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One Sentence Summary: Feedback between plants of contrasting nutrient-acquisition strategies 22 

and their associated soil biota contributes to the maintenance of plant species and functional 23 

diversity in hyperdiverse shrublands. 24 

 25 

Abstract: 26 

Soil biota influence plant performance through plant–soil feedback, but it is unclear whether the 27 

strength of such feedback depends on plant traits, and whether plant–soil feedback drives local 28 

plant diversity. We grew 16 co-occurring plant species with contrasting nutrient-acquisition 29 

strategies from hyperdiverse Australian shrublands and exposed them to soil biota from under 30 

their own or other plant species. Plant responses to soil biota varied according to their nutrient-31 

acquisition strategy, including positive feedback for ectomycorrhizal plants and negative 32 

feedback for nitrogen-fixing and non-mycorrhizal plants. Simulations revealed that such 33 

strategy-dependent feedback is enough to maintain the high taxonomic and functional diversity 34 

characterizing these Mediterranean-climate shrublands. Our study identifies nutrient-acquisition 35 

strategy as a key trait explaining how different plant responses to soil biota promote local plant 36 

diversity. 37 

  38 
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Main Text: 39 

Evidence is mounting that interactions between plants and microbes influence the maintenance 40 

of terrestrial plant diversity (1-3). Plant roots interact closely with a wide range of soil biota, 41 

including beneficial ones that enhance nutrient acquisition (e.g. mycorrhizal fungi) and 42 

pathogens that cause root necrosis or plant death (1, 4). As such, effects of soil biota on plant 43 

survival and growth, and their role in maintaining plant diversity, should critically depend on 44 

traits such as plant nutrient-acquisition strategy (5). Previous studies have recognized the 45 

importance of plant traits in explaining feedback between plants and soil biota (6), yet the 46 

ecological significance of belowground traits remains poorly understood. For example, soil-47 

borne pathogens can promote local plant species diversity via conspecific negative density 48 

dependence (1, 7), which might be particularly important for non-mycorrhizal plant species 49 

whose roots are less well defended (5). By contrast, arbuscular and ectomycorrhizal plants are 50 

better defended against pathogens, which could prevent pathogen-mediated negative density 51 

dependence and even promote monodominance via positive plant–soil feedback (8, 9). Other 52 

belowground nutrient-acquisition strategies, such as those involving nitrogen (N)-fixing bacteria, 53 

might also have consequences for local plant diversity. A research challenge is to determine how 54 

the strength and direction of plant-soil feedback depend on traits such as nutrient-acquisition 55 

strategy (6, 10), and how such feedback contributes to the maintenance of plant diversity (1). 56 

Mediterranean climate regions contribute to global plant diversity by supporting 20% of 57 

all plant species on only 5% of the land area (11). Local plant diversity in some sclerophyll 58 

shrublands in these regions is comparable to that of species-rich tropical rainforests (12). These 59 

shrublands are also characterized by a high diversity in belowground plant strategies to acquire 60 

nutrients, including a variety of mycorrhizal symbioses and the capacity to fix N2 via bacterial 61 
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symbioses (13, 14). A better understanding of the mechanisms, such as plant–soil feedback, that 62 

drive plant diversity in this biome is important because all five Mediterranean-climate regions 63 

are hotspots for global biodiversity conservation (15). More broadly, determining plant–soil 64 

feedback will enhance our ability to predict community and ecosystem responses to global 65 

environmental change (16). 66 

We studied hyperdiverse Mediterranean shrublands in Southwest Australia (Fig. S1) (17). 67 

The exceptional diversity of plant species and nutrient-acquisition strategies in these shrublands 68 

(12, 18) makes them ideal for exploring how plant–soil feedback depends on root strategies, and 69 

how such feedback contribute to the maintenance of plant diversity. We collected soil from the 70 

rooting zone of 26 plant species representing five nutrient-acquisition strategies: (i) arbuscular 71 

mycorrhizal (AM), (ii) ectomycorrhizal (EcM), (iii) ericoid mycorrhizal (ErM), (iv) nitrogen-72 

fixing (NF), and (v) non-mycorrhizal cluster-rooted (NMCR), and then prepared seven inocula for 73 

each species: (1) sterilized conspecific soil, (2) conspecific soil, (3) soil from all species of the 74 

same strategy, but excluding conspecific soil, and (4–7) strategy-specific soil, using all species 75 

from the other strategies. Plant species were assigned to different nutrient-acquisition strategies 76 

based on our recent studies in the area (18) and our analyses of fine roots (19). Sixteen of the 26 77 

plant species (strategies: NF, NMCR, EcM, and AM) germinated in sufficient numbers to be 78 

included in a large plant–soil feedback experiment (16 species × 7 soil inocula × 10 replicates = 79 

