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Abstract 

Two-dimensional (2D) and three-dimensional (3D) instabilities in the wake of a 

circular cylinder placed near to a moving wall are investigated using direct numerical 

simulation (DNS). The study covers a parameter space spanning a non-dimensional 

gap ratio (G*) between 0.1 to 19.5 and Reynolds number (Re) up to 300. Variations in 

the flow characteristics with Re and G* are studied, and their correlations with the 

hydrodynamic forces on the cylinder are investigated. It is also found that the 

monotonic increase of the critical Re for 2D instability (Recr2D) with decreasing G* is 

influenced by variations in the mean flow rate around the cylinder, the confinement of 

the near-wake flow by the plane wall, and the characteristics of the shear layer formed 

above the moving wall directly below the cylinder. The first factor destabilizes the 

wake flow at a moderate G* while the latter two factors stabilize the wake flow with 

decreasing G*. In terms of 3D instability, the flow transition sequence of “2D steady 

→ 3D steady → 3D unsteady” for small gap ratios is analysed at G* = 0.2. It is found 

that the 3D steady and 3D unsteady flows are triggered by Mode C instability due to 

wall proximity. However, the Mode C structure is not sustained indefinitely, since 

interference with the shear layer leads to other 3D steady and unsteady flow 

structures. 
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1. Introduction 

Steady, uniform flow incident on a circular cylinder at low Reynolds number is a 

classical problem in fluid mechanics, having both fundamental and practical 

significance because it demonstrates the phenomena of separation, vortex shedding 

and transition to turbulence. Of these phenomena vortex shedding and transition to 

turbulence are of particular interest because they can lead to changes in the forces on 

the cylinder, as well as mixing and momentum transfer in the wake. 

For an isolated cylinder, the occurrence of each of these phenomena depends 

solely on the Reynolds number Re (= UD/ν), where U is the approaching flow 

velocity, D is the cylinder diameter, and ν is the fluid viscosity. However, in any 

practical scenario additional parameters will influence separation, vortex shedding 

and transition to turbulence. One example is the presence of a plane boundary, located 

so that the long axis of the cylinder is at some perpendicular distance G + D/2 from 

the wall, where G is the gap between the cylinder and plane boundary. In this 

arrangement the plane boundary may be representative, for example, of the “seabed” 

or “ground” in practical applications involving bluff bodies such as pipelines. 

Because of its practical relevance the problem of flow past a circular cylinder 

near a stationary wall has been investigated extensively. An important feature of this 

problem is that a boundary layer is developed near the stationary wall, which 

complicates the local flow around the cylinder. Consequently the flow near the 

cylinder is dependent on not only the Reynolds number Re and non-dimensional gap 

ratio G* (= G/D), but also the properties of the boundary layer. Based on a 

two-dimensional (2D) direct numerical simulation (DNS) which employed the Blasius 

boundary layer profile at the inlet, Lei et al. (2000) found that the critical G* for 

vortex shedding suppression was 0.2 at Re ≥ 800 (with a boundary layer thickness δ/D 

at the location of the cylinder of approximately 0.5), but increased to 0.6 at Re = 200 

(δ/D = 0.9) and 1.0 at Re = 100 (δ/D = 1.2). Thapa et al. (2014) studied the 

three-dimensional (3D) flow structure at Re = 500 and both G* = 0.4 and 0.8 by 



adopting the logarithmic law of wall for the inlet flow profile, and found that the 

streamwise vortices (a representation of the flow three-dimensionality) were much 

weaker than those for an isolated cylinder. However, it is worth noting that even by 

adopting a prescribed boundary layer profile (e.g. Blasius or logarithmic profile) at 

the inlet, the boundary layer profile may still develop with distance from the inlet, 

which complicates further the flow around the cylinder. 

Because of the dependence of these earlier results to the boundary layer profile, 

in addition to Re and G*, the parameter space for numerical simulations is large. 

Consequently, in the present work it is assumed that the boundary moves at the same 

speed as the upstream flow (or equally that the body is moved in still fluid parallel to 

a stationary boundary). This arrangement avoids any upstream boundary layer, such 

that the flow is only dependent on Re and G*. This allows for a more systematic study 

focussing on the “near-wall effect”. 

Several different studies have focused on the flow around a circular cylinder near 

a moving wall. For example, by towing a circular cylinder close to a stationary wall at 

Re = 170 (Taneda, 1965) and Re = 3550 (Zdravkovich, 1985), Taneda (1965) and 

Zdravkovich (1985) observed alternate vortex shedding at G* = 0.6, whereas only a 

single row of vortices was developed at G* = 0.1. Huang and Sung (2007) performed 

2D DNS for a circular cylinder near a moving wall for G* ≥ 0.1 and Re = 200 – 500, 

and reported variations of the pressure and force coefficients with G* and Re. They 

also reported that at Re = 300 alternate vortex shedding was suppressed at G* ≤ 0.28, 

and a single vortex row at the upper side of the cylinder dominated the flow for G* ≤ 

0.28. Yoon et al. (2010) carried out 2D DNS for G* ≥ 0.1 and Re = 60 – 200, and 

investigated variations of the pressure and force coefficients with G* and Re. Rao et 

al. (2013a) showed that while the 2D unsteady wake at larger G* is characterized by 

the formation of the classical Kármán vortex streets, vortex shedding at smaller G* 

(e.g. G* = 0.1 or 0.01) is characterized by the pairing of the negatively signed 

separating shear layer from the top of the cylinder and the positively signed vortex 

from the boundary layer at the wall. It has been revealed from the above studies that 

without the upstream boundary layer effect vortex shedding can at least be observed 



at a G* of as low as 0.1. However, the physical mechanisms responsible for the 

variations of the hydrodynamic forces and onset point of vortex shedding, on the basis 

of the flow characteristics at different G* and Re, have not been addressed in detail. 

Stewart et al. (2010), through a linear stability analysis, observed a wake 

transition sequence of “2D steady → 3D steady → 3D unsteady” for flow past a 

circular cylinder near a moving wall with G* = 0.005, rather than the sequence of “2D 

steady → 2D unsteady → 3D unsteady” for the case of an isolated cylinder 

(Williamson, 1996). By adopting a similar linear stability analysis, Rao et al. (2013a, 

2015) obtained critical Re for 2D and 3D wake transitions (denoted as Recr2D and 

Recr3D, respectively) for flow past a circular cylinder near a moving wall for G* ≥ 

0.005. Rao et al. (2013a) also observed the transition sequence of “2D steady → 3D 

steady → 3D unsteady” for G* ≤ 0.22, and the transition sequence of “2D steady → 

2D unsteady → 3D unsteady” for larger gap ratios. However, the distinctive transition 

sequence for G* ≤ 0.22 has not been studied in a great detail in terms of the transition 

mechanism and the actual non-linear 3D flow structures (which may be different from 

the well-known Mode A and Mode B flow structures observed by Williamson (1996) 

for the case of an isolated cylinder). 

