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Abstract 

Three-dimensional (3D) wake transition for flow past a square cylinder aligned 

with sides perpendicular and parallel to the approaching flow is investigated using 

direct numerical simulation. The secondary wake instability, namely a Mode A 

instability, occurs at a Reynolds number (Re) of 165.7. A gradual wake transition from 

Mode A* (i.e. Mode A with vortex dislocations) to Mode B is observed over a range 

of Re from 185 to 210, within which the probability of occurrence of vortex 

dislocations decreases monotonically with increasing Re. The characteristics of the 

Strouhal–Reynolds number relationship are analysed. At the onset of Mode A*, a 

sudden drop of the 3D Strouhal number from its 2D counterpart is observed, which is 

due to the subcritical nature of the Mode A* instability. A continuous 3D 

Strouhal–Reynolds number curve is observed over the mode swapping regime, since 

Mode A* and Mode B have extremely close vortex shedding frequencies and 

therefore only a single merged peak is observed in the frequency spectrum. The 

existence of hysteresis for the Mode A and Mode B wake instabilities is examined. 

The unconfined Mode A and Mode B wake instabilities are hysteretic and 

non-hysteretic, respectively. However, a spanwise confined Mode A could be 

non-hysteretic. It is proposed that the existence of hysteresis at a wake instability can 

be identified by examining the sudden/gradual variation of the 3D flow properties at 

the onset of the wake instability, with sudden and gradual variations corresponding to 

hysteretic (subcritical) and non-hysteretic (supercritical) flows, respectively. 

                                                 
†Correspondence author: liang.cheng@uwa.edu.au 
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1. Introduction 

Instabilities in the wake of a long smooth bluff body subjected to steady incoming 

flow are among the most classical problems in fluid mechanics. It is well known that 

the flow is governed by a single dimensionless parameter, the Reynolds number Re (= 

UD/ν), where U is the approaching flow velocity, D is the length scale of the cylinder 

perpendicular to the approaching flow, and ν is the kinematic viscosity of the fluid. 

For a circular cylinder, D is taken as the diameter of the cylinder. For a square 

cylinder which is oriented such that the front and rear sides of the cross-section are 

perpendicular to the approaching flow while the other two sides are parallel to the 

approaching flow (simply referred to as the square cylinder hereafter), D is taken as 

the side length of the cylinder. 

Three-dimensional (3D) wake transition for flow past a circular cylinder has been 

studied extensively in the literature based on different methodologies, including 

physical model testing (e.g. Williamson, 1996), linear (and nonlinear) stability 

analysis (e.g. Barkley and Henderson, 1996), and direct numerical simulation (DNS) 

(e.g. Henderson, 1997; Jiang et al., 2016). Based on these investigations, it has been 

shown that with the increase of Re the flow structure in the cylinder wake undergoes a 

transition sequence of: (1) emergence of a two-dimensional (2D) primary wake 

instability at Re ~ 47, (2) onset of a Mode A (the first 3D instability mode, with a 

spanwise wavelength of approximately 3.96D and an out-of-phase sequence between 

the neighbouring braids) instability with large-scale vortex dislocations (denoted as 

Mode A*) at Re ~ 190, (3) gradual wake transition from Mode A* to Mode B (the 

second 3D instability mode, with a spanwise wavelength of approximately 0.82D and 

an in-phase sequence between the neighbouring braids) over a range of Re from 230 

to 260, and (4) development of an increasingly disordered Mode B structure for Re > 

270. 

A number of studies are also available in the literature for the wake instabilities of 

a square cylinder. Three wake instability modes, i.e. Mode A, Mode B, and a 
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quasi-periodic Mode QP, have been discovered for flow past a square cylinder 

(Blackburn and Lopez, 2003). Table 1 lists the critical Reynolds numbers Recr and the 

corresponding spanwise wavelengths (λ/D)cr for Modes A, B, and QP predicted by 

various studies. It is seen that although Mode QP was discovered through Floquet 

stability analysis, it was not reported by DNS or experimental studies. This is 

consistent with the case of a circular cylinder. 

 

Table 1. The Recr values and the corresponding spanwise wavelengths (λ/D)cr for 

Modes A, B, and QP predicted by various studies. The blockage ratio is defined as the 

side length of the cylinder to the cross-flow length of the computational domain or 

test section. 

Reference Method Blockage 

ratio (%) 

Recr, along with (λ/D)cr in the brackets 

Mode A Mode B Mode QP 

Robichaux et al. (1999) Floquet 5.6 162 ± 12 (5.22) 190 ± 14 (1.2) 200 ± 5 (2.8) 

Sheard et al. (2009) Floquet 2.5 164 (5.22) 198 (1.12) 215 (2.63) 

Choi et al. (2012) Floquet 1.0 166.5 (5.03) 200.7 (1.12) Not mentioned 

Park and Yang (2016) Floquet 1.0 167 (5.03) 201 (1.11) 219 (2.62) 

Sohankar et al. (1999) DNS 5.6 150 – 200 (~ 5) 200 – 250 (~ 1) Not mentioned 

Saha et al. (2003) DNS 10.0 150 – 175 (3) 240 – 250 (1.2 – 1.4) Not mentioned 

Saha (2009) DNS 10.0 160 – 163.5 240 – 250 Not mentioned 

Luo et al. (2003) Experiment 0.35 160 (5.2) 200 (1.2) Not observed 

Luo et al. (2007) Experiment 1.7 160 ± 2 (5.1) 204 ± 5 (1.3) Not mentioned 

 

However, a consensus on the precise wake transition regimes for a square 

cylinder has not been reached. Scatters are observed in Table 1 for the Recr and (λ/D)cr 

values, especially for the results obtained through DNS. Based on the results shown in 

Table 1, the following questions are raised and remained to be answered: 

(1) Theoretically speaking, the Recr and (λ/D)cr values for Mode B predicted by 

physical experiments and DNS should be consistent. However, significant 
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differences are observed in Table 1. It is worthwhile seeking an answer for the 

observed discrepancy. 