1120 pots with one plant per pot). The experiment was conducted in a glasshouse for nine 80 

months (19), after which we measured survival, growth, and root structures. We then used 81 

survival and growth data from this glasshouse experiment (19) to parameterize simulation 82 

models exploring the long-term effects that plant–soil feedback can have on plant species and 83 

functional diversity (i.e. diversity of nutrient-acquisition strategies) (19). 84 
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Plant survival and growth were strongly influenced by the origin of the soil inoculum, 85 

and the effects varied among nutrient-acquisition strategies (Figs. 1, 2A, and S2). First, survival 86 

of N-fixing and non-mycorrhizal cluster-rooted plants declined when inoculated with conspecific 87 

soil, suggesting a response to soil-borne pathogens or other antagonists; by contrast, survival of 88 

arbuscular and ectomycorrhizal plants was unaffected by inoculum origin (Fig. 1A). Second, 89 

growth of surviving N-fixing and non-mycorrhizal plants was reduced when inoculated with 90 

conspecific soil compared with soil from heterospecific plants (i.e. negative feedback), whereas 91 

the growth of ectomycorrhizal plants was enhanced in conspecific soil (i.e. positive feedback) 92 

(Fig. 1B). In addition, the effects of heterospecific soil inocula depended on the strategy: for 93 

example, non-mycorrhizal plants grew best in soil from all three mycorrhizal types, whereas N-94 

fixing plants grew best in ectomycorrhizal soil (Fig. 1B). By contrast, ectomycorrhizal plants 95 

grew worst in ericoid mycorrhizal soil (Fig. 1B). Arbuscular mycorrhizal plants had invariant 96 

feedback (Fig. 1B), but the net effect of soil biota (i.e. growth with vs. without soil biota) on this 97 

group was consistently positive across all soil inocula (Fig. S2). Overall, the effects of soil 98 

inocula on plant growth were significant for three out of four strategies (Figs. 1B, 2A). 99 

Plant growth and feedback strength were partly explained by differences in the 100 

expression of nutrient-acquisition strategies, since the different inocula affected the root 101 

occupancy response (Figs. 2B, S3). For example, reduced growth of arbuscular, ectomycorrhizal, 102 

and N-fixing plants in sterilized soil was associated with little root colonization by mycorrhizal 103 

fungi (Figs. 2B, S4) and low root nodule mass for N-fixing plants (Fig. 2B). By contrast, the 104 

better growth of N-fixing plants in ectomycorrhizal soil relative to conspecific soil was 105 

associated with greater ectomycorrhizal root colonisation (Fig. S4). Finally, the non-mycorrhizal 106 

cluster-rooted plants had reduced growth in conspecific soils compared to arbuscular and ericoid 107 
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mycorrhizal soils (Fig. 2A), which was associated with lower cluster root biomass in particular 108 

species (Fig. S3). These results provide a mechanistic basis for explaining how soil biota interact 109 

with the deployment of plant nutrient-acquisition strategy, thereby influencing plant survival and 110 

growth via plant–soil feedback. 111 

Spatially-explicit simulations using our experimental data showed that the complex 112 

feedback between plants of contrasting nutrient-acquisition strategies and their associated soil 113 

biota can contribute strongly to the maintenance of the high plant species and functional diversity 114 

in these hyperdiverse shrublands (Fig. 3). In simulations where soil biota were absent (i.e. using 115 

only survival and growth data from sterilized soil), plant species and functional diversity 116 

declined rapidly to unrealistically low levels (Fig. 3). Similarly, diversity also declined rapidly 117 

when only conspecific (and not heterospecific) effects of soil biota were considered in the 118 

simulations (Fig. 3). By contrast, when all measured effects of soil biota from conspecific and 119 

heterospecific plants were included, plant species diversity and functional diversity were 120 

maintained at considerably higher levels. Moreover, such high levels were much closer to those 121 

characteristically observed for these hyperdiverse Mediterranean shrublands (Figs. 3, S4). These 122 

positive effects of soil biota on diversity were partly explained by a more even abundance 123 

distribution among faster-growing mycorrhizal plant species (Fig. S6). 124 

Previous studies have shown how feedback between plants and their associated soil biota 125 

drive plant community dynamics (1, 20-24). However, until now studies have not determined 126 

whether the strength and direction of plant–soil feedback depended on belowground traits such 127 

as nutrient-acquisition strategies (6, 10), despite increasing recognition that these strategies 128 

should determine plant responses to soil mutualists (e.g. mycorrhizal fungi, N-fixing bacteria) 129 

and susceptibility to root pathogens (5, 25). Our study addresses this question by showing that 130 
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feedback between plants and their associated soil biota critically depends on nutrient-acquisition 131 

strategy. As such, this could be a useful trait to generalise and predict plant responses to soil 132 

