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21 Abstract

22 Background: In recognition of their multiple benefits on environment, food security, 

23 and human health, pulses are attracting worldwide attention. The seed coat is a major 

24 by-product of pulse processing, and its only markets are as low value ruminant feed 

25 and very limited use in high fibre foods. Recently, accumulating studies have suggested 

26 that this underutilised by-product has greater potential as a novel natural “nutritious 

27 dietary fibre” which can be used as a functional food ingredient. 

28 Scope and approach: This review discusses biochemical and physicochemical 

29 functionalities of seed coats of six globally important pulses: chickpea, field pea, 

30 faba/broad bean, lentil and mung bean with a special emphasis on the emerging food 

31 pulse lupin. Food process modification and recent human food applications of the seed 

32 coats are summarized. Bio-availability of the seed coat compounds, and phomopsins 

33 contaminated lupin seed coats as a typical example of safety issue are discussed.

34 Key findings and conclusions: High levels of dietary fibre, minerals and potential 

35 health-promoting phytochemicals in the seed coats indicate their great potential to be 

36 used as a natural “nutritious dietary fibre”. However, further in-depth studies are 

37 required to improve their desirable nutritional, physiological and techno-functional 

38 properties whilst minimizing any undesirable ones.

39
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43 1. Introduction

44 “Pulses” refers to those low-fat content leguminous seeds which are harvested for dry 

45 grain (FAO, 1994). So, oilseeds (e.g. soybean and peanut), leguminous green 

46 vegetables (e.g. green peas and green beans) and leguminous fodder plants (e.g. clover 

47 and alfalfa) are traditionally excluded. Pulses are historically important in both the 

48 human diet and cropping systems as crop rotations, due to their rich-protein and 

49 biological nitrogen fixation ability. Although most pulses are not traditionally typical 

50 Western-style foodstuffs, international events like “International Year of Pulses 2016” 

51 and “Global Pulses Day” suggest that they are being promoted to be important human 

52 food world widely (Foyer, et al., 2016).

53

54 As shown in Table 1, six of the 11 pulses which are covered in the FAO list, chickpea 

55 (Cicer arietinum), lupin (Lupinus), field pea (Pisum sativum), faba/broad bean (Vicia 

56 fabae), lentil (Lens culinaris) and mung bean (Vigna radiate), are the most important 

57 pulses globally, totally accounting for 79.89% of the world pulse production (81.8 

58 million tonne) in 2016 (FAOSTAT, 2018). India is the largest pulse producer globally, 

59 followed by Canada, Myanmar and China. However, Australia is the largest lupin 

60 producer in the world, contributing an average of 58.22% of the world production in 
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61 2012-2016 (ABARES, 2018). Australian sweet lupin (ASL, L. angustifolius), which is 

62 also named “narrow-leafed lupin”, is the most important lupin specie, constituting 93% 

63 of Australian lupin production and 52% of the world production (Pulse Australia, 2016). 

64 However, chickpea has overtaken lupin as Australia’s largest pulse crop since 2011-12, 

65 with a production estimated at over 2 million tonne in 2016-17 (ABARES, 2018). As a 

66 leading pulse exporter, Australia exports over 90% of its chickpeas, faba beans, lentils 

67 and mung beans, and 60% of field peas were exported, being the largest exporter of 

68 desi chickpea and faba bean in the world. Notably, although Australia exported only 50% 

69 of its lupin, this accounted for 90% of world lupin export in 2013.

70

71 Pulse seed has three distinctive parts, namely the seed coat, embryonic axe and 

72 cotyledon, which generally accounts for 8-16%, 1-3% and 80-90% of the whole seed 

73 respectively (Dueñas, Hernandez, & Estrella, 2006). However, the proportions of seed 

74 coat show great genetic and environmental variability both between and within species 

75 (Table 2). For example, lupin uniquely contains a much higher percentage of seed coat 

76 than others, with up to 24% in Australian sweet lupin and around 18% in white lupin 

77 (Clements, et al., 2014). Removal of pulse seed coat (dehullinig) is a primary process 

78 to produce dehulled splits, ground flours and other fractionated pulse ingredients like 

79 pulse protein and fibre. In practice, by-product generated from the dehulling process is 

80 a mixture of seed coats, embryonic axes and brokens of cotyledons (Oomah, Caspar, 

81 Malcolmson, & Bellido, 2011; Sherasia, Garg, & Bhanderi, 2017). As a consequence, 
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82 dehulling loss which is the main waste stream of pulse processing represents as much 

83 as 31% for sweet lupin in Australia (Sipsas, 2008), and up to 28% for lentil and 

84 chickpea in India (Tiwari & Singh, 2011). Currently the primary markets for pulse seed 

85 coats are low value animal feed and only very limited use in human foods such as that 

86 added to make high fibre breads and meat products (like sausage and nuggets). This by-

87 product not only leads to a tough disposal problem for the millers, but also wastes a 

88 potential source of novel, nutritious and health-promoting food ingredient (Sherasia, et 

89 al., 2017).  