In light of the earlier works, this paper investigates further the flow structure and 

wake transition for flow past a circular cylinder near a moving wall by using 2D and 

3D DNS. Based on the analysis of the 2D flow characteristics at various G* and Re (§ 

4.1), the physical mechanisms for the variations of the hydrodynamic forces and 

Recr2D are discussed in § 4.2 and § 4.3, respectively. The distinctive 3D steady and 3D 

unsteady flow structures for G* ≤ 0.22 and the transition mechanisms are studied in § 

5. 

 

2. Numerical model 

2.1. Numerical method 

Numerical simulations have been carried out with OpenFOAM 

(www.openfoam.org) to solve the continuity and incompressible Navier-Stokes 

http://www.openfoam.org/
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where 1 2 3( , , ) ( , , )x x x x y z  are Cartesian coordinates, ui is the velocity component in 

the direction xi, t is time and p is pressure. The same numerical approach used in Jiang 

et al. (2016a) is adopted here. Specifically, the Finite Volume Method (FVM) and the 

Pressure Implicit with Splitting of Operators (PISO) algorithm (Issa, 1986) are used to 

solve the equations. The convection, diffusion and time derivative terms are 

discretized using the fourth-order cubic scheme, the second-order linear scheme, and 

a blended scheme consisting of the second-order Crank-Nicolson scheme and a 

first-order Euler implicit scheme, respectively. 

 

2.2. Boundary and initial conditions 

As shown in Fig. 1(a), a hexahedral computational domain of (Lx, Ly, Lz) = (50D, 

G + 20.5D, 12D), with Lx, Ly, and Lz being the domain sizes in the x-, y-, and 

z-directions, respectively, is adopted for the simulations. This domain size is 

determined based on both 2D and 3D domain size dependence studies for an isolated 

cylinder presented in Jiang et al. (2016a). 
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Fig. 1. (a) Schematic model of the computational domain, and (b) close-up view of 

the 2D mesh near the cylinder with G* = 0.4. 

 

The boundary conditions are specified as follows. At the inlet boundary and the 

bottom moving wall, a uniform flow velocity U is specified in the x-direction. At the 

outlet, the Neumann boundary condition (i.e. zero normal gradient) is applied for the 

velocity, and the pressure is specified as a reference value of zero. A symmetry 

boundary condition is applied at the top boundary, while a periodic boundary 

condition is employed at the two lateral boundaries perpendicular to the cylinder span. 

A non-slip boundary condition is applied on the cylinder surface. 

At the start of each simulation, the internal flow is stationary. The flow 

three-dimensionality in the FVM simulations is triggered by small-scale numerical 

disturbances in the computational domain (mainly due to skewed mesh elements; see 

also Jiang et al. (2016b)) in a similar way to the introduction of small-scale spanwise 

disturbances to the initial flow field for the spectral element method (e.g. Henderson, 

1997; Thompson et al., 2001). For the present 3D DNS, the amplitude of the spanwise 

disturbance observed in the computational domain is of the order of 10
-4

U, which 

would not influence the simulation results noticeably. 

 

2.3. Mesh dependence study 



The mesh topology for the present study is modified from the “standard mesh” 

for flow past an isolated cylinder reported in Jiang et al. (2016a). However, the mesh 

pattern on the wall side of the cylinder is slightly different from the mesh for an 

isolated cylinder. Therefore, the dependence of the numerical results on the 

computational mesh resolution in the plane perpendicular to the cylinder span (the x-y 

plane) is revisited. 

For the standard 2D meshes adopted here, the cylinder perimeter is discretized 

with 132 nodes for G* ≥ 1.5 and 160 nodes for G* < 1.5 (due to a slight change of the 

mesh topology at smaller gap ratios). The height of the first layer of mesh next to the 

moving wall and next to the cylinder surface is approximately 0.001D. The cell 

expansion ratio in the whole domain is kept below 1.1. To capture detailed wake flow 

structures, a relatively high mesh resolution is used in the cylinder wake by specifying 

a constant mesh size along the x-direction for x/D > 0.7. Fig. 1(b) shows a close-up 

view of the mesh near the cylinder with a gap ratio of G* = 0.4. 

The adequacy of the standard 2D mesh resolution for each case is examined by 

doubling the amount of cells in both directions. The total number of cells after mesh 

refinement is four times of that employed in the standard mesh. Specifically, the 

number of cells around the cylinder is doubled, while the height of the first layer of 

mesh next to the moving wall and the radial size of the first layer of mesh next to the 

cylinder surface are halved. The mesh resolution dependence is quantified by 

examining the influence of the mesh refinement on the drag and lift force coefficients 

( DC  and LC ) and Strouhal number St , which are defined as follows: 

2/ ( / 2)D D zC F DU L  (2.3) 

2/ ( / 2)L L zC F DU L  (2.4) 

/LSt f D U  (2.5) 

where DF  and LF  are the integrated drag force and lift force on the cylinder, 

respectively,   is fluid density, and Lf  is the frequency of the fluctuating lift force. 



The time-averaged drag and lift coefficients are denoted as 
DC  and 

LC , 

respectively. The root-mean-square lift coefficient 
LC   is defined as: 
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where N is the number of values in the time-history of CL. 

The 2D mesh resolution dependence study is carried out at Re = 300 (the highest 

Re adopted in this study) for various gap ratios. For each case, the relative differences 

in St, 
DC , and 

LC   using the refined and standard meshes are shown in Fig. 2. The 

variations of St, 
DC , and 

LC   after mesh refinement are, respectively, within 0.6%, 

0.6%, and 2.5% for all of the cases. Because of this close agreement the standard 2D 

meshes are adopted hereafter. 
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Fig. 2. Relative differences of hydrodynamic forces at Re = 300 by using the refined 

and standard 2D meshes. 

 

The standard 3D mesh is formed by replicating the standard 2D mesh along the 

z-axis, resulting in an identical mesh resolution in all planes perpendicular to the 

cylinder. According to the 3D mesh dependence study for an isolated cylinder 

presented in Jiang et al. (2016a), the spanwise cell and domain lengths are chosen as 



0.1D and 12D, respectively. Based on the standard 3D mesh for an isolated cylinder 

and a refined 3D mesh with four times the cell number in the x-y plane, the Recr3D are 

193.2 and 190.0, respectively. The latter value is extremely close to the linear stability 

analysis result of 190.2 (±0.02) by Posdziech and Grundmann (2001) for an isolated 

cylinder. However, such mesh refinement would increase the computational cost by a 

factor of larger than eight, which is impractical considering the large amount of cases 

to be simulated in this study. Therefore, the standard 3D mesh is used in the present 

study. 