biota in natural, mixed-species communities. 133 

Soil biota, particularly soil-borne pathogens, have been suggested as key drivers of plant 134 

diversity (1). For example, theory suggests that the role of pathogens on plant diversity can arise 135 

through the build-up of host-specific pathogens when a given plant species increases in 136 

abundance (1, 5, 7), or when generalist pathogens have more detrimental effects on dominant 137 

plants than on subordinates (1). While such theory emphasises conspecific negative plant–soil 138 

feedback as an important mechanism driving plant diversity (1), our simulations that included 139 

only soil biota effects from conspecific plants actually showed a decline in plant species and 140 

functional diversity. Indeed, it is only when we integrated all effects of conspecific and 141 

heterospecific soil inocula in our simulation models that plant species and functional diversity 142 

were maintained at realistically high levels. As such, our results suggest that the maintenance of 143 

plant diversity by soil biota cannot be explained solely by negative effects (e.g. pathogens) 144 

conditioned by conspecific individuals, but also by positive effects of soil biota conditioned by 145 

heterospecific individuals with contrasting nutrient-acquisition strategies. Although our 146 

experiment cannot identify the actual mechanisms underlying these positive effects, possibilities 147 

include facilitation of subordinate plants (3) or suppression of pathogens by mycorrhizal fungi 148 

(5). 149 

Our study provides clear evidence that plant–soil feedback is an important driver of local 150 

plant diversity in species-rich plant communities, mediated by interactions between plants of 151 

different nutrient-acquisition strategies and their associated soil biota. The importance of 152 

complementary resource use among plants with different resource-acquisition strategies for 153 
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promoting plant diversity has conventionally been linked with partitioning of soil resources such 154 

as nutrients and water (26, 27), yet local competition for soil resources cannot explain the high 155 

plant diversity found in these nutrient-impoverished shrublands (17). Our study empirically 156 

supports theoretical work on plant–soil feedback suggesting that it can contribute to species 157 

coexistence (28). Studying interactions between plants and soil biota should enhance our 158 

understanding of mechanisms underlying the maintenance of plant diversity at local scales, and 159 

of how plant diversity will respond to global environmental changes (4, 16).  160 
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 161 

Fig. 1. Plant survival (A) and plant–soil feedback strength (B) in relation to plant nutrient-162 

acquisition strategy. Feedback strength is shown as log10-response ratios of plant biomass in 163 

conspecific soil compared to heterospecific soils (19, 29). For (A) and (B), each panel represents 164 

the average responses of species belonging to each strategy. Panel (A) shows survival means 165 

with 95% confidence intervals (CIs) (19). In (B), error bars are 95% CIs and are indicated by an 166 

asterisk if they do not include zero. In each panel, different letters indicate statistically significant 167 

differences (P ≤ 0.05) according to Tukey HSD tests for (B) or Dunnett tests and non-168 

overlapping CIs for (A)(19). Strl: sterile conspecific, Cnsp.: conspecific, AM: arbuscular 169 

mycorrhizal, EcM: ectomycorrhizal, ErM: ericoid mycorrhizal, NF: nitrogen-fixing, NMCR: non-170 

mycorrhizal cluster rooted, All: overall feedback across all heterospecific soil inocula. Feedback 171 

strength for each plant species is provided in Fig. S5 and across all plant species in Fig. S6. 172 
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 174 

Fig. 2. Dry weight gain (A) and root strategy occupancy (B) of plants inoculated with soil of different nutrient-acquisition 175 

strategies or with sterilized soil. In (A), bars represent mean plant dry weight gain of surviving plants with 95% CIs. In (B), bars 176 

represent mean nodule dry weight and cluster roots dry weight standardized on a total root weight basis, ectomycorrhizal fungal 177 

(EMF), or arbuscular mycorrhizal fungal (AMF) root colonization with 95% CIs. Different letters indicate statistically significant 178 

differences (Tukey HSD tests with P ≤ 0.05). See Fig. 1 for complete figure legends. Dry weight gain and root strategy occupancy per 179 

plant species are provided in Fig. S3 and for secondary strategies in Fig. S4. 180 
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 181 

Fig. 3. Model simulations based on experimental data showing that feedback between 182 

plants of contrasting nutrient-acquisition strategies maintains (A) plant species diversity 183 

and (B) functional diversity. Simulation models were parameterized from survival and relative 184 

growth rates from our glasshouse experiment under four different scenarios (19). Curves were 185 

generated with generalized additive models and shown here are the means (thin dark curves) and 186 

associated standard deviations (lighter and wider curves) from the raw data for 100 simulation 187 

runs per time step per scenario. Figure S9 shows results of simulations exploring effects of 188 

survival and growth separately, which revealed that patterns were mainly driven by growth rather 189 

than by survival.  190 
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