90

91 Growing evidence suggests that pulse seed coats have considerable amount of dietary 

92 fibre which is associated with diverse types of minerals and phytochemicals (bioactive 

93 secondary metabolites in plants e.g., polyphenolic antioxidants). Therefore, besides the 

94 well-documented physiological benefits of dietary fibre, seed coats provide potential 

95 for various physiological benefits, such as those related to antioxidant and anti-

96 inflammatory activities. Available studies on pulse seed coats mainly focus on 

97 proximate compositions and anatomical structures, with little attention paid to their 

98 phytochemical properties and physiological functionalities. The present review brings 

99 together the current research on the characterization, processing and applications of 

100 seed coats from six selected pulses, i.e., chickpea, lupin, field pea, faba/broad bean, 

101 lentil and mung bean. This information should encourage strategies which might enable 

102 the more extended use of pulses and their seed coats in human foods.
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103

104 2. Seed coat morphology and physical properties

105 The pulse seed coat (often referred as hull or testa) is a protective outer layer of the 

106 pulse seed. Structures of pulse seed coats have been overviewed by Moïse, Han, 

107 Gudynaitę-Savitch, Johnson, and Miki (2005) and Smykal, Vernoud, Blair, Soukup, 

108 and Thompson (2014). Anatomical structures of seed coats of field pea (Van Dongen, 

109 2003), faba/broad bean (Youssef & Bushuk, 1984), chickpea (Wood, Knights, & Choct, 

110 2011), lentil (Hughes & Swanson, 1986), lupin (Clements, Dracup, Buirchell, & Smith, 

111 2005) and mung bean (Joseph & Swanson, 1993) have been extensively examined and 

112 show great similarities. Largely, there are three specialized cross-sectional layers in 

113 typical pulse seed coats: palisade cells (macrosclereids) layer, thick-walled hourglass 

114 cells (osteosclereids) layer, and a few layers of parenchyma (Fig 1.) (Moïse, et al., 2005; 

115 Tiwari & Singh, 2011).

116

117 The seed coats significantly affect chemical exchange (e.g. water and gas), 

118 biochemistry, mechanical properties (e.g. permeability, hardness and porosity) and 

119 physiological activities (e.g. germination and metabolism) of the pulse seeds (Moïse, 

120 et al., 2005). In addition, their chemical and physical characteristics, including 

121 composition, shape, mass, smooth or rough surface, thickness, colour, density and 

122 thermal properties (e.g. thermal conductivity and thermal diffusivity) strongly affect 

123 the whole seed properties (such as density, dehulling efficiency, and cooking quality), 
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124 further determine post-harvest processing, end application and market price of the seeds 

125 (Souza & Marcos-Jilho, 2001). In this review, the most essential physical properties of 

126 the seed coats (i.e. colour, thickness and permeability) are discussed.

127

128 2.1. Colour

129 As a key quality indicator, colour of the pulse seeds is crucial to consumer acceptance. 

130 Seed coat colour varies significantly across different varieties (Table 2). In Australia 

131 for example, over 90% of field pea is dun coloured type, and principally light brown 

132 desi chickpea, beige or light brown faba bean, white with/without spots lupin, red lentil 

133 and green mung bean. It has been revealed that the pigmentations of seed coats are 

134 mainly attributed to chlorophyll and polyphenols (mainly flavonoids) (Hossain, 

135 Panozzo, Pittock, & Ford, 2011), which mainly are located in the external palisade layer 

136 (Wood, et al., 2011). The colours are associated with levels of those compounds, and 

137 thus their physiological properties like antioxidant capacity. For example, dark 

138 coloured pulses are reported to contain higher levels of polyphenols, mainly 

139 anthocyanins and condensed tannins, and correspondingly higher antioxidant activities 

140 than those of pale ones (Xu, Yuan, & Chang, 2007). 

141

142 Colours of pulse seed coats are unstable during post-harvest processing and strongly 

143 affected by processing conditions. For example, the extremely high temperature (>40 

144 ºC) may accelerate undesirable colour darkening process in faba bean seed coat. This 
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145 is accompanied by a significant loss, ranging up to 86% of total polyphenols, which 

146 may be explained by the polymerization of polyphenols into insoluble, un-extractable 

147 high molecular weight polymers (Nasar-Abbas, et al., 2009). Similar browning was 

148 found in lentils (Nozzolillo & Debezada, 1984) and chickpea (Reyes-Moreno, 

149 Okamura-Esparza, Armienta-Rodelo, Gomez-Garza, & Milan-Carrillo, 2000) when 

150 stored at high temperature. Moreover, the unpigmented varieties are supposed to be 

151 more vulnerable to seed deterioration during storage (Souza & Marcos-Jilho, 2001). 

152 However, the exact principles which are responsible for the darkening of pulse seed 

153 coats are still unclear. 

154

155 2.2. Thickness and permeability

156 In general, the palisade cell layer mainly decides the thickness of the seed coat. 

157 Domesticated pulse varieties have thinner, softer, more permeable seed coats than wild 

158 counterparts mainly due to decreases in thickness of the palisade layer. Moreover, the 

159 proportion and thickness of the seed coat are negatively correlated with seed size. The 

160 seed coat characteristics should be carefully considered during food processing 

161 (especially dehulling) and application. For example, kabuli chickpea has a larger seed 

162 size and thinner seed coat than the desi type (Table 2). As a result, cultivars of kabuli 

163 are normally used as whole seeds without dehulling for paste, salads, roasted or fried 

164 to make snacks (Wood, Knights, Campbell, & Choct, 2014). By contrast, cultivars of 

165 the desi type are often dehulled to dahl (split) which are directly cooked or milled to 
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166 flour. Another example to show the associations between processing properties and 

167 seed coat thickness is that lentils have thinner seed coats and thus shorter cooking times 

168 than do other pulse seeds. Additionally, thicker seed coats result in longer cooking-

169 times in field peas (Wang, Daun, & Malcolmson, 2003) and faba beans than those 

170 which have thin seed coats (Youssef & Bushuk, 1984).

171

172 The permeability of pulse seed coats change as the seed matures and are related to their 

173 structure and chemistry (Ma, Cholewa, Mohamed, Peterson, & Gijzen, 2004). Although 

174 impermeability of pulse seed coats is important to seed vitality, it is undesirable during 

175 food processing. The impermeability will contribute to lower whole-seed cookability 

176 (“hard-to-cook” phenomenon) and customer acceptability. For example, during 

177 soaking, the thick and impermeable seed coat will slow water imbibition by the seed, 

178 restrict its expansion and thus decrease the wet dehulling efficiency. The hydrophobic 

179 waxy cuticle and condensed palisade cells layer of the seed coat are major contributors 

180 to seed impermeability (Ma, et al., 2004).