 

3. Critical Re for wake instability 

The present numerical model has been validated in Jiang et al. (2016a) by 

comparing numerical results of wake transition in flow past an isolated circular 

cylinder with the experimental results reported in Williamson (1996). For the work 

undertaken in this paper, further validation is performed for the case of flow past a 

circular cylinder close to a moving wall. Fig. 3 shows the predicted Recr2D and Recr3D 

values for various gap ratios (refer to Fig. 11(a) and Fig. 11(b) for examples of the 2D 

steady and unsteady flows at Re just below and above Recr2D, respectively, and Fig. 20 

for examples of the 3D flows at Re > Recr3D). 
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Fig. 3. Critical Re for 2D and 3D wake instabilities for various gap ratios. 

 

In Fig. 3 the Recr2D for each gap ratio is calculated to a resolution of ΔRe = 1. The 

time-history of the lift coefficient is used to determine Recr2D. For example, at G* = 

0.4 the lift coefficient converges to a constant value at Re = 88 whereas regular 

periodic fluctuations of the lift coefficient are observed at Re = 89, which suggests 

that the 2D instability occurs at Recr2D = 88.5 (±0.5). As shown in Fig. 3, the Recr2D 

values predicted by the present DNS are in good agreement with the numerical results 

by Rao et al. (2013a, 2015). 

The Recr3D for each gap ratio in Fig. 3 is obtained by analysing the transient 

growth/decay rates of the spanwise velocity amplitude at a sampling point in the near 

wake of the cylinder. This is illustrated for G* = 0.4 in Fig. 4, which shows the 

time-histories of the spanwise velocity recorded at (x/D, y/D, z/D) = (3.0, 0.5, 6.0) for 

Re from 140 to 160 (with t* (= Ut/D) being the non-dimensional flow time). The 

upper and lower envelopes of the transient uz curves are then fitted with an 

exponential function: 

/ exp( *)zu U A Bt C   (3.1) 

where A, B and C are curve fitting coefficients. It is seen in Fig. 4 that after discarding 

the initial oscillations as well as the further 3D instabilities for Re > Recr3D, the 



coefficient of determination (denoted as R
2
) for the fitted curves is very close to 1. It 

is evident from the growth/decay rate B shown in Fig. 4 that B < 0 and B > 0 

correspond to exponential decay and growth, respectively. A linear relationship 

between B and Re is obtained in Fig. 5, and Recr3D = 149.2 is interpolated at B = 0. For 

each gap ratio the simulations are carried out for 3 to 4 Re values to ensure that a good 

correlation between B and Re is achieved. 
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Fig. 4. Time-histories of the spanwise velocity sampled at (x/D, y/D, z/D) = (3.0, 0.5, 

6.0) and exponential fitting of the upper and lower envelopes. 
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Fig. 5. Relationship between the growth/decay rate B and the Reynolds number. 

 

As shown in Fig. 3, the Recr3D values predicted by the present DNS are in good 

agreement with the linear stability analysis results by Rao et al. (2015). The results by 

Rao et al. (2015) are believed to be improved from those in Rao et al. (2013a) (also 

shown in Fig. 3) since it was noted in Rao et al. (2013a) that the use of a relatively 

small computational domain size in that study could affect the accuracy of Recr3D by ~ 

15%. 

According to the linear stability analysis results by Rao et al. (2013a), the most 

unstable spanwise wavelength for the secondary instability is very close to 4.0D at G* 

= 0.32 – 0.35 and G* ≥ 2.0, but reduces to a minimum value of approximately 3.65D 

at G* = 0.5 – 0.75. The constant spanwise domain length of 12D used in the present 

numerical model is not always an integer multiple of the most unstable spanwise 

wavelength at some particular gap ratios, which may restrict the development of the 

secondary instability to some extent and result in an over-prediction of Recr3D. 

However, a test run at G* = 0.5 by adopting a spanwise domain length of 11D 

(approximately 3 times of the most unstable spanwise wavelength) confirms only a 

slight drop of Recr3D from 159.2 to 157.7. Since the influence of the spanwise 

wavelength (based on the choice of the spanwise domain length) on the prediction of 

Recr3D is less than 1%, a constant spanwise domain length of 12D is still adopted in 



this study. 

The present 3D DNS results for G* < 0.22 are not presented in Fig. 3. This is 

because a different wake transition sequence of “2D steady → 3D steady → 3D 

unsteady” is observed in the range of G* ≤ 0.22 (Rao et al., 2013a). For G* ≤ 0.22 the 

stability analysis by Rao et al. (2013a) was performed on a steady base flow and the 

Recr3D appeared to be lower than the Recr2D (through 2D calculations) as shown in Fig. 

3. Since the Recr2D values for G* ≤ 0.22 are calculated with 2D DNS, they may not be 

reliable in representing the onset of unsteady flow because the flow is already in a 3D 

state at Re < Recr2D. The present DNS results for G* ≤ 0.22 will be studied separately 

in § 5. 

 

4. 2D near-wall effect 

As shown in Fig. 3, for G* ≥ 3.0 the Recr2D and Recr3D values are almost 

independent of G*. The moving wall in proximity to the cylinder starts to influence 

Recr2D and Recr3D at G* ≤ 1.5. Three principal physical mechanisms are responsible 

for the variation of flow around the cylinder with wall proximity. One mechanism 

involves the blockage or restriction to the flow around the cylinder due to the 

proximity of the wall. The confinement of the near-wake flow by the plane wall forms 

another mechanism. The third mechanism involves shear layers formed just above the 

moving wall due to the local acceleration or deceleration of flow near the cylinder. 

The above three mechanisms will be explained based on the 2D flow characteristics, 

and the corresponding variation of Recr2D with G* will be investigated. 

 

4.1. Flow characteristics 

Firstly, the blockage effect is quantified by examining the variation of the flow 

rate around the cylinder at different G*. Fig. 6 shows the mean (averaged over the 

time and sampling length) streamwise velocity along the y-direction at x = 0 for 

various Re and G*. As G* reduces from 19.5 (representing an isolated cylinder) to 1.0, 

an obvious increase in the mean streamwise velocity within 1.0D below the cylinder 



is observed (Fig. 6(a)), while the increase in the mean streamwise velocity within 

1.0D above the cylinder (Fig. 6(b)) is smaller. In particular, at approximately the onset 

of 2D instability of Re ~ 50 the mean streamwise velocities within 1.0D above the 

cylinder for G* = 3.0 – 1.0 are almost unchanged. Overall, for G* ≥ 1.0, the total flow 

rate passing within the vicinity of the cylinder increases with decreasing G*, with a 

large percentage of the increase taking place in the gap. 
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Fig. 6. Mean streamwise velocity along the y-direction at x = 0: (a) within 1.0D below 

the cylinder for G* ≥ 1.0, (b) within 1.0D above the cylinder for G* ≥ 1.0, (c) over the 

entire gap length for G* ≤ 1.0, and (d) within 1.0D above the cylinder for G* ≤ 1.0. 