(2) For flow past a circular cylinder, the onset point for Mode B instability 

obtained through physical experiments (e.g. Re = 230 by Williamson (1996)) 

or DNS (e.g. Re = 230 by Jiang et al. (2016)) is smaller than that predicted by 

Floquet stability analysis (e.g. Re = 259 by Barkley and Henderson (1996)). 

This is because the unstable 3D modes discovered from Floquet stability 

analysis are based on the 2D base flow, without taking into account the 

nonlinear interactions between the unstable modes (Henderson, 1997). 

Whereas in reality, the existence of Mode A* flow would destabilize the braid 

shear layer region to allow for an early development of Mode B (Jiang et al., 

2016). However, this trend is not observed for the case of a square cylinder 

(Table 1). The Recr values for Mode B reported by Saha et al. (2003) and Saha 

(2009) through DNS are even much higher than the stability analysis results of 

Recr ~ 200. This challenges the explanation of the destabilization effect for 

Mode B proposed based on the case of a circular cylinder and warrants a 

further investigation. 

Similar to the case of flow past a circular cylinder, the regular Mode A structure in 

the wake of a square cylinder would also evolve spontaneously into a more stable 

pattern with large-scale vortex dislocations, i.e. Mode A* (Saha et al., 2003; Luo et al., 

2003), provided that the Mode A structure is not confined by a short spanwise size of 

the cylinder. In contrast to a sudden drop of the Strouhal number (St) in the St–Re 

relationship at the onset of Mode A* for the case of a circular cylinder (Williamson, 

1996), a gradual reduction of St at the onset of Mode A* was reported by Luo et al. 

(2003) for a square cylinder. In a follow-up study by Luo et al. (2007), however, a 

sudden drop rather than a gradual reduction of St was observed at the onset of Mode 

A*. 

For the wake transition process from Mode A* to Mode B, a single and 

continuous St–Re curve was observed by Luo et al. (2003), whereas a discontinuous 

St–Re curve and correspondingly twin-peaked vortex shedding frequency spectra (as 
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is the case for flow past a circular cylinder, see, e.g., Williamson, 1996) were reported 

by Luo et al. (2007). Luo et al. (2007) broadly attributed the difference between Luo 

et al. (2003) and Luo et al. (2007) to the difference in the experimental set-ups. 

In addition to physical experiments, DNS is also a useful tool in investigating the 

wake transition from Mode A* to Mode B, including the co-existence and interaction 

of the wake instability modes. However, since previous DNS studies were carried out 

with relatively large Re intervals (e.g. ∆Re = 50 in Sohankar et al. (1999) and ∆Re = 

25 in Saha et al. (2003)), a detailed wake transition process from Mode A* to Mode B 

or the gradual/sudden variations of the St–Re curve, including at the onset of Mode 

A* and during the wake transition process from Mode A* to Mode B, could not be 

properly explored. 

In light of the earlier works, the primary aim of this study is to investigate the 

wake transition for flow past a square cylinder through detailed DNS, with a 

particular focus on the mode interactions over the wake transition process from Mode 

A* to Mode B and the characteristics of the St–Re relationship. In addition, major 

differences between wake transition of a square cylinder and a circular cylinder will 

be discussed. 

 

2. Numerical model 

2.1. Numerical method 

OpenFOAM (www.openfoam.org) has been adopted in this study for solving the 

continuity and incompressible Navier–Stokes equations: 
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where 1 2 3( , , ) ( , , )x x x x y z  are Cartesian coordinates, ui is the velocity component in 

the direction xi, t is time, ρ is fluid density, p is pressure, and ν is kinematic viscosity. 

The Finite Volume Method (FVM) and the Pressure Implicit with Splitting of 

http://www.openfoam.org/
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Operators (PISO) algorithm (Issa, 1986) are used to solve the equations. The 

convection, diffusion and time derivative terms are discretized, respectively, using a 

fourth-order cubic scheme, a second-order linear scheme, and a blended scheme 

consisting of the second-order Crank–Nicolson scheme and a first-order Euler implicit 

scheme, respectively. The same numerical approach has been used in Jiang et al. 

(2016) for the simulations of wake transition of a circular cylinder. 

 

2.2. Computational domain and boundary conditions 

As shown in Fig. 1(a), a hexahedral computational domain of (Lx, Ly, Lz) = (60D, 

60D, 15D), with Lx, Ly, and Lz being the domain sizes in the x-, y-, and z-directions, 

respectively, is adopted for the simulations. The blockage ratio of the domain is 

D/Ly×100% = 1.67%, which is smaller than those of many studies listed in Table 1. It 

will be further shown in § 2.4 that by reducing the blockage ratio from 1.67% to 

0.83%, the Recr values for Modes A and B would only vary 0.36% and 0.35%, 

respectively. For the spanwise domain length Lz, Jiang et al. (2016) adopted an Lz of 

12D to accommodate three spanwise periods of the Mode A structures (with a 

spanwise wavelength of approximately 3.96D) for the case of a circular cylinder. 

Similarly, for the case of a square cylinder, an Lz of 15D is adopted in the present 

study to accommodate three spanwise periods of Mode A. It will be shown in § 2.4 

that the spanwise wavelength of Mode A for a square cylinder is approximately 4.96D 

(which is the wavelength at the left tip of the neutral instability curve for Mode A). 
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 (a)  

(b)  

Fig. 1. (a) Schematic model of the computational domain (not to scale), and (b) 

Close-up view of the 2D mesh near the cylinder. 

 

The boundary conditions are specified as follows. At the inlet boundary, a 

uniform flow velocity U is specified in the x-direction. At the outlet, the Neumann 

boundary condition (i.e. zero normal gradient) is applied for the velocity, while the 

pressure is specified as a reference value of zero. Symmetry boundary conditions are 

applied at the top and bottom boundaries, while periodic boundary conditions are 

employed at the two lateral boundaries perpendicular to the cylinder span (Jiang et al., 

2017a). A non-slip boundary condition is applied on the cylinder surface. The internal 
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flow is stationary at the start of the simulation. 