181

182 3. Pulse seed coat composition

183 The nutritional composition of whole pulse seeds have been reviewed in the 

184 FAO/INFOODS global food composition database for pulses (uPulses 1.0) (FAO, 

185 2017). The composition of seed coats of the selected six pulses are summarized (Table 

186 3). Generally, pulse seed coats have about 8-10% moisture, 3% ash, 1-3% lipids and 
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187 2-8% protein, with a major carbohydrate components (60-90%), mainly insoluble non-

188 starch polysaccharides (NSPs) (Tiwari & Singh, 2011). Of the macronutrients, we focus 

189 on carbohydrates and minerals since they make up the majority and provide a basis for 

190 the usage of the seed coat as a food ingredient.

191

192 In general, pulse seed coats have a neutral to slightly nutty flavour, although their 

193 volatile profiles are largely unknown (Pfoertner & Fischer, 2001). Pulse seed coats are 

194 the major contributors to the phytochemical content of the whole seeds (Dueñas, et al., 

195 2006; Luo, Cai, Wu, & Xu, 2016). Some of the phytochemicals are, historically, 

196 referred to as “anti-nutritional factors (ANFs)”, as with polyphenols, phytic acid and 

197 alkaloids. However, numerous epidemiological studies now indicate their potential 

198 benefits for human health (Rochfort & Panozzo, 2007). Investigation of the 

199 micronutrients (vitamins and minerals) and other bioactive compounds in the six pulse 

200 seed coats is embryonic.

201

202 3.1. Carbohydrates

203 As mentioned above, pulse seed coats have negligible amounts of starch and 

204 oligosaccharides. Instead, they are predominantly composed of structural 

205 polysaccharides (non-starch polysaccharides, NSPs), which are mainly cellulose, 

206 hemicellulose, pectin (Table 3). As such, over 50 percent of the monosaccharides in 

207 seed coat are glucose from the cellulose. The other principal sugars vary between 
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208 species. For example, the high concentrations of xylose (21.6%), uronic acids (10.0%) 

209 and arabinose (8.4%) in lupin seed coat indicate relatively high contents of 

210 arabinoxylan hemicellulose and pectin (Evans & Cheung, 1993). On the contrary, 

211 uronic acids (22.3%), xylose (10.8%) and arabinose (5.2%) are the main sugars in field 

212 pea seed coat cell walls (except glucose), indicating a high content of pectin (Guillon 

213 & Champ, 2002). It is worthwhile to note that there are also significant differences 

214 between NSPs in cotyledons and seed coats. For instance, the major constituent NSPs 

215 of lupin seed coat are cellulose (from 45 to 56 g/100g dry matter (DM)), arabinoxylan 

216 hemicelluloses (~13 g/100g DM) and pectins, whereas pectic substances and 

217 hemicellulose are the predominant parts in cotyledon (Brillouet & Riochet, 1983). 

218

219 Non-starch polysaccharides are classified as the principal components of the plant 

220 dietary fibre (DF) (Lovegrove, et al., 2015). In principle, seed coat contributes a 

221 significant proportion of the DF level of pulse because of their high content of NSPs, 

222 ranging from 75 to 91 g/100g DM (Table 3). In addition, most of the DF in pulse seed 

223 coats are insoluble dietary fibre (IDF), only 3.5% of total dietary fibre (TDF) in lupin 

224 seed coat is soluble for example (Evans & Cheung, 1993). IDF levels of dehulled lentils, 

225 peas and chickpeas decreased by 64%, 53% and 35% respectively compared to raw 

226 seeds, but no significant reduction in SDF was found (Dalgetty & Baik, 2003). However, 

227 regarding the newly proposed DF definition and analytic method (i.e. AOAC 2011.25), 
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228 contemporary information on DF (including oligosaccharides) for the six pulse seed 

229 coats is scarce.

230

231 3.2. Minerals and trace elements

232 Pulses provide substantial amounts of minerals. Pulse seed coats are rich in several 

233 minerals, e.g. Ca, Mg, Mn, Cu, Zn, B, Al and Na etc. (Tiwari & Singh, 2011). Notably, 

234 67.5% of total Ca, and 41.3% of total Al of the whole lupin seed were reported to 

235 concentrate in its seed coat (Hung, Handson, Amenta, Kyle, & Yu, 1988). Likewise, 

236 over 70% of Ca and 50% of iron in mung bean (Singh, Singh, & Sikka, 1968), lentil 

237 (Tiwari, et al., 2012) and chickpea (Jambunathan & Singh, 1981) are found in their seed 

238 coats. Besides the inter-species variations, minerals in seed coats vary widely inner-

239 species. For instance, contents of most of the minerals, especially Ca, Zn, Cu, and Mn, 

240 in kabuli chickpea seed coat are higher than desi type (Jambunathan & Singh, 1981). 

241 Consequently, differences in the seed coats (like thickness and proportion) between 

242 pulses are used to explain the variations in mineral levels of the whole seeds.