 

For G* ≤ 1.0, the flow rate passing within the vicinity of the cylinder generally 

decreases with decreasing G*. At the onset point for 2D instability Recr2D, there exists 

a sharp increase in the mean streamwise velocity within the gap as well as within 

1.0D above the cylinder (Fig. 6(c,d)). For Re close to Recr2D, the flow rate in the gap 

generally decreases with decreasing G* (Fig. 6(c)). For the mean flow within 1.0D 

above the cylinder, a decrease of the flow rate with decreasing G* is observed for Re 

in a range above Recr2D (Fig. 6(d)). For Re < Recr2D, however, the mean flow rate 



remains in a similar level (a monotonic decreasing trend is not observed). This is 

mainly attributed to the shear layer developed above the moving wall which leads to a 

redistribution of the velocity profile. 

As discussed above, with the decrease of the gap ratio, the total flow rate around 

the cylinder first increases and then decreases. However, the gap flow ratio, defined as 

the ratio between the total gap flow rate and the total free-stream flow rate below the 

cylinder centreline y = 0 (Fig. 7(a)), decreases monotonically with decrease of the gap 

ratio. Fig. 7(b) shows the variation of the gap flow ratio with Re and G*. The results 

are determined from the mean flow field. It is apparent that for an isolated cylinder, 

the gap flow ratio is always equal to 1.0. With the decrease of the gap ratio, the 

incoming flow below the cylinder centreline is partly deflected to the upper side of the 

cylinder, leading to a gap flow ratio of less than 1.0 (Fig. 7(b)). With the decrease of 

the gap ratio or Re, a larger percentage of the flow is deflected from below the 

cylinder centreline to the upper side of the cylinder. This is because when G* or Re is 

reduced, the shear layer in the gap becomes more vital in restricting the flow through 

the gap, and it is easier for the flow to pass through the upper side of the cylinder 

where less restriction is present. 

 

(a)   

Gap flow ratio = R2/R1 

Cylinder centreline 

(y = 0) 

Total flow 

rate R1 

Total flow 

rate R2 
G + 0.5D 

G 

D 



(b) 

0 50 100 150 200 250 300
1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

3.0

1.5

1.0

0.8

0.6

0.5

0.4

0.3

 

 

G
ap

 f
lo

w
 r

at
io

Re

G* = 0.2

2D instability

 

Fig. 7. (a) Sketch of the definition of the gap flow ratio, and (b) variation of the gap 

flow ratio with Re and G*. 

 

The redistribution of the approaching flow in the vicinity of the cylinder leads to 

a downward movement of the front stagnation point and an upward shift of the 

recirculation zone behind the cylinder. Fig. 8 shows the angular position of the front 

stagnation point θf with respect to the front point of the cylinder. The front stagnation 

point is determined from the mean flow field. It should be noted that for an isolated 

cylinder, the front stagnation point based on the symmetrical mean flow field is 

always at the front point of the cylinder. As the gap ratio is reduced and the flow 

becomes more asymmetrical, the front stagnation point moves towards the plane wall, 

and this phenomenon is more pronounced with decrease of Re (Fig. 8). It is seen that 

Fig. 8 and Fig. 7(b) share similar features. With the decrease of Re or G*, a larger 

percentage of the flow is deflected from below the cylinder centreline to the upper 

side of the cylinder, and the front stagnation point exhibits a downward movement 

accordingly. 

 



0 50 100 150 200 250 300
0

5

10

15

20

25

30

3.0

1.5

1.0

0.8

0.6

0.5

0.4

0.3

 

 


f  

(°
)

Re

G* = 0.2

2D instability


f

 

Fig. 8. Angular position of the front stagnation point with respect to the front point of 

the cylinder. 

 

The upward shift of the recirculation zone is examined through the variations of 

the separation angles with Re and G* (Fig. 9). The mean flow field is used as before 

to determine the separation points. In Fig. 9 the logarithmic coordinate is used for the 

x-axis for a better view of the variation trends at lower Re values. As shown in Fig. 9, 

for the case of an isolated cylinder, the separation angles predicted by the present 

DNS agree well with the empirical formula given by Wu et al. (2004). It is well 

known that for an isolated cylinder, boundary layer separation points move upstream 

with increase of Re. This is also generally valid as the cylinder approaches the moving 

wall (Fig. 9). On the other hand, with the decrease of G*, the upper separation point 

moves upstream while the lower one moves downstream (Fig. 9), which indicates that 

the recirculation zone is shifted upwards. 
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Fig. 9. Variations of the separation angles with Re and G*: (a) upper separation point, 

and (b) lower separation point. 

 

4.2. Hydrodynamic forces 



The variations of the Strouhal number and force coefficients with Re and G* are 

examined. Fig. 10(a) shows the St–Re relationships for different gap ratios. For each 

gap ratio, an increase of Re leads to an increase of St, which is consistent with the 

increase of the non-dimensional mean flow rates just above and below the cylinder for 

Re > Recr2D (Fig. 6). On the other hand, St generally increases as G* decreases from 

19.5 to 1.0 – 0.8, and decreases as G* decreases further. This is also consistent with 

the variation of the mean flow rate around the cylinder with G*, where the maximum 

flow rate is observed at G* = 1.0 – 0.8 (Fig. 6). 

Fig. 10(b) shows the variation of the mean drag coefficient with Re and G*. For 

an isolated cylinder, Henderson (1995) obtained a power law 
DC Re  relationship 

for Re < Recr2D, which is well reproduced by the present DNS as shown in Fig. 10(b). 

Similar trends are also observed for the case of a cylinder near a moving wall, as 

shown by the linear decreasing trend of the 
DC Re  curve in the log–log space (Fig. 

10(b)). The same trend was also observed by Rao et al. (2013a) from a separate study. 

Beyond the onset of 2D instability, different trends are observed for different gap 

ratios. This is explained by separating the drag force into the viscous and pressure 

components. Beyond the point of Recr2D, the viscous drag continues to decrease while 

the pressure drag starts to increase (refer to Henderson (1995) for the case of an 

isolated cylinder). For G* ≥ 1.5, the drag coefficient continues to decrease beyond 

Recr2D until Re ~ 150, as the decrease of the viscous drag dominates the increase of the 

pressure drag in this range. For G* ≤ 1.0, a local minimum is observed at the point of 

Recr2D. The local minimum becomes more obvious as G* decreases. This is because at 

a higher Recr2D (under a smaller G*), the influence from the viscous force becomes 

smaller, and the total drag force is dominated by the pressure drag, starting from the 

sudden increase of the pressure drag at Recr2D. Beyond the local minimum of the drag 

coefficient at Recr2D, a slight decrease of the drag coefficient is observed in a small 

range below Re ~ 150 for G* ≥ 0.6, whereas a continuous increase of the drag 

coefficient is observed for G* ≤ 0.5. This is also due to the combined behaviour of the 

viscous drag and pressure drag. For all the gap ratios considered here, the drag 



coefficient increases with increase of Re beyond Re ~ 150, as the viscous drag 

becomes too small to affect the general trend set by the pressure drag. 