 

2.3. Mesh dependence study 

A 2D mesh is constructed first in the plane perpendicular to the cylinder axis (i.e. 

the x-y plane). For the 2D mesh, the cylinder surface is discretized with 196 nodes. 

The height of the first layer of mesh next to the cylinder is 0.005D. The cell size at the 

two leading edges of the cylinder (where high velocity and pressure gradients take 

place) is 0.005D×0.005D. The cell expansion ratio in the whole domain is kept below 

1.1. To capture detailed wake flow structures, a relatively high mesh resolution is used 

in the near wake by specifying a streamwise mesh size varying linearly from 0.05D at 

x/D = 1 to 0.1D at x/D = 7. A total of 43,922 cells are used for the 2D mesh. A 

close-up view of the mesh near the cylinder is shown in Fig. 1(b). 

It has been reported in previous studies that for 2D simulations, the vortex 

shedding process changes from a regular periodic state into an irregular state as Re 

exceeds a certain value, e.g. 225 – 250 in Robichaux et al. (1999), 250 – 300 in 

Sohankar et al. (1999), and 210 – 218 in Saha et al. (2000). Sohankar et al. (1999) 

attributed this phenomenon to the restriction of a 2D domain. They also found that 

beyond this critical Re the time-averaged flow field becomes asymmetric about the 

wake centreline. In the present study, this critical Re is found at Re = 250 – 275. 

Therefore, a 2D mesh dependence study at Re = 400 (the highest Re considered in this 

study) may be misleading, and a 3D mesh dependence study will be conducted 

directly. 

The 3D mesh is constructed by replicating the 2D mesh along the z-axis, resulting 

in an identical mesh resolution in all planes perpendicular to the spanwise direction. 

The cell size in the spanwise direction (∆z) is 0.125D. This results in a total of 120 

mesh layers along the spanwise direction, which is the same as that used in Jiang et al. 

(2016) for a circular cylinder. A mesh dependence study regarding this reference mesh 

is carried out at Re = 400 with the following two variations: 

(1) A mesh refined in the z-direction, through reducing ∆z from 0.125D to 0.0625D. 
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(2) A mesh refined in the x-y plane. This mesh has a number of cells in both x- and 

y-directions 1.5 times that of the reference mesh. Specifically, the number of cells 

around the cylinder surface is increased by 1.5 times, while the height of the first 

layer of mesh next to the cylinder is reduced by 1.5 times. For this case, the time 

step (∆t) is also reduced by 1.5 times so as to satisfy the same 

Courant–Friedrichs–Lewy (CFL) limit, which is to keep the CFL number less than 

0.5 for all the cells in the computational domain. The CFL number is defined as: 

CFL
u t

l





 (2.3) 

where |u| is the magnitude of the velocity through a cell, and ∆l is the cell size in 

the direction of the velocity. 

Since the fully developed 3D flow may be irregular, at least 800 non-dimensional 

time units (defined as t* = Ut/D) of the fully developed flow were used to calculate 

the statistical stationary hydrodynamic forces on the cylinder, including the drag and 

lift force coefficients (CD and CL) and the Strouhal number (St), which are defined as: 

21
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Lf D
St

U
  (2.6) 

where FD and FL are the integrated drag force and lift force on the entire cylinder, 

respectively, and fL is the frequency of the fluctuating lift force. These flow properties 

are defined based on the approaching flow velocity (U) and the length scale of the 

cylinder perpendicular to the approaching flow (D, namely the side length of the 

square cylinder). For irregular 3D flows, fL is determined as the peak frequency 

derived from the fast Fourier transform (FFT) of the time-history of CL. The 

time-averaged drag and lift coefficients are denoted as 
DC  and 

LC , respectively. 

The root-mean-square lift coefficient LC   is defined as: 
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where N is the number of values in the time-history for the calculation of the 

root-mean-square quantity. 

As shown in Table 2, the hydrodynamic forces calculated with the two refined 

meshes are very close to those calculated with the reference mesh (relative differences 

are within 1% for St and 
DC , and within 4% for LC  ). In addition, the sufficiency of 

the statistical data range of at least 800 non-dimensional time units (called full length 

of data in Table 2) is examined by calculating the hydrodynamic forces with only the 

second half of the time-history (of at least 400 non-dimensional time units, called 

second half of data in Table 2). The close agreement between the results calculated 

with the full length of data and the second half of data (relative differences are within 

1% for St and 
DC , and within 2% for LC  ) suggests that the statistical data ranges 

are sufficient. 

 

Table 2. Results of the 3D mesh dependence study at Re = 400. 

Mesh type Full length of data
 

Second half of data 

St 
DC  

LC   St 
DC  

LC   

Reference mesh 0.1376 1.6863 0.7327 0.1379 1.6824 0.7186 

Refined in the z-direction 0.1369 1.6882 0.7439 0.1368 1.6899 0.7522 

Refined in the x-y plane 0.1382 1.6828 0.7086 0.1384 1.6809 0.7039 

 

Furthermore, the mesh resolution in the cylinder wake is examined with velocity 

profiles sampled at streamwise locations x/D = 0, 1, 2, 3, and 5 for the three cases 

listed in Table 2. The time-averaged and root-mean-square velocity profiles are 

plotted in Fig. 2 and Fig. 3, respectively. The time-averaged streamwise and 

transverse velocities are denoted as 
xu  and 

yu , respectively, while the 

root-mean-square streamwise and transverse velocities are calculated as: 
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Note that each point of 
xu , 

yu , 
xu   and 

yu   on the velocity profiles is a value 

averaged over the spanwise direction. 

