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SUMMARY  

Recycling of internalised receptors from endosomal compartments is essential for their cell 

surface homeostasis. Sorting nexin 27 (SNX27) cooperates with the retromer complex in the 

recycling of proteins containing type I PSD95/Dlg/ZO1 (PDZ) binding motifs. Here we define 

specific acidic amino acid sequences upstream of the PDZ motif required for high affinity 

engagement of the SNX27 PDZ domain. However, a subset of SNX27 ligands such as the β2-

adrenergic and N-methyl-D-aspartate (NMDA) receptors lack these sequence determinants. 

Instead we identify conserved sites of phosphorylation that substitute for acidic residues to 

dramatically enhance SNX27 interactions. This newly identified mechanism points to a likely 

regulatory switch for PDZ interaction and protein transport by SNX27-retromer. Defining this 

SNX27-binding code has allowed us to classify more than four hundred potential SNX27 ligands 

with broad functional implications in signal transduction, neuronal plasticity and metabolite 

transport.   
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INTRODUCTION 

Endocytic recycling of internalised transmembrane proteins is essential for their homeostasis, but the 

mechanisms that regulate sequence-dependent recycling are still poorly understood. The retromer 

trafficking complex recycles cargos containing PSD95/Dlg/ZO1 (PDZ) domain binding motifs via the 

adaptor protein sorting nexin 27 (SNX27). PDZ domains are one of the most common protein:protein 

interaction scaffolds found in proteins controlling cell trafficking and signalling networks 1,2, and play a 

significant role in clustering of neuronal receptors within the post-synaptic density (PSD) 3. The canonical 

mechanism of PDZ domain interaction involves a conserved cavity that recognizes different classes of 

PDZ binding motifs (PDZbms) found at the C-terminus of ligand proteins. Type 1 motifs have the 

sequence [S/T]-x-Φ (Φ = any hydrophobic residue), often found within the cytosolic tail of 

transmembrane proteins 4. While the C-terminal triplet is essential for binding, specificity is often 

enhanced by upstream sequences 5,6.  

Non-canonical PDZ domain binding is less common, and involves extensions to the core PDZ 

fold that then promote interactions with specific protein partners 7. SNX27 uses both canonical and non-

canonical PDZ interfaces to simultaneously engage Type 1 PDZ ligands and the endosomal trafficking 

hub complex retromer (a heterotrimer of VPS35, VPS26, and VPS29) via the VPS26 subunit 8 (Fig. 1A). 

It thus acts as a cargo adaptor for retromer-mediated transport from endosomes to the cell surface 8-11. 

Cargos include G-protein coupled receptors (GPCRs) such as the β2-adrenergic receptor (β2AR) 10,12 

and parathyroid hormone receptor (PTHR) 13, ion channels 14,15, and proteins involved in neuronal 

plasticity including α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPARs) 16,17, N-methyl-D-

aspartate (NMDARs) 18 and 5-hydroxytryptamine 4a receptors (5-HT4(a)R) 19 among others 9,20. 

SNX27 and retromer are expressed in multiple tissues, but play particularly prominent roles in 

neurons. Altered expression and mutations are linked to Alzheimer’s Disease, Parkinson’s Disease, 

Down Syndrome and infantile epilepsy 18,21-28, and lowered expression of SNX27 or retromer reduces 

surface levels of β2ARs, NMDARs and AMPARs with correlated synaptic defects 12,17,18. It has also been 

found that SNX27 and retromer play a role in bone morphogenesis through trafficking of the PTHR in 

osteoblasts 13. Generally however, it remains poorly understood as to how SNX27-retromer efficiently 

recruits diverse endosomal cargos (and accessory proteins), which are often transported in response to 

activation by different cell stimuli.  

Here we define sequence requirements for PDZbm binding to the SNX27-retromer complex and 

show that ligands fall into two distinct categories of high and low affinity binders based on the positions 

of acidic side chains upstream of the C-terminal PDZbm. High affinity-cargos require acidic residues 

located three and five residues upstream of the C-terminus that are able to clamp a conserved arginine 

on the SNX27 surface. Most intriguing is that many SNX27 ligands, including the β2AR and NMDARs, 

lack these upstream acidic side-chains, but instead possess conserved sites of serine and threonine 

phosphorylation. Data both in vitro and in cells, together with the crystal structures of SNX27 bound to 

different phosphopeptides, shows that phosphorylation of these residues mimics acidic side-chains 
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required for high affinity binding, and points to a novel layer of post-translational regulation in endosomal 

recycling. In silico analyses of the human genome provides a comprehensive inventory of probable 

SNX27-retromer interactors, and suggests there are hundreds of potential proteins recycled by SNX27-

retromer either constitutively or following phosphorylation.  
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RESULTS 
Specific sequences in PDZbms control association with SNX27 

A common feature seen in previous structures of the PDZbms of PTHR and Kir3.3 bound to SNX27 is 

the presence of what we refer to as an ‘electrostatic plug’, where two glutamate side chains at the -3 and 

-5 positions of the peptides embrace the conserved SNX27 residue Arg58 13,14 (Fig. 1B). In addition 

SNX27 possesses an extended surface of positive electrostatic potential adjacent to the -5 and -6 

peptide side-chains. Our prediction was that PDZbm sequences containing the acidic pair of side chains 

at -3 and -5 would bind more strongly than those without, and that acidic side-chains at -6 might enhance 

the binding affinity through delocalised electrostatic association.  