The variation of the mean lift coefficient with Re and G* is shown in Fig. 10(c). 

The variation trend is similar to that of the gap flow ratio (Fig. 7(b)) and θf (Fig. 8), 

since the mean lift force is generated by the asymmetric flow distribution between the 

upper and lower sides of the cylinder. However, an obvious difference is observed at 

the Recr2D point at G* = 0.2, where a local increase is observed for the mean lift 

coefficient whereas a local drop is observed for the gap flow ratio and θf. This is 

because a significant local minimum of the mean drag coefficient occurs at the Recr2D 

of G* = 0.2 (Fig. 10(b)). By examining the force vector angle arctan( / )L DC C  

instead of 
LC , it is found that a local drop is observed at this point (omitted here for 

simplicity). 
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Fig. 10. Variation of the 2D hydrodynamic forces with Re and G*: (a) Strouhal 

number, (b) mean drag coefficient, and (c) mean lift coefficient. 

 

4.3. Variation of Recr2D with G* 

The influence of the flow characteristics on the variation of Recr2D with G* is now 

analysed. It is seen in Fig. 3 that the Recr2D value increases monotonically as G* is 

reduced from 3.0. Judging from the variation of the mean flow rate around the 



cylinder (Fig. 6), it is believed that one of the main causes for the increase in Recr2D 

for G* ≤ 1.0 (Fig. 3) is due to the reduction of the mean flow rate around the cylinder 

with decreasing G*. However, for G* ≥ 1.0 the increase of the mean flow rate around 

the cylinder due to the decrease of G* (Fig. 6(a,b)) does not manifest a decrease in 

Recr2D in Fig. 3. This is because the variation of Recr2D with G* is also affected by 

other contributing factors which may stabilize the flow and delay the Recr2D at all of 

the gap ratios. 

A second contributing factor involves the shear layers developed on the moving 

wall. Due to the presence of the moving wall, the streamwise velocity at the moving 

wall is constrained to a fixed value equal to the free-stream velocity U. Due to the 

local acceleration or deceleration of flow near the cylinder, there exists a deviation 

between the internal flow velocity and the velocity at the moving wall (= U), and this 

results in the development of shear layers on the moving wall. This is further 

examined with two typical cases with (G*, Re) = (0.4, 88) and (G*, Re) = (0.4, 90), 

where the former one is in the 2D steady regime while the latter one is in the 2D 

unsteady regime with periodic vortex shedding. Fig. 11(a,b) shows the vorticity 

contours of the above two cases, where the vorticity ωz is defined in a 

non-dimensional form: 

y x
z

u u D

x y U


 
  

  
 (4.1) 

For the 2D unsteady case at (G*, Re) = (0.4, 90), the vorticity contours of the 

time-averaged flow field are also shown in Fig. 11(c), which are found to be quite 

similar to the vorticity contours of the 2D steady flow at (G*, Re) = (0.4, 88) shown in 

Fig. 11(a). 
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Fig. 11. (a) Vorticity contours of the 2D steady flow at (G*, Re) = (0.4, 88), (b) 

vorticity contours of the instantaneous 2D unsteady flow at (G*, Re) = (0.4, 90), and 

(c) vorticity contours of the time-averaged 2D flow at (G*, Re) = (0.4, 90). 

 

 For the time-averaged vorticity contours shown in Fig. 11(a,c), it is found that 

three additional shear layers are generated just above the moving wall. The shear layer 

in the gap flow region (with negative vorticity) is believed to be more associated with 

the increase of Recr2D shown in Fig. 3. Through close interaction of the two shear 

layers in the gap, the shear layer on the lower side of the cylinder (with positive 

vorticity) is weakened by the shear layer on the moving wall with opposite sign of 

vorticity. This is evidenced in Fig. 11(a,c) as the shear layer generated on the lower 

side of the cylinder (with positive vorticity) is not as well-developed as the shear layer 



generated on the upper side of the cylinder (with negative vorticity). As the shear 

layer on one side of the cylinder is weakened, the vortex structure formed in the 

cylinder wake is more stable, and the onset point of wake instability (i.e. Recr2D) is 

delayed. This phenomenon was also observed for the case of a circular cylinder near a 

stationary wall (Lei et al., 2000). In that case, due to a much stronger confinement by 

the stationary wall with respect to the moving wall, a much stronger shear layer was 

formed on the stationary wall, which contributed to a much higher Recr2D or even a 

complete suppression of vortex shedding at G* ≤ 0.2 (Lei et al., 2000). Similarly, in 

the experimental study by Strykowski and Sreenivasan (1990), the shear layer on one 

side of the cylinder was weakened by the placement of a much smaller control 

cylinder in the near wake of the main cylinder, and the Recr2D was also delayed to 

higher values. 

 Fig. 12 shows the variation of the minimum vorticity on the moving wall (which 

is within the negatively signed shear layer in the gap flow region) with Re and G*. 

For 2D unsteady flows, the vorticity field calculated based on the time-averaged 2D 

flow is used to determine the minimum vorticity on the moving wall. As shown in Fig. 

12, it is apparent that for a fixed G* the absolute value of the minimum vorticity 

increases with increase of Re. It is also seen in Fig. 12 that for a fixed Re the absolute 

value of the minimum vorticity increases with decrease of G*. This suggests that with 

decrease of G* the influence of the wall shear layer in the gap flow region becomes 

stronger in weakening the shear layer on the lower side of the cylinder and stabilizing 

the wake flow, leading to a higher Recr2D. 
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Fig. 12. Variation of the minimum vorticity on the moving wall (which is within the 

negatively signed shear layer in the gap flow region) with Re and G*. 

 

The confinement of the near-wake flow by the plane wall represents a third 

contributing factor for the increase of Recr2D with decreasing G*. This is evidenced 

with separate 2D DNS of flow past a circular cylinder confined by two parallel slip 

walls (i.e. with symmetry boundary conditions) as shown by the schematic model in 

Fig. 13(a). The gap ratio is still defined as G* = G/D for consistency. In the case of 

flow past a circular cylinder confined by two parallel slip walls, the flow rate through 

the gaps increases monotonically with decreasing G* due to blockage, the vorticity on 

the slip walls is zero (i.e. without the influence of shear layers on the plane walls), and 

the mean flow field is always symmetrical about the wake centreline (i.e. the front 

stagnation point and the recirculation zone are not shifted upward or downward). This 

allows the influence of the wall confinement on vortex shedding to be isolated from 

other contributing factors. 
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Fig. 13. Case study of flow past a circular cylinder confined by two parallel slip walls: 

(a) schematic model of the computational domain, (b) variation of the Recr2D value 

with G*, and (c) streamwise velocity profiles along the y-direction at x = 0 for various 

G* at Re just below the respective Recr2D. 
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The variation of Recr2D with G* for the case of two parallel slip walls is shown in 

Fig. 13(b). A local minimum of Recr2D is observed at G* = 1.5 (Fig. 13(b)), at which 

point the influence of the increase in the flow rate around the cylinder dominates the 

effect of wall confinement. With a further decrease of the gap ratio, although the flow 

rate around the cylinder continues to increase in this case, the wall confinement also 

becomes much stronger and results in an increase in Recr2D (Fig. 13(b)). 