As shown in Fig. 2 and Fig. 3, very good agreements of the near-wake velocity 

profiles are observed for the three cases listed in Table 2. Hence the reference mesh is 

considered to be sufficient and is adopted in the present DNS study. 
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Fig. 2. Time-averaged velocity profiles at streamwise locations x/D = 0, 1, 2, 3, and 5 
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for the three cases listed in Table 2: (a) time-averaged streamwise velocity profiles, 

and (b) time-averaged transverse velocity profiles. Each point on the velocity profiles 

is a value averaged over the spanwise direction. 
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Fig. 3. Root-mean-square velocity profiles at streamwise locations x/D = 0, 1, 2, 3, 

and 5 for the three cases listed in Table 2: (a) root-mean-square streamwise velocity 

profiles, and (b) root-mean-square transverse velocity profiles. Each point on the 

velocity profiles is a value averaged over the spanwise direction. 

 

2.4. Onset of wake instability 

In the present study, the neutral instability curves for Modes A and B are 
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re-examined by using DNS. For the prediction of the neutral instability curves, it is 

not necessary to use a long spanwise domain length (e.g. Lz = 15D) to simulate a few 

spanwise periods of the wake mode. For the purpose of minimizing the computational 

cost while retaining accuracy, the method proposed in Jiang et al. (2017b) is adopted 

and is briefly introduced here. It is demonstrated in Jiang et al. (2017b) that a neutral 

instability curve can be accurately predicted by resolving only a half of a spanwise 

period of the wake mode. Therefore, the meshes used for the prediction of the neutral 

instability curves are modified from the reference mesh introduced in § 2.3 (which 

uses Lz = 15D and 120 layers of mesh in the spanwise direction). The modified 

meshes adopt much shorter Lz values together with symmetry boundary conditions for 

the two lateral boundaries perpendicular to the cylinder span (in replacement of the 

periodic boundary conditions), such that only a half of a spanwise period of the wake 

mode is allowed to develop in the domain. To resolve this, only 10 layers of mesh are 

used in the spanwise direction, which reduces the computational cost significantly. 

The sufficiency of 10 spanwise mesh layers will be demonstrated later on with a mesh 

dependence study. 

The neutral instability curves predicted by the present DNS are shown in Fig. 4. 

Each point on the neutral curve is obtained by specifying a fixed Lz (i.e. a fixed 

spanwise wavelength of the wake mode λ = 2Lz) and calculating a few cases with 

variations of Re. For these cases, the exponential convergence/growth rates of the 

spanwise velocity amplitude sampled at a fixed point in the near wake of the cylinder 

are calculated. The Re corresponding to the zero growth rate is the critical Re at this 

fixed λ. More details and examples of the use of this method can be found in Jiang et 

al. (2017b,c). 
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Fig. 4. Neutral instability curves for (a) Mode A, and (b) Mode B. The neutral 

instability curves are shown for the ranges of Re close to the left tip. 

 

For an unconfined flow, the onset point of wake instability Recr and the 

corresponding most unstable spanwise wavelength of the wake mode (λ/D)cr can be 

found at the left tip of the neutral curve. As shown in Fig. 4, the Recr and (λ/D)cr 

values predicted by the present DNS are (Recr, (λ/D)cr) = (165.7, 4.96) for Mode A and 

(Recr, (λ/D)cr) = (201.4, 1.11) for Mode B. 

A mesh dependence study on the Recr values for Modes A and B is carried out 

with the following three variations to the modified reference mesh: 

(1) A mesh with an increase in the domain size, through doubling the distances from 
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the cylinder centre to the inlet, outlet, top and bottom boundaries (each from 30D 

to 60D). 

(2) A mesh refined in the x-y plane, through doubling the cell numbers in both x- and 

y-directions. For this case, the time step is reduced by half so as to keep the CFL 

number less than 0.5. 

(3) A mesh refined in the z-direction, through doubling the mesh layers in the 

spanwise direction (from 10 to 20). 

Table 3 lists the Recr values calculated with different meshes. The relative 

differences of Recr with respect to those calculated with the modified reference mesh 

are all less than 1%. In addition, the Recr values predicted by Park and Yang (2016) 

through stability analysis are also within 0.6% of the present DNS results (Table 3). 

Furthermore, the neutral instability curves predicted by the present DNS and by Park 

and Yang (2016) display very similar trends (Fig. 4). 

 

Table 3. Mesh dependence of the Recr values for Modes A and B. The relative 

difference of Recr with respect to that calculated with the modified reference mesh is 

shown in the brackets. 

Mesh type Recr for Mode A Recr for Mode B 

Modified reference mesh 165.7 201.4 

Increase in the domain size 166.3 (+0.36%) 202.1 (+0.35%) 

Refined in the x-y plane 164.9 (–0.48%) 199.4 (–0.99%) 

Refined in the z-direction 165.7 (+0%) 201.1 (–0.15%) 

Park and Yang (2016) 166.6 (+0.54%) 201.1 (–0.15%) 

 

3. Numerical results 

3.1. 3D wake transition 

The 3D wake transition process and mode interactions are examined for Re up to 

400. For each individual case, the fully developed flow is obtained by simulating the 

case for at least 1000 non-dimensional time units. After that, at least another 1000 
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non-dimensional time units of the fully developed flow is used to analyse the 

characteristics of the flow. The flow is examined quantitatively via the statistically 

stationary flow properties and qualitatively through numerical flow visualization of 

the vorticity field. The streamwise vorticity ωx, transverse vorticity ωy, and spanwise 

vorticity ωz used in this paper are defined in a dimensionless form: 

yz
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uu D

y z U


 
  

  

 (3.1) 
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  
  

  
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x y U


 
  
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 (3.3) 

Fig. 5 summarizes the 3D wake transition regimes for a circular and a square 

cylinder. The transition regimes for a circular cylinder are plotted based on the DNS 

results reported in Jiang et al. (2016). For both cases, the wake flow undergoes a 

transition sequence of “Mode A* → mode swapping → Mode B” with increasing Re. 

The first 3D instability mode, namely Mode A (before the evolution to Mode A* with 

time), originates from a 2D flow and is due to an elliptic instability of the primary 

vortex cores and the formation of streamwise vortex pairs through Biot–Savart 

induction (Williamson, 1996; Leweke and Williamson, 1998; Thompson et al., 2001a). 