243

244 3.3. Phytochemicals

245 The major phytochemicals in different pulses vary significantly. For instance, chickpea 

246 was found to be one of the major sources of dietary saponins (Oakenfull, 1981), but 

247 alkaloids are characteristically present in lupin. Although, carotenoids (a group of lipid-
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248 soluble natural plant pigments) contents of field pea (Marles, Warkentin, & Bett, 2013) 

249 and chickpea (Ashokkumar, Tar’an, Diapari, Arganosa, & Warkentin, 2014) are 

250 suggested to be associated with seed coat colours, pulse seed coats are generally known 

251 as a poor source of carotenoids since they have low level of fat. In some cases, 

252 phytochemicals may cause toxic effects (e.g. favism caused by vicine and convicine in 

253 faba beans) (Klupšaitė & Juodeikienė, 2015). However, this review will discuss 

254 polyphenols and phytic acid in the six pulse seed coats, and alkaloids in lupins since 

255 they are more relevant to the potential positive physiological properties of the seed 

256 coats. 

257

258 3.3.1. Polyphenols

259 Polyphenols are a wide range of secondary plant metabolites, which typically have one 

260 or more aromatic rings bearing several hydroxyl groups. The major polyphenols in 

261 whole pulse seeds are phenolic acids (e.g., benzoic/cinnamic acids and their 

262 derivatives), flavonoids (e.g., flavone and flavonol glycosides) and condensed tannins 

263 (Oomah, Patras, Rawson, Singh, & Compos-Vega, 2011). Recently, a few studies have 

264 investigated polyphenols in pulse seed coats, including chickpea (Sreerama, Neelam, 

265 Sashikala, & Pratape, 2010), faba bean (Boudjou, Oomah, Zaidi, & Hosseinian, 2013), 

266 field pea (Marles, et al., 2013), lentil (Dueñas, et al., 2006; Oomah, Caspar, et al., 2011), 

267 and mung bean (Luo, et al., 2016; Muhammed, Manohar, & Junna, 2010).

268



14

269 In general, these studies confirmed that polyphenols of whole pulses seeds are 

270 essentially concentrated in the seed coats, and hence they are the predominant in vitro 

271 antioxidant capacity contributors. For example, 80.3-84.2% of the total polyphenol and 

272 over 83.9% of total flavonoid content of whole mung bean seed were reported to be 

273 present in the seed coat (Luo, et al., 2016; Muhammed, et al., 2010). The proportions 

274 of total polyphenol and total flavonoid content in faba bean seed coat are up to 80.0% 

275 and 89.3% of the whole seed respectively (Boudjou, et al., 2013). Similarly, total 

276 polyphenol content of chickpea seed coat (75.94 mg GAE /g DM) was relatively higher 

277 than that of cotyledon (15.24 mg GAE /g DM) (Sreerama, et al., 2010). Condensed 

278 tannins in faba bean (Boudjou, et al., 2013), mung bean (Xu, et al., 2007), and lentil 

279 (Dueñas, Hernández, & Estrella, 2002) seed coats were report to represent over 75%, 

280 50% and 54% respectively of the total tannins in the whole seeds. Notably, Xu, et al. 

281 (2007) found that polyphenols levels and in vitro antioxidant activities of dark coloured 

282 (like red, bronze, and black) lentil and chickpea seeds were significantly higher than 

283 those of light coloured (like white, yellow, and green) varieties. Total free phenolic 

284 acids and condensed tannins in coloured pea seed coat reached to 78.53 g/g DM and 

285 1560 mg CE/g DM comparing to 17.17 g/g DM and not detected for those in white seed 

286 coat (Troszyńska & Ciska, 2002). 

287

288 In the case of lupins, total polyphenol content in seed coats of L. mutabilis, L. albus, 

289 and L. angustifolius which grown in Brazilia were reported to be 1.15-4.49 mg catechin 
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290 equivalents (CE)/g DM which were much lower than cotyledons (7.38-12.42 mg CE/g 

291 DM) (Ranilla, Genovese, & Lajolo, 2009). The results accord with findings from 

292 Lampart-Szczapa, et al. (2003), who found that polyphenols in seed coats of L. luteus, 

293 L. albus and L. angustifolius grown in Poland (ranging from 0.16 to 0.42 mg caffeic 

294 acid equivalents/g DM), were 1.30-6.52 times lower than those in cotyledons (0.32 to 

295 1.88 mg caffeic acid equivalents/g DM). Additionally, these authors revealed that free 

296 phenolic acids, primarily procatechuic acid and p-hydroxybenzoic acid, were mainly 

297 present in the seed coats. Likewise, they found that concentrations of tannins in the 

298 cotyledons were 4.33-31.00 times higher than that in the seed coat. On contrast, 

299 Petterson (1998) reported that most tannins (include proanthocyanidins) of lupin 

300 occurred in the seed coat, however, the initial data are unavailable.

301

302 These different and sometimes conflicting results of studies on polyphenols in pulse 

303 seed coat are difficult to interpret and compare since the lack of consensus on extraction 

304 methods and express ways (i.e., equivalents). Nonetheless, most of previous published 

305 studies have only extracted polyphenols with organic solvents in which case 

306 appreciable amounts of “bound” polyphenols in the seed coat matrix may remain un-

307 extracted and thus the total polyphenol levels and antioxidant capacity may be 

308 underestimated (Saura-Calixto, 2012).

309
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310 3.3.2. Phytic acid

311 Phytic acid (PA), its lower substituted homologues and its salts are referred as phytates 

312 which are commonly present in pulse seeds. Phytic acid have been implicated in the 

313 “hard-to-cook” phenomenon in pulse seeds. In addition, they are considered as the main 

314 anti-nutritional factor due to their capacity to chelate cations (in particular calcium, iron 

315 and zinc) to form insoluble complexes and therefore reduce their bio-availability 

316 (Sanchez-Chino, Jimenez-Martinez, Davila-Ortiz, Alvarez-Gonzalez, & Madrigal-

317 Bujaidar, 2015). The content of phytic acid can be affected significantly by genetic and 

318 environmental factors, alone and in combination. However, phytic acid in mung bean 

319 (1.8-5.8 mg/g DM), pea (3.1-7.1 mg/g DM), lentil (2.5-12.2 mg/g DM), chickpea (2.8-

320 13.6 mg/g DM), lupin (6.0-8.9 mg/g) and faba bean (5.9-15.0 mg/g DM) are generally 

321 lower than soybean (4.8-20.1 mg/g DM) (Campos-Vega, Loarca-Piña, & Oomah, 2010). 