In order to remove the blockage effect on the variation of Recr2D with G*, the 

Recr2D value for each G* is normalized by considering the maximum streamwise 

velocity at x = 0 (in the gap region). Fig. 13(c) shows the streamwise velocity profiles 

along the y-direction at x = 0 for various G* at Re just below the respective Recr2D. It 

is seen that due to the blockage effect the maximum streamwise velocity at x = 0 

increases with decreasing G*. The normalized Recr2D is calculated as: 

2D 2D

maximumstreamwise velocityof thiscase

maximumstreamwise velocityof thecase with * =19.5
cr crRe Re

G
   (4.2) 

In other words, the Reynolds number is now defined based on the maximum 

streamwise velocity at x = 0 rather than the free-stream velocity. As shown in Fig. 

13(b), the normalized Recr2D increases monotonically with decreasing G*, which 

suggests that without the blockage effect the wall confinement gradually stabilizes the 

wake flow with decrease of G*. 

It is also noted that Juniper (2006), Biancofiore et al. (2011) and Biancofiore and 

Gallaire (2012) reported a destabilization due to a moderate confinement for a 

confined synthetic wake where a uniform flow with a smaller streamwise velocity U1 

is sandwiched between two identical uniform flows with a larger streamwise velocity 

U2 (with two parallel slip walls as the outer boundaries). The destabilization for a 

moderate confinement in the above scenario is represented by the onset of flow 

instability at a relatively small negative velocity ratio, where the velocity ratio is 

defined as Λ = (U1 – U2)/ (U1 + U2). However, for the bluff body flow scenario shown 

in Fig. 13(a), Λ is always close to -1 since U1 in the immediate near-wake is of the 

order of 0.01U. Hence based on the stability diagram in Biancofiore et al. (2011) it is 

likely that for Λ = -1 the flow would stay in the unstable regime as long as the 



confinement is weaker than a critical point. This is consistent with the variation trend 

of the normalized Recr2D with G* shown in Fig. 13(b). 

 

5. 3D results at G* = 0.2 

According to the linear stability analysis results of flow past a circular cylinder 

close to a moving wall by Rao et al. (2013a), there exists a discontinuity in the 

relationship between Recr3D and G* at G* = 0.22 – 0.3 (Fig. 3). 

For G* ≥ 0.3, the flow undergoes a transition sequence of “2D steady → 2D 

unsteady → 3D unsteady” (Rao et al., 2013a), in line with the transition sequence 

observed for an isolated cylinder (Williamson, 1996). Our 3D DNS study found that 

the “3D unsteady” stage further consists of a transition sequence of “Mode A → Mode 

B” which is similar to the 3D wake transition for an isolated cylinder reported by 

Williamson (1996). However, an interesting phenomenon is that a local minimum of 

the Recr3D value is observed at G* = 0.4 (Fig. 14). Since the variation of Recr3D is a 

result of the decrease of G*, the sudden increase of Recr3D as G* decreases from 0.4 to 

0.3 (Fig. 14) is possibly related to the variation of the gap flow characteristics. Fig. 15 

shows some mean streamwise velocity profiles of the gap flow at x = 0 (referred to as 

the 
, 0x xu 

 profile) for different Re with G* = 0.4. For Re ≥ 150, two local peaks as 

well as two inflection points are observed in each 
, 0x xu 

 profile. For Re ≤ 145, 

however, a single peak is observed in each 
, 0x xu 

 profile and there are no inflection 

points. The critical Re for the emergence of inflection points in the 
, 0x xu 

 profile 

(RecrIP) for each G* (e.g. RecrIP = 145 – 150 for G* = 0.4) is shown in Fig. 14. It is 

seen in Fig. 14 that the RecrIP value increases monotonically with decrease of G*. The 

RecrIP and Recr3D curves intersect at approximately G* = 0.4 at which point a local 

minimum of the Recr3D takes place. To the left of the RecrIP curve, there are no 

inflection points in the 
, 0x xu 

 profiles, and an increase in Recr3D is observed. 

According to Rayleigh‟s condition, (for an inviscid fluid) “the occurrence of an 

inflection point in the basic velocity profile is a necessary condition for instability” 



(see Drazin, 2002), and it was suggested in Drazin (2002) that “to each unstable 

three-dimensional mode there corresponds a more unstable two-dimensional one”. 

Hence for the present case, the absence of inflection points in the 
, 0x xu 

 profile may 

result in a more stabilized gap flow, and a stabilized 2D flow may also contribute to 

the suppression of a 3D instability, leading to an increase in Recr3D for G* < 0.4. 
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Fig. 14. Variations of the Recr3D and RecrIP values with G*. 
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Fig. 15. Mean streamwise velocity profiles of the gap flow at x = 0 for different Re 

with G* = 0.4. 

 



For G* ≤ 0.22, the Recr3D appears to be lower than the Recr2D (through 2D 

calculations), and the flow undergoes a different transition sequence of “2D steady → 

3D steady → 3D unsteady” (Stewart et al., 2010; Rao et al., 2013a). In the present 

study, 3D DNS is performed at G* = 0.2 to examine the wake transition and wake 

structures in detail. The simulations are performed for Re up to 200, covering the 

above transition sequence. 

 

5.1. Wake transition 

Fig. 16 shows the time-histories of the spanwise velocity at a sampling point of 

(x/D, y/D, z/D) = (3.0, 0.5, 6.0) for G* = 0.2. After an initial transient fluctuation 

period, the time-history of the spanwise velocity displays an exponential decay trend 

for Re = 125 and an exponential growth trend for Re = 130 – 140. Through analysing 

the exponential growth/decay rates of the spanwise velocity of the steady flow, in a 

similar way as illustrated in § 3 for the unsteady flow, the Recr3D is found at 126.78, 

which is very close to the value of 127.20 obtained by Rao et al. (2013a) through 

stability analysis. At Recr3D = 126.78, the flow undergoes a transition from the 2D 

steady state to the 3D steady state. In the 3D steady regime of 126.78 ≤ Re ≤ 140, the 

fully developed flow field does not vary in time. For example, the sampled spanwise 

velocity shown in Fig. 16(b,c) reaches to a constant non-zero value after the flow is 

fully developed. As Re increases from 140 to 145, irregular fluctuations are observed 

for the time-history of the spanwise velocity (Fig. 16(d)), which marks another wake 

transition from the 3D steady state to the 3D unsteady state. The critical Re for this 

transition is coincidently close to the Recr2D (= 143.5 (±0.5)) obtained through 2D 

DNS. 
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Fig. 16. Time-histories of the spanwise velocity sampled at (x/D, y/D, z/D) = (3.0, 0.5, 

6.0) for flow past a circular cylinder close to a moving wall with G* = 0.2. 