The wake transition process for the square cylinder case is studied with the aid of Fig. 

5, and several features of the wake transition process are summarized below: 

(1) For a fully resolved 3D flow, a gradual wake transition from Mode A* to Mode B 

takes place at Re = 185 – 210. In contrast, when the Mode B instability evolves 

from a 2D base flow directly, the onset of Mode B occurs at Re ~ 200, for example 

the Mode B instability predicted in § 2.4 or through Floquet stability analysis (see 

Table 1). For a fully resolved 3D flow, the early development of Mode B for Re in 

the range of approximately 185 to 200 is expected, since Mode B, which is due to 

a hyperbolic instability of the braid shear layer region (Williamson, 1996; Leweke 

and Williamson, 1998; Thompson et al., 2001a), is destabilized at Re < 200 by the 

streamwise vortices of Mode A that develop in the braid shear layer region (Jiang 
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et al., 2016). As shown in Fig. 5, this feature is also observed for the case of a 

circular cylinder. Obviously the onset point of Mode B for a square cylinder of Re 

≥ 200 predicted by previous DNS and experimental studies (Table 1) is not in line 

with the mechanism for the early development of Mode B. 

(2) The range of Re for the early development of Mode B (i.e. the range of points b – 

c in Fig. 5) for a square cylinder (of ∆Re ~ 15) is smaller than that for a circular 

cylinder (of ∆Re ~ 30). Nevertheless, for both cases point “b” in Fig. 5 is located 

at approximately the middle of the range of points a – c. This is possibly due to 

the competition of the two modes, i.e. Mode B can be competitive down to the 

mid-point of the range of points a – c, but Mode A* dominants the lower half of 

this range. 

(3) For both cases, the mode swapping regime ends at a point (point “d” in Fig. 5) 

slightly above the point where Mode B becomes globally unstable (point “c” in 

Fig. 5). 

(4) Beyond the mode swapping regime, Mode B is the dominant mode, while Mode A 

may be observed in the form of scattered vortex pairs for a small range of Re (i.e. 

the range of points d – e in Fig. 5). Compared with the circular cylinder case, the 

range of points d – e for a square cylinder is longer, possibly because it is closer to 

the onset of Mode A so that Mode A is more competitive. It is also noted that 

Mode QP is not observed for the entire range of Re (up to 400) considered in this 

study. 
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Fig. 5. 3D wake transition regimes for a circular and a square cylinder. The results for 

a circular cylinder are based on the DNS results reported in Jiang et al. (2016). 

 

Fig. 6 shows some typical wake structures captured by the iso-surfaces of ωx. For 

Re = 200 which involves mode swapping, the 3D wake flow is initialized with the 

ordered Mode A structure (Fig. 6(a)), followed by the swapping between the Mode 

A* flow (with dislocation) shown in Fig. 6(b) and a mixture of Modes A and B 

(without dislocation) shown in Fig. 6(c). Beyond the mode swapping regime, 

increasingly disordered Mode B is observed (Fig. 6(d)). 
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Fig. 6. Iso-surfaces of ωx for (a) ordered Mode A (before the evolution to Mode A* 

with time) at Re = 200, (b) Mode A* (with dislocation) at Re = 200, (c) a mixture of 

Modes A and B (without dislocation) at Re = 200, and (d) disordered Mode B at Re = 

240. Dark grey and light yellow denote positive and negative values, respectively. The 

flow is from the left to the right past the cylinder on the left. 

 

 The mode swapping regime is further examined by identifying the time evolution 

of the vortex dislocations for each case. This is shown in Fig. 7, with shaded and clear 

periods representing the dislocation periods (e.g. Fig. 6(b)) and non-dislocation 

periods (e.g. Fig. 6(c)), respectively. For Re = 185 – 195, the dislocation periods 

emerge cyclically, which is similar to the circular cylinder case reported in Jiang et al. 

(2016). Based on a relatively weak and ordered Mode A flow, each dislocation period 

begins with the development of a local vortex dislocation originating from a specific 

Mode A vortex loop after it grows in strength for a short period of time. After the 

dislocation period, vortex dislocation is replaced by a mixture of Modes A and B, 

where Mode B is destabilized by the streamwise vortices of Mode A (Jiang et al., 

2016). However, the Mode B structure in the mixture may decay with time, as the 

source for the early destabilization of Mode B disappears. The next cycle begins when 

all the Mode B structures die out and the Mode A structures start to grow at the 
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locations where Mode B disappears. 

For Re = 200 – 210, however, the dislocation periods may or may not emerge 

based on such cycles. As Mode B becomes globally unstable at Re ~ 200, the Mode B 

structures in the mixture of Modes A and B (e.g. Fig. 6(c)) may not have to decay with 

time and result in a new cycle. This factor contributes to the decrease in the 

probability of occurrence of vortex dislocations. 

As can be seen more clearly in Fig. 8, the probability of occurrence of vortex 

dislocations decreases monotonically with increasing Re. For Re = 185 – 195, the 

wake structure is dominated by vortex dislocations, with a probability of occurrence 

of more than 80%. Beyond that, a sharp decrease in the probability of occurrence of 

vortex dislocations is observed. 
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Fig. 7. Time evolution of the vortex dislocations for the cases in the mode swapping 

regime. 
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Fig. 8. Probability of occurrence of vortex dislocations as a function of Re. 

 

3.2. Three-dimensionality of the flow 

The variation of the flow three-dimensionality with Re is examined in Fig. 9, 

where the three-dimensionality is represented by the time-averaged near-wake 

streamwise and transverse enstrophies (εx and εy) per unit span length. The enstrophies 

are defined as: 

21
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where V is the volume of the flow field of interest, which is the near-wake region of 

x/D = 0 – 5 and the entire lengths in the y- and z-directions for the present study. As 

shown in Fig. 9, the flow three-dimensionality increases gradually with increasing Re. 
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Fig. 9. Variations of the time-averaged streamwise and transverse enstrophies with Re. 