322 Moreover, the majority of phytic acid is demonstrated to present in “the proteins bodies” 

323 in cotyledon (Campos-Vega, et al., 2010). Phytic acid of chickpea is presented in a low 

324 level (0.79 mg/g DM) in seed coat but high in cotyledon (9.82 mg/g DM) (Sreerama, 

325 et al., 2010). Beal and Mehta (1985) indicated that little (1 mg/g) or no phytic acid was 

326 found in pea seed coats. 

327

328 3.3.3. Alkaloids

329 Alkaloids are mainly present in lupins. Quinolizidine alkaloids, mainly lupanine, 13-

330 hydroxylupanine and angustifoline, are major contributors to the bitter taste of some 
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331 varieties of lupin seeds and are potentially toxic (Petterson, 1998). Bitter lupin varieties 

332 have alkaloid contents ranging between 0.5-6%, in contrast the sweet varieties have 

333 less than 0.02% (Resta, Boschin, D'Agostina, & Arnoldi, 2008). Moreover, alkaloids 

334 can be removed by washing with water. A maximum legal limit on alkaloid 

335 concentration in lupin flours and lupin products has been set at 0.02% by authorities of 

336 France, UK, Australia and New Zealand (Resta, et al., 2008). Little is known on 

337 distributions of alkaloids in lupin seeds, though Sipsas (2008) reported that no alkaloids 

338 were found in Australian sweet lupin seed coat, but no detailed data was found. 

339

340 4. Mycotoxins contamination

341 Pulses are vulnerable to be contaminated by fungus and the resulting mycotoxins (e.g.,  

342 alfatoxins, ochratoxins and phomopsins) during pre- or post-harvest (CAST, 2003). A 

343 further increase in human exposure of them by consuming products containing 

344 contaminated pulses may occur. However, recent systematic surveys on mycotoxins in 

345 pulses based human food are lacking. Here, phomopsins in contaminated lupin seeds, 

346 a highly representative example of mycotoxins contamination of pulses, will be 

347 discussed as a detailed case study. 

348

349 Phomopsins are toxins produced by the fungus Diaporthe toxic (EFSA, 2012). The 

350 fungus mainly infects lupin stems but also the seeds under high humidity storage 

351 conditions (>13%). Lupin seed coat, being the outermost layer of the seed, is the most 
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352 vulnerable part of seed to be invaded by the fungus and thus may content the highest 

353 level of phomopsins (EFSA, 2012). Phomopsins are suspected as the cause of lupinosis 

354 in grazing animals. A maximum legal limit (5 µg/kg) of phomopsins in lupin seeds and 

355 lupin foods has been established in Australian, New Zealand, UK and FAO (Schloss, 

356 Koch, Rohn, & Maul, 2015). As other mycotoxins, phomopsins are stable to food 

357 processing including soaking, cooking, and fermentation. However, seeds 

358 contaminated by phomopsins can be easily removed by seeds grading and screening 

359 since phomopsins is “almost entirely limited to dis-coloured seeds” (EFSA, 2012). In 

360 addition, resistant varieties have been developed. Extrusion which combines high 

361 pressure, high temperature and severe shear has showed the capacity to reduce other 

362 mycotoxins (e.g. alfatoxins and zearalenone) (Bullerman & Bianchini, 2007), but no 

363 studies on detoxifying phomopsins in lupin by extrusion cooking have been reported.

364

365 5. Bio-availability of nutrients in pulse seed coats

366 Bio-availability refers to the extent that nutrients can be released from food matrix into 

367 digestive fluid, and thereby available for intestinal transport, biotransformation, 

368 absorption and metabolism (Versantvoort, Van de Kamp, & Rompelberg, 2004). There 

369 is strong evidence that structure and composition of a food matrix will govern the bio-

370 availability of many nutrients in the gastrointestinal tract (Wahlqvist, 2016). 

371
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372 A few published clinical studies have suggested that pea seed coat consumption may 

373 benefit cardiovascular and gastrointestinal biomarkers in humans, that may be due to 

374 multiple mechanisms caused by the high dietary fibre in the seed coat (Dahl, Whiting, 

375 Healey, Zello, & Hildebrandt, 2003; Flogan & Dahl, 2010; Mollard, Luhovyy, Smith, 

376 & Anderson, 2014). However, dietary fibre has been shown to significantly reduce bio-

377 availability of several nutrients. For example, lupin seed coat in the diet decreased 

378 protein digestibility in rats (Bailey, Mills, & Hove, 1974). In contrast, removal of lentil 

379 seed coat significantly improved lentil iron bio-availability (DellaValle, Vandenberg, 

380 & Glahn, 2013). The compact inert insoluble fibre matrix of the seed coat may be a 

381 physical barrier to block the release of nutrients, give increased viscosity of digesta and 

382 therefore impair absorption. Besides, dietary fibre, polyphenols and alkaloids can also 

383 inhibit enzymes, and chemically bind some nutrients thus lowering their bio-

384 availability (Khattab & Arntfield, 2009). 

385

386 The fermentability of cellulose and hemicellulose in the colon was surprisingly reported 

387 to be high, 70% and 72% respectively, mainly degraded by some specialized series of 

388 gut bacteria (Flint, Scott, Duncan, Louis, & Forano, 2012). It suggests that “trapped” 

389 compounds (e.g., minerals and polyphenols) in pulse seed coats could be released in 

390 colon. In this context, dietary fibre could also modulate pH of human gastrointestinal 

391 tract, especially lower pH level in colon, to enhance release and absorption of minerals 

392 (Baye, Guyot, & Mouquet-Rivier, 2017). A large proportion of polyphenols are 
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393 reported to be not bioavailable in the upper part of the human gastrointestinal tract. 