 

Fig. 17(a) shows the time-histories of the spanwise kinetic energy Ez integrated 

over the near-wake region of x/D = 0 – 5 for G* = 0.2, where Ez is defined as: 
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where V is the volume of the flow field of interest. As the flow undergoes a transition 

from 2D steady to 3D steady at Re from 125 to 130, a sharp increase of Ez of 

approximately five orders of magnitude is observed. Beyond that, the increase of Ez 

with Re is a gradual process. Particularly, there is no abrupt change in the magnitude 

of Ez at the second transition from 3D steady to 3D unsteady. However, the 

time-history of Ez is steady when the flow is in the 3D steady state, whereas 

small-amplitude fluctuations are observed when the flow is in the 3D unsteady state. 
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Fig. 17. Time-histories of the integrated spanwise kinetic energy within x/D = 0 – 5 

for (a) G* = 0.2, and (b) G* = 0.1. 

 

A few more calculations are carried out at G* = 0.1. A 3D steady flow is observed 

at Re = 100 while a 3D unsteady flow is observed at Re = 125 and 150. Similar trends 

of the time-histories of Ez as discussed earlier on for G* = 0.2 are also observed for 

G* = 0.1 (Fig. 17(b)). However, the critical Re for the transition from 3D steady to 3D 

unsteady (between 100 and 125) does not match the Recr2D (= 158.5 (±0.5)) obtained 

from 2D DNS. This indicates that the Recr2D predicted by 2D DNS is not reliable for 

the onset of unsteady flow for G* ≤ 0.22, as the flow is already in a 3D state. 

 



5.2. Wake structure and transition mechanism 

Based on the speculation that the shear layers developed on the moving wall 

might play an important role at small gap ratios, further 3D DNS are carried out with 

the slip wall boundary condition (i.e. with symmetry boundary condition) at the 

bottom wall to eliminate the influence of the shear layers developed on the moving 

wall. Based on 2D DNS, the Recr2D for flow past a circular cylinder close to a slip 

wall at G* = 0.2 is 128.5 (±0.5). This case is also simulated with 3D DNS at a few 

discrete Re values of 120, 127, 131, 135, 140, 145, 150, 175, and 200. A 2D steady 

flow is observed at Re ≤ 127, while a 3D unsteady flow is observed at Re ≥ 135. 

However, it is found that when Re is very close to the critical transition point (e.g. at 

Re = 131), it takes much longer time for the flow to reach a fully developed state. The 

case of Re = 131 has been simulated for 2500 non-dimensional time units, yet a clear 

trend of the development of the time-history of the spanwise velocity is still 

unavailable. Since the critical wake transition point for the slip wall case is not the 

main focus of the present study, further calculation of the Re = 131 case is not 

attempted, and more emphasis is put on the 3D unsteady flow at Re ≥ 135. 

For Re in the range of 135 to 150, a subharmonic Mode C structure is observed in 

the fully developed flow. The Mode C instability is often observed when the Z2 

spatiotemporal symmetry of the wake is broken by a perturbation imposed on the 

bluff body (Blackburn and Sheard, 2010) which can normally be a geometric 

configuration or a movement that is asymmetric about the wake centreline, e.g. a 

circular cylinder with a trip-wire in the near wake (Zhang et al., 1995; Yildirim et al., 

2013a), a circular ring (Sheard et al., 2003), a rotated square cylinder (Sheard et al., 

2009), two circular cylinders in staggered arrangements (Carmo et al., 2008), a 

rotating circular cylinder (Rao et al., 2013b), a rotating circular cylinder near a 

moving wall (Rao et al., 2015), etc. In the present study, the slip wall close to the 

circular cylinder (with G* = 0.2) serves as the perturbation to trigger the breaking of 

the Z2 spatiotemporal symmetry of the wake and to form Mode C instability. Note that 

for G* ≥ 0.3, the 3D flow is still triggered by Mode A instability. 



The Mode C structure observed in the present study is illustrated with the fully 

developed flow at (Re, G*) = (140, 0.2). Fig. 18 shows the time-histories of the flow 

velocity components sampled at (x/D, y/D, z/D) = (3.0, 0.5, 6.0), together with the 

time-history of the span-averaged lift force coefficient. The non-dimensional flow 

time t* is normalized with the vortex shedding period T (discarding the previous flow 

time for simplicity). It is seen that while the time-history of the lift coefficient is 

T-periodic, the time-histories of the velocity components are 2T-periodic, which 

reveal the period doubling character of the subharmonic Mode C (Blackburn and 

Sheard, 2010). In particular, a “high-peak-low-peak” feature of the time-history of uy 

for Mode C, as observed in the experimental study by Yildirim et al. (2013a), is also 

observed in Fig. 18(b). 
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Fig. 18. Time-histories of the flow velocity components sampled at (x/D, y/D, z/D) = 

(3.0, 0.5, 6.0) and the span-averaged lift force coefficient for flow past a circular 

cylinder close to a slip wall at (Re, G*) = (140, 0.2). 

 

Fig. 19(a,b) shows the fully developed Mode C wake structures at (Re, G*) = 

(140, 0.2) with 1T apart. The wake structures are captured by the iso-surfaces of 

streamwise vorticity ωx, which is defined in a non-dimensional form as: 

yz
x

uu D

y z U


 
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  
 (5.2) 

It is seen that the Mode C structure is well-defined but asymmetric about the wake 

centreline. The streamwise vortices change sign after each shedding period (Fig. 19(a) 



versus Fig. 19(b)), and repeat themselves after two shedding periods, which confirms 

the 2T-periodic nature of Mode C. 

 

 

     

Fig. 19. Iso-surfaces of ωx for flow past a circular cylinder close to a slip wall at G* = 

0.2. The slip wall is at the back of the structure. Dark grey and light yellow denote 

positive and negative values, respectively. The flow is from the left to the right past 

the cylinder on the left. 

 

Along the cylinder span of 12D in length, 6 pairs of Mode C structure are 

observed for Re = 135 – 145 (e.g. Fig. 19(a,b)), and 5 pairs of Mode C structure are 

observed for Re = 150. This suggests that the spanwise wavelength of Mode C (λC) is 

approximately 2.0 – 2.4D for Re in the range of 135 to 150, and λC increases slightly 



with increase of Re. The λC values obtained in the present case are similar to those 

reported in the literature, e.g. λC = 1.8D and 2.2D for flow past a circular cylinder 

with a trip-wire in the near wake by Zhang et al. (1995) and Yildirim et al. (2013b), 

respectively, and λC ~ 1.7D for flow past a circular ring (Sheard et al., 2003). 

As Re increases to 175 and 200, a different wake structure is observed. At the 

early stage of wake development, 4 pairs of Mode C structure are observed for Re = 

175 and 200 (e.g. Fig. 19(c)). It should be noted that all of the Mode C structures 

reported in the present study have been confirmed to be 2T-periodic. However, the 

Mode C structure in these two cases cannot persist and will be replaced by a more 

chaotic structure shortly (e.g. Fig. 19(d)). 