 

In contrast, a critical condition is observed for the case of a circular cylinder at Re 

= 265 – 270 (Williamson, 1996; Jiang et al., 2016), where a transition from the 

disappearance of Mode A* to the emergence of increasingly disordered Mode B 

results in a very weak flow three-dimensionality at this particular small range of Re 

(Jiang et al., 2016). However, as reflected in Fig. 9, such a critical condition is not 

observed for the square cylinder case. Such a difference can be explained with the aid 

of Fig. 5. For the circular cylinder case, Mode A (and Mode A*), which has a 

relatively strong flow three-dimensionality, is no longer dominant at the point where 

Mode B becomes globally unstable, while at this point Mode B is still largely ordered 

and therefore exhibits a very weak flow three-dimensionality. For the square cylinder 

case, however, Mode A (and Mode A*) is still dominant at the point where Mode B 

becomes globally unstable. Beyond the mode swapping regime, which is 

approximately ∆Re ≥ 10 above the onset of the global instability of Mode B, the 

Mode B structures become increasingly disordered, while scattered Mode A structures 

still remain in the flow. Both factors contribute to a sustained high level of flow 

three-dimensionality at this point. With a further increase in Re, the increasingly 

disordered Mode B becomes the sole reason for the continuous increase in the flow 

three-dimensionality shown in Fig. 9. 
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3.3. The St–Re relationship 

 Fig. 10 shows the 2D and 3D St–Re relationships over the laminar and 3D wake 

transition regimes for flow past a square cylinder. The 2D simulations are performed 

for Re ≤ 250 above which the vortex shedding process becomes irregular due to the 

restriction of a 2D domain (Sohankar et al., 1999). In the present study, the 3D St–Re 

relationship shown in Fig. 10 is analysed in terms of the gradual/sudden variations of 

the curve at the onset of the Mode A* wake instability and over the wake transition 

process from Mode A* to Mode B. 
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Fig. 10. 2D and 3D St–Re relationships over the laminar and 3D wake transition 

regimes. 

 

At the onset of Mode A* of Recr = 165.7, a sudden drop of the 3D St value from 

its 2D counterpart is observed in Fig. 10. This is consistent with the sudden increase 

in the flow three-dimensionality at this point (Fig. 9). As will be shown in § 3.4, the 

sudden increase in the flow three-dimensionality at this point is due to the subcritical 
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nature of the Mode A* instability. The sudden increase in the flow 

three-dimensionality leads to a sudden decrease in the separating velocity and a 

sudden increase in the wake width for the 3D flow, which results in a sudden decrease 

in the 3D St value. Similar features are also observed in Jiang and Cheng (2017d) for 

flow past a circular cylinder. 

However, a difference with the circular cylinder case is that for the square 

cylinder case the 3D St–Re curve is continuous over the mode swapping regime (Fig. 

10). Fig. 11 shows some of the frequency spectra of CL which are used to determine 

the 3D St values. Each vertical line under the frequency spectrum represents a discrete 

point on the spectrum curve, since the FFT analysis is performed based on a finite 

data range (1200 to 1900 non-dimensional time units) of the time-history of CL. Over 

the wake transition regimes, including the gradual wake transition process from Mode 

A* to Mode B at Re = 185 – 210, only a single frequency peak is observed for each 

case, and correspondingly a single 3D St–Re curve is observed in Fig. 10. This 

appears to be a major difference compared with the case of a circular cylinder for 

which two frequency peaks (a lower peak for Mode A* and a higher peak for Mode B) 

and correspondingly a discontinuity in the 3D St–Re curve are observed in the mode 

swapping regime (Williamson, 1996). 
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Fig. 11. Frequency spectra of CL for Re in the range of 180 to 300. 

 

For the case of a square cylinder, relatively uniform St values are observed for the 

following two ranges (see the inset of Fig. 10): 

(1) Re = 180 – 190, with the probability of occurrence of Mode A* of larger than 80% 

(Fig. 8), i.e. generally before mode swapping. 
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(2) Re = 210 – 220, with the probability of occurrence of Mode A* of smaller than 10% 

(Fig. 8), i.e. generally after mode swapping. 

Theoretically, two discontinuous segments of the St–Re curve, which correspond 

to Mode A* and Mode B, respectively, may be extended from the two 

above-mentioned ranges (illustrated by the two dashed lines in the inset of Fig. 10), as 

is the case for a circular cylinder. However, for a square cylinder the difference in St 

between the two segments of the St–Re curve is extremely small. For example, the 

difference in St between Re = 190 and 210 is 0.0028. As shown in Fig. 11, the 

frequency spectra for both Mode A* (Re = 180) and Mode B (Re ≥ 210) are 

broadband, having a distinct peak covering a small range of St, along with small-scale 

fluctuations extending towards the two sides of the peak. Within the narrow range of 

∆St = 0.0028 between the two modes (shown by the two vertical dashed lines in Fig. 

11), the two broadband frequency peaks for the cases within the mode swapping 

regime would merge into a single broadband peak, and consequently a single and 

continuous 3D St–Re curve is observed in Fig. 10. In contrast, the difference in St 

between the two modes for a circular cylinder is approximately 0.01 (see Williamson 

(1996) and Jiang et al. (2016)), which would result in two distinguishable frequency 

peaks in the spectrum. 

The continuous 3D St–Re curve for a square cylinder suggests that the method for 

the determination of the critical Re for the onset of Mode B by examining the 

discontinuities of the St–Re curve (e.g. Luo et al., 2007) may be inappropriate when 

the vortex shedding frequencies of the two wake modes are very close. This may 

explain why the experimental study by Luo et al. (2007) over-predicted the onset 

point for Mode B by ∆Re ~ 20. 