394 Instead, they will reach colon and be metabolized at a large extent by gut microbiota 

395 (Saura-Calixto, 2012). However, more studies are needed to investigate digestibility of 

396 pulse seed coats in human, as well as their physiological effects on human health 

397 (including effects on colon and gut bacteria).

398

399 6. Effect of processing on pulse seed coats

400 Generally, pulses are dried in the field to achieve the target moisture of 9-20% for 

401 threshing (i.e. removal of pods), then cleaned, graded and further dried to approximate 

402 13% for storage. Storage conditions (e.g. seed moisture, relative humidity, duration and 

403 temperature) significantly affect the seed coat characteristics. For example, the seed 

404 coat colour of faba bean has been observed to darken from beige to dark brown 

405 depending upon the storage conditions (Nasar-Abbas, et al., 2009). Although pulses 

406 can be consumed either whole or dehulled splits, they require processing before 

407 consumption to (1) reduce or eliminate anti-nutritional factors, (2) improve consumer 

408 acceptability (e.g. texture, flavor), and (3) enhance nutritional properties like nutrient 

409 bio-availability. There are several conventional whole seeds processing methods, 

410 including soaking, dehulling, milling, cooking, puffing, germination (or sprouting) and 

411 fermentation (Patterson, Curran, & Der, 2017). But only few studies are found to treat 

412 isolated pulse seed coat using milling, boiling, and more recently extrusion cooking. 
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413 All have shown to affect composition, and physicochemical and nutritional properties 

414 of the seed coats.

415

416 6.1. Conventional processing

417 Seed coat bulk density (weight of seed coat per unit volume) is low such that further 

418 processing (like grinding) is required to increase their density to reduce its storage and 

419 transport fees after dehulling (Table 4). Grinding was reported to increase solubility of 

420 pea seed coat, from 4.1% to 8.6%, accompanying by reduction in water binding 

421 capacity (WBC) and swelling capacity by 35.2% and 21.7% respectively (Ralet, Valle, 

422 & Thibauit, 1993a). Similarly, water solubility of mung bean seed coat was 0.97% with 

423 particle size of <50 mesh (<300 μm), whereas a much lower water solubility (0.79%) 

424 was found with particle size of >35 mesh (>500 μm) (Huang, 2009). The authors also 

425 found that mung bean seed coat with smaller particle size had a significantly higher 

426 swelling capacity, WBC, and oil binding capacity but lower bulk density compared 

427 with those with bigger particle size.

428

429 Soaking followed by cooking of whole pulse seeds is the traditional domestic operation 

430 to produce edible pulse products. During soaking, pulses imbibe water to expand the 

431 seed coats, and activate endogenous enzymes (cell wall polysaccharidases which can 

432 disrupt the cell wall, and phytase which can reduce phytic acid content, for example) 

433 (Wang, et al., 2003). Moreover, water soluble compounds like minerals, soluble tannins, 
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434 phytic acid, alkaloids and polyphenols may leach into soaking, cooking and canning 

435 water (Tajoddin, Manohar, & Lalitha, 2013). As the outer layer, the seed coat plays a 

436 crucial role in controlling these exchanges during soaking and cooking. Additionally, 

437 Güzel (2012) found that atmospheric pressure cooking (APC) and high-pressure 

438 cooking (HPC) caused darkening of chickpea and faba bean seed coats, with greater 

439 effect for HPC. The colour changes may be the results of pigment degradation. Hashemi, 

440 et al. (2015) found that starch in pea seed coat increased from 0.16% to 0.59% in dry 

441 basis after boiling for 30 min, what may be due to the increase of starch bioavailability 

442 and losses of soluble compounds during boiling.

443

444 Mung bean (Tajoddin, et al., 2013), lentil and field pea (López-Amorós, Hernández, & 

445 Estrella, 2006), chickpea (Ghavidel & Prakash, 2007), and lupins (Dueñas, Hernandez, 

446 Estrella, & Fernandez, 2009) have been used to germinate sprouts. Most of these studies 

447 confirmed that germination will increase polyphenols (prominently flavonoids) and 

448 vitamins, whereas decrease anti-nutritional factors (e.g. α-galactosides, trypsin 

449 inhibitors and phytic acid). As a result, germination can improve antioxidant capacity 

450 and bio-availability of the nutrients. Seed coat impermeability is the main regulator for 

451 pulse germination. Moreover, the structure and composition of the seed coat will 

452 change significantly just before and during germination, possibly by enzymes (Finch-

453 Savage & Leubner-Metzger, 2006). Although, so far, no study on the effect of 
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454 germination on pulse separated seed coat has been found, it can be hypothesised that 

455 changes in composition and physico-chemical properties of pulse seed coat may occur. 

456

457 6.2. Extrusion

458 Extrusion cooking is a high temperature short time unit operation in which food will be 

459 melted in a sealed cylinder by high pressure, high temperature and high mechanical 

460 shear, then passed through a die (Alam, Kaur, Khaira, & Gupta, 2016). Depending on 

461 extrusion conditions (such as material particle size, feed rate, moisture, screw speed 

462 and configuration, barrel temperature and die geometry), the process results in 

463 disruption of cell wall structures, chemical reactions (such as polysaccharides 

464 depolymerization, Maillard reaction and starch gelatinization), and physical changes 

465 (e.g. solubility, morphological and rheological properties) (Singh, Gamlath, & 

466 Wakeling, 2007; Wolf, 2010). Moreover, extrusion has been used to incorporate seed 

467 coats of field pea (Schmidt, 1987), lupin (Tucek, 2009) into breakfast, pasta and snacks 

468 to increase their dietary fibre levels. But they are beyond the scope of this review.

