) 

Crown Discolouration 

Branch & Shoot Damage 



te9 TWIG 2017 1 22 SR, FD 4 

Growth (AG)e 

Mortality 

Forme 

- 

te10 ECOLINK-Salix 2014 3 99 GD 1 

Growth (AG) 

Resource Use 

Yield Stability 

Wood Quality 

Herbivory (Insects) 

Pathogen Damage 

te11 BIOTREEa 2003, 2004 4 117 SR, FD, EV 19 
Growth (AG, BG) 

Mortality 

Herbivory (Insects) 

Pathogen Damage 

te12 HighDiv-SRC 2015 1 45 SR 4 

Growth (AG) 

Yield Stability 

Wood Quality 

Herbivory (Insects) 

Pathogen Damage 

te13 MyDiv 2015 1 80 SR, FD 10 
Growth (AG) 

Mortality 

- 

te14 Kreinitz 2005 1 98 SR, FD 6 
Growth (AG) 

Mortality 

Herbivory (Insects) 

Pathogen Damage 

te15 B-Tree 2013 1 44 SR, FD 4 

Growth (AG, BG) 

Mortality 

Resource Use 

- 

me1 IDENTa 2014 1 308 SR, FD, PD 12 Growth (AG) Defoliation 



Stress Tolerance Discolouration 

me2 Ridgefielda 2010 1 124 SR, FD 8 
Growth (AG) 

Mortality 

- 

st1 BEF-Chinaa 2009/2010 2 566 SR, GD, FD, PD 60 

Growth (AG, BG) 

Form 

Mortality 

Resource Use 

Yield Stability 

Herbivory (Insects) 

Pathogen Damage 

Natural Enemies 

tr1 UADY 2011 1 74 SR, GD 6 
Growth (AG) Herbivory (Insects) 

Natural Enemies 

tr2 Agua Salud 2008 1 267 SR 10 

Growth (AG) 

Mortality 

Form 

Resource Use 

Shoot Damage 

tr3 Sardinilla 2001/2003 2 32 SR, FD 26 

Growth (AG) 

Mortality 

Resource Use 

Herbivory (Insects) 

 

tr4 BrazilDry 2016 1 155 SR 16 
Growth (AG) 

Mortality 

Herbivory (Insects) 

tr5 Gazi Bay 2004 1 32 SR 3 Growth (AG) - 



Mortality 

tr6 EFForTS-BEEa 2013 1 56 SR 6 

Growth (AG) 

Mortality  

Form 

Stress Tolerance 

Herbivory (Insects) 

Pathogen Damagee 

tr7 Sabaha 2010 1 124 SR, FD, GD 16 
Growth (AG) 

Mortality 

- 

 
a Extensive information on the design of the experiments can be found for BEF-China (Yang et al. 2013; Bruelheide et al. 2014; 

Schmid et al. 2017), BIOTREE (Scherer-Lorenzen et al. 2007), Climate Match (Barsoum 2015), EFForTS-BEE (Teuschner et al. 

2016), FORBIO (Verheyen et al. 2013, 2016), IDENT (Tobner et al. 2014; Grossman et al. 2017), Ridgefield (Perring et al. 2012), 

and Sabah (Hector et al. 2011). 

b Extra treatments investigated: water availability (ORPHEE, IDENT – sites Macomer and Sault-Sainte-Marie); fertilization with 

nitrogen and phosphorus (IDENT – site Freiburg); nitrogen deposition and non-native weed cover (Ridgefield); liana removal 

(Sabah); no management vs. thinning (BIOTREE); addition of high-value tree species (BIOTREE); shrub species richness (2, 4, 8), 

herbivore exclusion, leaf foliar pathogen exclusion, phosphorus addition, and weeding (BEF-China) 

c Tree Performance is measured for the following categories: Tree Growth Aboveground (‘AG’), e.g., height, diameter, biomass, leaf 

area index, crown cover, full terrestrial laser scan; Tree Growth Belowground (‘BG’), e.g., fine-root biomass, fine-root length; 

Mortality; Tree Form, e.g., space occupation, branchiness, crown width; Phenology, e.g., timing bud burst; Resource Use, e.g., water 



use, nutrient use, plant-water relationships; Wood Quality; Yield Stability; Stress Tolerance, e.g., water stress, resistance and 

resilience to drought. 

d Tree Damage is investigated for the following topics: Insect Herbivory - may be studied separately for, e.g., leaf chewers, gallers, 

hole feeders, miners, rollers, suckers, tiers; Vertebrate Herbivory by, e.g., moose; Pathogen Damage, e.g., fungi; Crown 

Discolouration; Branch & Shoot Damage by, e.g., herbivores, management; Natural Enemies of herbivores that limit tree damage 

through biotic regulation, e.g., parasites or predators of insect herbivores. 

e Monitoring of the variable has not started yet in this recently planted experiment, but is planned for the near future. 
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