 

3.4. Hysteresis effect 

Since the experimental studies by Luo et al. (2003) and Luo et al. (2007) drew 

opposite conclusions on the existence of hysteresis at the onset of the Mode A 

instability, the existence of hysteresis is re-examined in the present study with DNS. 
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The hysteresis at the onset of Mode A (of Recr = 165.7) is checked by adopting 

the fully developed Mode A* flow at Re = 167 (Fig. 12(a)) as the initial condition and 

reducing Re by a small interval each time until the 3D flow structure (i.e. the Mode 

A* structure) disappears naturally. For each case with a reduction in Re, the 

simulation is run for at least 900 non-dimensional time units, and the 

three-dimensionality of the fully developed flow is quantified by the time-averaged 

streamwise enstrophy per unit span length (equation (3.4)). As shown in Fig. 13, a 

hysteresis loop of ∆Re ~ 3, namely between Re = 162 – 163 and Recr, is observed 

(with Lz = 15D). 

 

(a) Lz/D = 15, Re = 167, t* = 3880, ωx = ±0.5 

 

 

(b) Lz/D = 5, Re = 167, t* = 2900, ωx = ±0.5 

 

 

(c) Lz/D = 4, Re = 174, t* = 3090, ωx = ±0.25 

 

Fig. 12. Iso-surfaces of ωx for the fully developed 3D flow structures at Re slightly 

above Recr. (a) Mode A*, with Lz/D = 15, (b) one spanwise period of ordered Mode A, 

with Lz/D = 5, and (c) one spanwise period of ordered Mode A, with Lz/D = 4. Dark 

grey and light yellow denote positive and negative values, respectively. The flow is 

from the left to the right past the cylinder on the left. In (b) and (c), one half of the 

spanwise period of Mode A is distributed across the boundaries perpendicular to the 

cylinder span, since periodic boundary conditions are used. 



28 

 

 

160 164 168 172 176 180

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 L
z
 = 15D      L

z
 = 15D, decreasing Re

 L
z
 = 5D        L

z
 = 5D, decreasing Re

 L
z
 = 4D        L

z
 = 4D, decreasing Re

Re
cr

 = 172.7

(for L
z
 = 4D)

 

 
 x

Re

Re
cr
 = 165.7

(for L
z
 = 15D and 5D)

 

Fig. 13. Variations of the time-averaged streamwise enstrophy with Re for Re close to 

the onset of Mode A. 

 

The existence of hysteresis is also checked by adopting a series of cases with Lz = 

5D (approximately the most unstable spanwise wavelength of Mode A), through 

which vortex dislocation is suppressed and the fully developed 3D flow structure is 

represented by one spanwise period of ordered Mode A structures (Fig. 12(b)). For 

this set of cases, a similar hysteresis loop is observed in Fig. 13, which suggests that 

hysteresis is irrelevant to the occurrence of vortex dislocation. 

However, with a spanwise confinement of the Mode A structure by using Lz = 4D 

(approximately 80% of the most unstable wavelength of Mode A), although the fully 

developed 3D flow structure is also represented by one spanwise period of ordered 

Mode A structures (Fig. 12(c)), hysteresis is not observed (Fig. 13). This is similar to 

the case of a circular cylinder, for which the hysteresis loop becomes smaller with 

decrease of the spanwise wavelength of Mode A and disappears at a spanwise 

wavelength of approximately 88% of the most unstable wavelength of Mode A (Akbar 
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et al., 2011). These results suggest that hysteresis is also irrelevant to the wake flow 

mode. The supercritical behaviour for Lz = 4D (Fig. 13) is believed to be due to the 

confinement on the Mode A flow structure, such that the three-dimensionality of the 

Mode A flow is restricted, and a gradual rather than a sudden increase in the flow 

three-dimensionality is observed as Re exceeds Recr. It is worth mentioning that a 

supercritical Mode A instability is also observed for flow past a circular cylinder 

placed near to a moving wall with a gap-to-diameter ratio of 0.4 (Jiang et al., 2017e), 

for which the Mode A flow structure is confined by the plane wall and the 

three-dimensionality of the Mode A flow increases gradually as Re exceeds Recr. 

As illustrated in Fig. 13, the sudden and gradual variations in the flow 

three-dimensionality correspond to subcritical (hysteretic) and supercritical 

(non-hysteretic) flows, respectively. Similar variation trends are also observed for 

other flow properties, such as the Strouhal number and hydrodynamic forces on the 

cylinder, since the flow properties are influenced by the flow three-dimensionality. 

When the flow is hysteretic, the relationship between the 3D flow property and Re 

displays a discontinuity at the onset of the wake instability (illustrated in Fig. 14(a); 

for example the 3D St–Re relationship with Lz = 15D as shown in Fig. 10). When the 

flow is non-hysteretic, the 3D flow property deviates from its 2D counterpart 

gradually at the onset of the wake instability (illustrated in Fig. 14(b); for example the 

Mode A instability for flow past a circular cylinder placed near to a moving wall with 

a gap-to-diameter ratio of 0.4 (Jiang et al., 2017e)). In other words, the existence of 

hysteresis can be identified alternatively by examining the sudden/gradual variation of 

the 3D flow properties at the onset of the wake instability, without having to carry out 

additional simulations for the reducing Re branch. 
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(a)   

(b)   

Fig. 14. Sketch of the relationship between the flow property and Re for (a) hysteretic 

flows, and (b) non-hysteretic flows. 

 

In the literature, the Landau model (Landau and Lifshitz, 1976) has also been 

used to examine the hysteresis effect of wake instability modes for flow past bluff 

bodies (e.g. Dušek et al., 1994; Henderson and Barkley, 1996; Thompson et al., 2001b; 

Sheard et al., 2004; Carmo et al., 2008; Sheard et al., 2009). The Landau equation, 

which considers the amplitude A(t) of a perturbation mode, is written up to third order 

as: 
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where σ is the linear growth rate of the perturbation, ω is the angular oscillation 

frequency during the linear growth phase, and c is the Landau constant. The hysteresis 

of the wake instability mode can be determined based on the sign of the l-coefficient. 
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A positive l indicates a supercritical (non-hysteretic) flow, while a negative l indicates 

a subcritical (hysteretic) flow. The l-coefficient is determined by plotting (d log|A|/dt) 

against |A|
2
, where the slope of the curve near to the y-axis gives –l. More details on 

the Landau equation can be found in Dušek et al. (1994), Sheard et al. (2004), and 

Carmo et al. (2008). 