469

470 Extrusion cooking, mainly twin-screw extrusion, is the most used technology to modify 

471 the functional properties of high fibre materials (Rashid, Rakha, Anjum, Ahmed, & 

472 Sohail, 2015; Wolf, 2010; Yan, Ye, & Chen, 2015). Water solubility of pea seed coat 

473 was reported to increase by 3.6-15.3% after extruded using twin screw extruder, 

474 accompanied by a dramatic increase (up to 220%) in soluble dietary fibre (Ralet, Valle, 
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475 & Thibauit, 1993b). Similarly, single screw extruder increased soluble dietary fibre in 

476 pea seed coat from 5.3% to 6.7% (Arrigoni, Caprez, Amadò, & Neukom, 1986). 

477 Correspondingly, technical properties of pea seed coat, like water binding capacity and 

478 swelling capacity, were increased by extrusion cooking. On the contrary, extrusion has 

479 shown no or slightly increased effects on the technical properties of yellow pea seed 

480 coats (Arrigoni, et al., 1986). Except the conflicting results mentioned above, data from 

481 extruded wheat bran (Rashid, et al., 2015; Yan, et al., 2015), sugar beet pulp (Rouilly, 

482 Jorda, & Rigal, 2006), onion waste (Ng, Lecain, Parker, Smith, & Waldron, 1999) 

483 support the increase in the solubility of dietary fiber, as well as the improvements on 

484 their physicochemical characteristics. 

485

486 Extrusion cooking has been revealed to reduce the levels of heat sensitive extractable 

487 polyphenols, which can be extracted by aqueous/organic solvents (Singh, et al., 2007). 

488 However, it can release non-extractable polyphenols, which remain in the resulting 

489 residues of the aqueous/organic extraction, from food matrix. Depolymerization of high 

490 molecular weight polyphenols (such as condensed tannins) was also reported (Awika, 

491 Dykes, Gu, Rooney, & Prior, 2003). Additionally, extrusion cooking can increase bio-

492 availability of minerals, mainly by reducing the chelating properties of dietary fibre and 

493 the contents of other chelating compounds such as phytic acid and condensed tannins 

494 (Singh, et al., 2007). Taken together, extrusion cooking could be an applicable 

495 technology to improve the properties of pulse seed coats. However, more 
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496 comprehensive studies are required to investigate its effects on compositional and 

497 physicochemical properties of the pulse seed coats.

498

499 7. Application of pulse seed coats in human food

500 Pulses have been historically important sources of energy, protein and dietary fibre in 

501 human diet. Currently, pulse seed coats have only limited use in human food such as in 

502 high fibre breads and meat products. However, the high content of dietary fibre in pulse 

503 seed coats, along with considerable amounts of minerals, phytochemicals (e.g. 

504 polyphenols) suggests they could be more widely utilized as novel functional dietary 

505 fibre ingredients (Macagnan, da Silva, & Hecktheuer, 2016). There are several 

506 commercial dietary fibre ingredients manufactured from pea seed coat and lupin seed 

507 coat, both of them have been classified as GRAS (Generally Recognized as Safe). 

508 However, lupin has been listed as a food allergen what requires mandatory labelling in 

509 Europe since 2007, and most recently in Australia and New Zealand (March 2017) 

510 (FSANZ, 2017). Moreover, there are several specific regulations on contaminants and 

511 natural toxins levels of the six pulses and their derived food products, phomopsins and 

512 lupin alkaloids in lupin seed coat for example.

513

514 Like other dietary fibre ingredients, pulse seed coats have been incorporated into baked 

515 goods, in which they have shown to change physical, nutritional, and sensory properties 

516 of the products. Dalgetty and Baik (2006) found that incorporations of pea, lentil, and 
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517 chickpea seed coats significantly increased dough mixing time, water absorption, and 

518 loaf weight but decreased loaf volume. The observations are in accordance with the 

519 results of Sosulski and Wu (1988) who added up to 7.7% of pea seed coat into dough. 

520 The authors of these studies concluded that breads with 5% pulse seed coat addition 

521 was comparable to whole wheat breads in sensory quality but had desirable higher 

522 dietary fibre content.

523

524 In terms of adding pulse seed coats into meat products, Verma, Banerjee, and Sharma 

525 (2012, 2015) used pea hull flour (PHF) and chickpea hull flour (CHF) as dietary fibre 

526 sources to improve qualities of chicken nuggets. The studies found that incorporation 

527 of the two hull flours significantly increased product yield and dietary fibre content. 

528 However, both reduced emulsion stability of the product, and lowered its hardness, 

529 gumminess and chewiness dramatically. Product colour was also affected by initial 

530 colours of the two hull flours and formulation differences. Sensory evaluation 

531 suggested that an 8% PHF addition in low salt (40% reduction) chicken nuggets were 

532 acceptable to consumers.

533

534 8. Conclusions

535 To date, pulse seed coats are little utilised in human food. However, there is potential 

536 for the seed coat to be used as a natural “nutritious dietary fibre” which could (1) fill 

537 the “fibre intake gap”, (2) provide considerable levels of minerals and antioxidants, and 
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538 (3) achieve greater safe and sustainable utilization of pulses by exploiting value-added 

539 applications of their by-products (Saura-Calixto, 2012; Sharma, et al., 2016). However, 

540 in-depth studies on biochemical, and nutritional properties of pulse seed coats are still 

541 lacking. In addition, physicochemical properties (e.g. solubility, swelling capacity, 

542 water and oil binding capacities, and viscosity) of pulse seed coats will significantly 

543 associate with physiological functionalities (Wahlqvist, 2016), but the impacts of 

544 processing on physicochemical properties are also still unclear. Moreover, to minimize 

545 the negative impacts of dietary fibre and other anti-nutritional factors, while improving 

546 their desirable physiological properties, further work is needed to optimize the 

547 processing. Finally, parallel to the study of pulse seed coats incorporation into food 

548 products, more nutritional and safety studies on the products are needed. These will add 

549 to what are likely to be favourable cost and sustainability profiles.