To define the relative contribution of each acidic residue in binding to SNX27, we used the PTHR 

PDZbm as a model peptide 13 and measured the affinities of a series of alanine mutations (Fig. 1C; 

Table S1). This showed: (i) altering the Glu-6 residue (PTHR-A1) on its own does not significantly reduce 

SNX27 binding, (ii) Glu-5 substitution (PTHR-A2), predicted to destabilize the electrostatic plug, leads to 

a modest decrease in affinity from 6 µM to 15 µM, and (iii) the elimination of both Glu-5 and Glu-6 (PTHR-

A3) reduces the binding affinity even further. Hence it appears that while Glu-5 is most important, a 

combined negative potential at both -5 and -6 can further enhance interaction. Since the PDZ binding 

pocket is surrounded by positively charged side-chains near the N-terminus of the bound peptide (see 

Fig. 1B), and the acidic residue at -6 is not ordered in the PTHR complex (or DGKζ, as shown below), 

we propose that a localised electrostatic complementarity between N-terminal PDZbm acidic side-chains 

and the basic surface of SNX27 is not strictly required, but can enhance peptide interactions. We 

previously showed that Glu-3 to Ala-3 mutation (PTHR-A5/A6) or a C-terminal Ala addition (PTHR-A4) 

prevented association with SNX27 13 (shown in Fig. 1C for comparison), indicating that Glu-3 and its 

contacts with Arg58 and Asn56 are essential for complex formation as is the register of the C-terminal 

PDZbm (Fig. 1C).   

We next tested the importance of specific PTHR sequences for SNX27-retromer association in 

cells. HEK293 cells stably expressing untagged PTHR were stimulated with fluorescent 

tetramethylrhodamine (TMR) labelled PTH(1-34) analog (PTHTMR) to induce activation and receptor 

internalisation. Endocytosed PTHTMR-bound PTHR showed significant association with SNX27 at 

endosomes after several minutes as observed previously 13 (Fig. 1D). However, when the C-terminal 

sequences of PTHR were mutated at the -3/-5 positions or to remove the PDZbm altogether 13, we found 

that PTHR was readily internalised following stimulation and localised to endocytic compartments, 

however, both showed a similar defect in colocalisation with SNX27 as determined by Pearson’s 

correlation co-efficient (Rr) ((Fig. 1E).  

 

Electrostatic interactions promote high affinity PDZbm association with SNX27 

We next tested the binding of three other ligands known to be associated with the SNX27-retromer 

pathway: (i) β2AR 11, (ii) diacylglycerol kinase ζ (DGKζ), a soluble SNX27-binding enzyme 29,30, and (iii) 
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the scaffolding protein Kinase D-interacting substrate of 220 kDa (KIDINS220) 9. The corresponding 

PDZbm peptides showed large differences in their ability to bind SNX27 PDZ. β2AR association was 

barely detectable (Kd > 200 µM), whereas both KIDINS220 and DGKζ interacted strongly (Kd ~ 6.5 µM 

and 2 µM respectively) (Fig. 2A, 2B; Table S1). Mutation of the SNX27 peptide-binding pocket (H114A) 

blocks all interactions, confirming the specificity. The magnitude of the enthalpic energy release (ΔH) on 

DGKζ or KIDINS220 binding is many times bigger that of β2AR, suggesting electrostatic bonds make a 

larger contribution to their interaction. Similar results are seen for the PH Domain And Leucine Rich 

Repeat Protein Phosphatase 1 (PHLPP1) and PHLPP2 sequences, that our bioinformatics studies 

predict should bind (see below), and were observed in proteomics 31 (Fig. 2C; Table S1). VPS26 

allosterically improves binding to these PDZbms as shown previously for GLUT1, Kir3.3 8 and PTHR 13, 

and this is markedly pronounced for β2AR.  

To confirm that upstream acidic residues promote high affinity PDZbm interaction with SNX27 we 

mutated the -5/-6 residues in β2AR and DGKζ from ST to EE and ED to SS respectively (Fig. 2A). In 

DGKζ this caused a decrease in affinity (Kd from 2.0 to 5.4 µM). The reverse substitution of Glu-5/-6 in 

β2AR dramatically improved binding (Kd from >200 µM to 19 µM) (Fig. 2A). Overall, these results show 

that acidic residues in -5/6 positions are not strictly required, but can contribute significantly to the affinity 

of PDZbm interaction with SNX27. 