Due to the shear layer effect, the wake structure for flow past a circular cylinder 

close to a moving wall is different from that obtained with a slip wall. In the 3D 

steady regime of Re = 130 and 140, the flow is initialized with a small-amplitude 

Mode C structure with λC = 1.5D (e.g. Fig. 20(a)), followed by the formation of a 3D 

steady structure with two pairs of ordered vortex structures along the span width (e.g. 

Fig. 20(b)). This suggests that the spanwise wavelength of the 3D steady structure is 

approximately 6D, which is close to the value of 6.34D at Recr3D predicted by Rao et 

al. (2013a) through stability analysis. Further numerical simulations are carried out 

with reduced span lengths of 3.0 and 1.5. Since the span lengths are much shorter than 

the wavelength of the 3D steady structure, the flow decays to a 2D steady state after 

the initialization of a small-amplitude Mode C structure. 

 



     

     

     

Fig. 20. Iso-surfaces of ωx for flow past a circular cylinder close to a moving wall at 

G* = 0.2. The moving wall is at the back of the structure. Dark grey and light yellow 



denote positive and negative values, respectively. The flow is from the left to the right 

past the cylinder on the left. 

 

The transition mechanism for the 3D steady state of flow can be explained by 

comparing the wake structures obtained with the moving wall and slip wall conditions 

at (Re, G*) = (140, 0.2). Under the slip wall condition, the 3D flow is triggered by 

Mode C instability (due to a small gap ratio) and a well-defined persistent Mode C 

structure is observed for the fully developed flow. This suggests that the 3D flow 

triggered by Mode C instability (e.g. Fig. 20(a)) under the moving wall condition is 

also due to a small gap ratio. However, the Mode C structure under the moving wall 

condition cannot persist due to the interference of the shear layer caused by the 

moving wall and will evolve into a 3D steady state under a sufficiently long span 

length or decay to a 2D steady state when the span length is restricted. 

In the 3D unsteady regime with Re ranging from 145 to 200, the flow is also 

initialized with the Mode C instability (e.g. Fig. 20(c,e)) but will evolve into other 3D 

flow structures. At Re = 145 and 150 which are just beyond the onset of 3D unsteady 

state, the Mode C structure will be replaced by a pair of disordered structure after the 

flow is fully developed (e.g. Fig. 20(d)). This is also due to the interference of the 

shear layer by the moving wall, in comparison with the persistent Mode C structure at 

Re = 145 and 150 for the slip wall condition. Since only one pair of the vortex 

structure is observed in Fig. 20(d) within a Lz of 12D, further simulation is carried out 

with a Lz of 36D to confirm the pairing of the streamwise vortices. It is found that for 

Lz = 36D, three pairs of the vortex structure shown in Fig. 20(d) are regularly 

distributed along the cylinder span width, which suggests that the fully developed 

flow structure is actually in pairs, with a spanwise wavelength of approximately 12D. 

As Re increases further to 175 and 200, the Mode C structure will evolve into 

small-scale disordered structures for the fully developed flow (e.g. Fig. 20(f)). This 

wake structure is similar to the structure observed with the slip wall condition at same 

Re values (Fig. 19(d)), since the Mode C structure under the slip wall condition also 

cannot persist and will become chaotic. 



It is also found that when the cylinder span length is restricted to 3.0 or 1.5, the 

shear layer effect under the moving wall condition would not be able to generate 

chaotic vortex structures from Mode C for Re in the 3D unsteady regime from 145 to 

200, and the Mode C structure can persist in the fully developed flow. 

Fig. 21 shows the vortex cores captured by the second negative eigenvalue λ2 of 

the tensor Ψ
2
 + Ω

2
, where Ψ and Ω are the symmetric and antisymmetric parts of the 

velocity gradient tensor, respectively (Jeong and Hussain, 1995). In the 3D steady 

regime, the iso-surfaces of λ2 shown in Fig. 21(a) do not vary with time. In the 3D 

unsteady regime, primary vortex cores are alternately shed from the upper and lower 

sides of the cylinder and propagating downstream (Fig. 21(b,c)), which suggests that 

the onset of unsteady flow is due to the emergence of vortex shedding. It is seen that 

the primary vortex cores are not in parallel with the cylinder span. At Re = 200, 

small-scale streamwise vortex cores are also observed (Fig. 21(c)), which is consistent 

with the stronger streamwise vorticity as shown in Fig. 20(f). 

 

     



 

Fig. 21. Iso-surfaces of λ2 for flow past a circular cylinder close to a moving wall at 

G* = 0.2. The moving wall is at the back of the structure. The flow is from the left to 

the right past the cylinder on the left. 

 

6. Conclusions 

This paper presents 2D and 3D DNS of flow past a circular cylinder near a 

moving wall. The simulations are carried out in a parameter space spanning a 

non-dimensional gap ratio (G* = G/D) between 0.1 and 19.5 and Reynolds number 

(Re) up to 300. 

Due to blockage effects, the total flow rate around the cylinder increases as G* 

decreases from 19.5 to 1.0 – 0.8, and decreases as G* decreases further. However, the 

gap flow ratio (the ratio between the total gap flow rate and the total free-stream flow 

rate below the cylinder centreline) decreases monotonically with decrease of G*, 

which results in a downward movement of the front stagnation point and an upward 

shift of the recirculation zone behind the cylinder. The variation of the Strouhal 

number with Re and G* is closely related to the variation of the mean flow rate 

around the cylinder, while the variation of the mean lift force coefficient is closely 

related to the variation of the gap flow ratio. 

The monotonic increase of the critical Re for 2D instability (Recr2D) as G* is 

reduced from 3.0 is influenced by variations in the mean flow rate around the cylinder, 

the confinement of the near-wake flow by the plane wall, and the characteristics of the 



shear layer formed above the moving wall directly below the cylinder. The first factor 

destabilizes the wake flow at a moderate G* while the latter two factors stabilize the 

wake flow with decreasing G*. 

In terms of 3D instability, the flow transition sequence of “2D steady → 3D 

steady → 3D unsteady” taking place at small gap ratios is analysed at G* = 0.2. It is 

found that the 3D steady and 3D unsteady flows are triggered by Mode C instability, 

where Mode C instability is triggered by the breaking of the Z2 spatiotemporal 

symmetry of the wake due to a small gap ratio. However, the Mode C structure is not 

sustained due to interference from the shear layer caused by the moving wall, leading 

to the evolution of other 3D structures. In the 3D steady regime of 126.78 ≤ Re ≤ 140, 

the flow will evolve into an ordered 3D steady state with a specific spanwise 

wavelength. In the 3D unsteady regime of Re ≥ 145, alternate vortex shedding and 

disordered transient structures are observed. 
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