550
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874

875 Table 1. Names and major types of the selected six pulses

876

Botanical name

FAO 

commodity 

class

Common/Alternative names

2016 World 

production 

(million tonne)

Main market types in Australia 

(• most common )

• Dun (including Kaspa type)

14.36 White/bluePisum sativum Peas, dry

Field pea; Protein pea; Austrian 

winter peas (black peas); 

Canadian field peas (spring peas) Green

Faba bean /Tickbean • V. faba var. minor (faba bean)
Vicia fabae

Broad beans, 

dry Broad bean
4.46

V. faba var. major (broad bean)

• Desi
Cicer arietinum Chickpeas

Garbanzo beans (US); Bengal 

gram (India)
12.09

Kabuli

6.32 • Red
Lens culinaris Lentils Masurdahl, adas

Green

Blue lupin; narrow-leaved lupin • L. angustifolius
Lupinus spp. Lupins

European white lupin
1.28

Albus (L. albus)

Mung bean (Australia) • Vigna radiata (green)
Vigna radiate Beans, dry

Green/golden gram (India)
~3.0

Vigna mungo (black)

877 Ref: FAO (1994); FAOSTAT (2018); Sherasia, et al. (2017); Tiwari, et al. (2011); Pulse 

878 Australia (2016).
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879

880 Table 2. Morphological and physical properties of the selected six pulse seed coats

881

Pulses Colour
Seed weight 

(g/100 seeds) 

Hull percentage 

(%)*

Hull thickness 

(μm)

Lupin 　 　 　 　

L. angustifoliu speckled 3.1-23.8 19.4-38.8 257.0-335.0

L. albus white 12.0-86.9 12.2-27.5 nd

Field pea green/yellow 18.7-25.6 7.2-14.0 55.9-72.0

Vicia fabae

Faba bean beige 40.0-95.0 11.0-15.4

Broad bean beige 110.0-145.0 nd
141.0-248.0

Chickpea 

desi dark/brown 12.0-27.0 10.1-22.0 343.0-423.0

kabuli beige/yellow 20.0-65.0 4.5-9.5 251.0

Lentil red/green 4.5-7.5 7.0-11.0 25.0-65.0

Mung bean green 2.5-4.7 8.6-23.5 30.0-330.0

882 * Data are dry basis; nd: no data were found;

883 Ref.: Huang, et al. (1988); Miao, et al. (2001); Clements, et al. (2005, 2014); Van 

884 Dongen, et al. (2003); Youssef, et al., 1984; Wood, et al., 2011; Tajoddin, et al., 2010; 

885 Hasan, 2010.
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886

887 Table 3. Main carbohydrates and dietary fibre of three selected pulses seed coats

888

Pulses L. angustifoliu Field pea Chickpea

Starch (g/100g) 0.4-0.9 0.16-1.8 0.2-0.5

Oligosaccharides (g/100g) 0.4 nd nd

NSP (g/100g)

Total 79.8-89.1 68.0 45.9-72.4*

Soluble 5.0 3.0-4.0 1.9-2.5

Insoluble 80.6-84.1 64.0-65.0 49.1-52.9*

Cellulose (g/100g) 44.5-51.7 62.3 18.2-29.0

Hemicellulose (g/100g) 12.7-14.4 8.2 30.4

Pectins (g/100g) 15.6-27.7 nd 0.1

Lignin (g/100g) 0.3-2.1 3.5 1.4-4.1

Dietary fibre (g/100g)

Total 88-90.5 81.0-91.5 74.9-84.2

Soluble 3.1-3.8 4.1-11.0 nd

Insoluble 84.2-87.4 70.0-87.4 nd

889 Data are in dry basis.

890 NSP: Non-starch polysaccharides; nd: no data were found.

891 *: A remaining 15% was not hydrolysed by the NSP analyses which was supposed to 

892 be “highly bound ligno-cellulosic compounds” (Wood, et al. 2014).

893 Ref.: Miao, et al. (2001); Evans, et al. (1993); Evans (1994); Brillouet, et al. (1983); 

894 Guillon & Champ (2002); Hashemi, et al. (2015); Bailey, et al. (1974); Sosulski, et 

895 al.(1988); Dalgetty & Baik (2003); Ralet, et al. (1993a); Wood, et al. (2014).
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896

897 Table 4. Selected physico-chemical properties of pulse seed coats

898

Physical properties L. angustifoliu Field pea Chickpea Lentil Mung bean

Direct Density (g/mL) nd 0.6 0.4 0.7 nd

Bulk Density (g/mL) nd 0.8 0.7 0.8 0.45-0.64

Swelling capacity(mL/g) nd 1.9-6.0 3.6 2.4 5.51-9.20

Water binding (mL/g) 7.0-8.0 4.0-7.1 6.2 3.6 3.13-4.44

Oil binding (mL/g) 1.6-1.7 1.5-2.0 1.8 1.6 1.49-1.83

899 nd: no data were found.

900 Ref.: Guillon & Champ (2002); Dalgetty, et al. (2003); Pfoertner (2001); Turnbull, 

901 Baxter, and Johnson (2005); Ralet, et al. (1993b); Huang, et al. (2009). 