By using the Landau equation, Sheard et al. (2009) reported a supercritical 

(non-hysteretic) bifurcation with a positive l-coefficient for the Mode A instability for 

flow past a square cylinder, which appears at odds with the present results for an 

unconfined Mode A instability (with Lz = 15D and 5D). A possible speculation is that 

the spanwise wavelength for Mode A used in Sheard et al. (2009) may be smaller than 

the most unstable wavelength of Mode A, such that a confined Mode A was 

developed. 

To investigate this further, the Landau equation is also used in the present study to 

examine the hysteresis of the Mode A instability. An unconfined case with Lz = 5D 

and Re = 167, and a confined case with Lz = 4D and Re = 174 are investigated. The Re 

value for each case is slightly above the Recr value shown in Fig. 13. According to 

Sheard et al. (2009), the mode amplitude |A| shown in Fig. 15(a) is measured from the 

envelope of the oscillation of the spanwise velocity component sampled at a point in 

the wake (x = 3, y = 1, and z in the middle of the span for the present study). The 

relationships between (d log|A|/dt) and |A|
2
 for the two cases are shown in Fig. 15(b,c). 

The negative l-coefficient in Fig. 15(b) suggests a subcritical (hysteretic) flow for the 

unconfined case with Lz = 5D, while the positive l-coefficient in Fig. 15(c) suggests a 

supercritical (non-hysteretic) flow for the confined case with Lz = 4D. These results 

are consistent with the full DNS results shown in Fig. 13. 
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Fig. 15. Results for the unconfined Mode A flow with Lz = 5D and Re = 167, and the 

confined Mode A flow with Lz = 4D and Re = 174. (a) The growth and saturation of 
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the mode amplitude. (b) The derivative of the amplitude logarithm against the square 

of the amplitude for the unconfined flow, which indicates a subcritical transition. (c) 

The derivative of the amplitude logarithm against the square of the amplitude for the 

confined flow, which indicates a supercritical transition. 

 

It is worth noting that hysteresis and the subcritical/supercritical nature of the 

flow cannot be determined confidently by the Landau equation in some situations: 

(1) When the 2D base flow is non-periodic, the curve for the growth of the mode 

amplitude is not smooth, and the l-coefficient in the Landau equation cannot be 

determined (Carmo et al., 2010). For this situation, full DNS are required to 

examine the hysteresis. 

(2) The (d log|A|/dt) – |A|
2
 curve near to the y-axis, which is used to determine the sign 

of the l-coefficient, may subject to initial transient oscillations (e.g., Thompson et 

al., 2001b; Sheard et al., 2004). When the range of l < 0 is very small, such as one 

of the cases reported in Carmo et al. (2008), hysteresis cannot be determined 

confidently by the Landau equation, and full DNS results may be required as 

verification. 

Lastly, the hysteresis of the Mode B instability for flow past a square cylinder is 

examined by using all three methods mentioned above for the determination of 

hysteresis, including: 

(1) calculating an additional reducing Re branch of hysteresis (e.g. Fig. 13), 

(2) examining the sudden/gradual variation of the 3D flow properties at the onset of 

the wake instability (Fig. 14), and 

(3) determining the sign of the l-coefficient in the Landau equation. 

The Mode B instability is checked with Lz equal to the most unstable spanwise 

wavelength of Mode B, for which the Mode B structure is unconfined. All three 

methods show that the Mode B wake instability occurring at Recr = 201.4 is 

non-hysteretic. 
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4. Conclusions 

This paper presents a detailed DNS study of 3D wake transition for flow past a 

square cylinder aligned with sides perpendicular and parallel to the approaching flow. 

The study covers a range of Re up to 400. The Mode A wake instability is found to 

occur at Re = 165.7, with a spanwise wavelength of 4.96D. A gradual wake transition 

from Mode A* to Mode B is observed over a range of Re from 185 to 210. On the 

other hand, when the Mode B instability evolves from a 2D flow directly (through 

manipulating the cylinder span length to eliminate Mode A), the onset point for Mode 

B is observed at Re = 201.4. The early development of Mode B for Re in the range of 

185 to 201.4 is because Mode B is destabilized by the streamwise vortices of Mode A. 

In the mode swapping regime of Re = 185 – 210, the probability of occurrence of 

vortex dislocations decreases monotonically with increasing Re. The Mode B 

structure becomes dominant as Mode B becomes globally unstable at Re > 201.4. 

The characteristics of the St–Re relationship are analysed. At the onset of Mode 

A*, a sudden drop of the 3D St value from its 2D counterpart is observed. This is 

consistent with the sudden increase in the flow three-dimensionality at this point, and 

is due to the subcritical nature of the Mode A* instability. It is also found that the 3D 

St–Re curve is continuous over the mode swapping regime, rather than with two 

discontinuous segments for Modes A* and B. This is because the difference in St 

between the two modes is only approximately 0.0028, such that in the mode swapping 

regime the two broadband frequency peaks for the two modes are merged into a single 

broadband peak. 

The existence of hysteresis for the Mode A and Mode B wake instabilities is 

examined. It is found that the unconfined Mode A and Mode B wake instabilities for 

flow past a square cylinder are hysteretic (subcritical) and non-hysteretic 

(supercritical), respectively. However, a spanwise confined Mode A could be 

non-hysteretic (supercritical), since the three-dimensionality of the Mode A flow is 

restricted. It is also found that the existence of hysteresis at a wake instability can be 

identified by examining the sudden/gradual variation of the 3D flow properties (such 
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as the Strouhal number and hydrodynamic forces on the cylinder) at the onset of the 

wake instability. Sudden and gradual variations correspond to hysteretic (subcritical) 

and non-hysteretic (supercritical) flows, respectively. 
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