  

Structure of the SNX27 PDZ domain bound to DGKζ  confirms the electrostatic plug binding 

mechanism 

To investigate PDZbm recognition by SNX27 in more depth, we determined the crystal structure of the 

SNX27 PDZ domain bound to the PDZbm from DGKζ at 1.1 Å resolution (Fig. 3, Table S2). The first 

Arg-7 residue in the DGKζ peptide is not visible in the electron density, and the Glu-6 side chain has 

relatively poor density and does not interact directly with the PDZ domain, strengthening the idea that 

residues upstream of the -5 position are not stably associated with SNX27 (Fig. 3A). The three DGKζ C-

terminal residues engage SNX27 in the canonical orientation where the terminal carboxyl group of Val0 

forms critical hydrogen bonds with the backbone of SNX27 Tyr53 and Gly54, while its side chain is 

embraced by a hydrophobic cavity underneath. Thr-2 forms a hydrogen bond with SNX27 His114 (Fig. 

3C, right panel), that is essential for complex formation.  

Determining SNX27/PDZbm structures at atomic resolution allowed us to compare the detailed 

molecular aspects of PTHR 13, Kir3.3 14 and DGKζ binding (Fig. 3B). All peptides have a Glu-3 residue 

sandwiched between SNX27 Arg58 and Asn56 that also forms a hydrogen bond with Ser82. These 

strong contacts explain why Glu-3 is the major determinant of selectivity. The other prominent feature of 

this interaction is how Arg58 establishes contact with both Glu-3 and Glu/Asp-5 of these peptides forming 

an electrostatic ‘plug’. The salt bridges shared between these three residues lock the peptides in place 

upstream of the PDZ cavity. Altogether, these combined structures show that the Glu-3 residue is 
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essential for binding, while the electrostatic ‘plug’ involving an acidic side-chain at the PDZbm -5 position 

provides a mechanism for enhanced selectivity.  

To confirm the importance of the electrostatic plug in DGKζ we tested the ability of DGKζ 

mutants to co-immunoprecipitate SNX27 in Jurkat T-cells. While GFP-DGKζ precipitated SNX27, 

constructs modified in their PDZ triplet did not (ΔETAV, T927A, T927D) (Fig. 3D). Mutating the -3 side 

chain (E926A or D924A/E926A) abolished the interaction with SNX27, while altering the -5 side-chain on 

its own (D924A) reduced but did not abolish binding, indicating the -5 acidic side-chain plays an 

important but auxiliary role to the essential -3 residue. This also correlates with a mild reduction in 

binding affinity by ITC when altering the -6 and -5 residues (E923S/D924S; ED/SS) (Table S1).  

 

Phosphorylation of PDZbms promotes interaction with SNX27-retromer 

Trafficking is frequently regulated by post-translational modifications including ubiquitination and 

phosphorylation. While SNX27 regulates PDZ-motif-dependent endosomal recycling of GPCRs such as 

β2AR 11 and 5-HT4(a)R 19, as well as AMPARs and NMDARs 16-18, it is notable that none of these 

important cargos possess the acidic residues required for forming the stable electrostatic plug with 

Arg58. However, these proteins do possess sites of potential phosphorylation (Fig. 4A). We 

hypothesized that introduction of a phosphate group at the critical -3 and -5/6 positions could substitute 

for essential acidic residues to promote binding to the SNX27 PDZ domain.  

Phosphorylation of β2AR resulted in two antagonistic effects depending on the location; 

phosphorylation of Ser-6 or Thr-5 increases binding affinity (from Kd > 200 µM to ~94 µM and 118 µM 

respectively), while in contrast phosphorylating Ser-2 abolishes interaction, presumably by causing a 

steric clash with the SNX27 His114 side chain (Fig. 4B; see also Fig. 3C). This is in line with our results 

showing that phosphomimetic mutation of the -2 position of DGKζ (T927D) abrogates SNX27 PDZ 

binding (Fig. 3D). Additional retromer engagement improved β2AR-pS-6 binding from 94 µM to 17 µM, 

demonstrating again that allostery can turn β2AR into a significantly more potent ligand (Fig. 4B, Table 

S1). 

To analyse the effect of phosphorylation on SNX27 association we performed NMR titrations of 
15N-labeled SNX27 PDZ domain with β2AR, β2AR-pS-2 and β2AR-pS-6 peptides (Fig. 4C; Fig. S1). Based 

upon the backbone resonance assignments performed previously 8, residues that showed the largest 

changes in chemical shifts were mapped onto the SNX27 PDZ surface. Both native β2AR and β2AR-pS-2 

peptides associated only weakly with the SNX27 PDZ binding pocket, and only at the site where the C-

terminal carboxyl group is coordinated. In contrast, β2AR-pS-6 titration strongly affected residues located 

around the entire extent of the PDZbm interacting surface (Fig. 4C). This supports the idea that 

negatively-charged residues and phosphorylation of upstream sequences promotes the coordinated 

binding of peptides to the extended binding groove. Interestingly, residues in the β-hairpin of SNX27 that 

binds to VPS26 8 also appear to be affected by β2AR-pS-6 binding, suggesting a link between the VPS26 

and peptide binding sites that may relate to the allosteric coupling. Altogether this data suggests 
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phosphorylation of Ser-6/Ser-5 or Ser-2 provide regulatory switches to respectively trigger or prevent 

SNX27-retromer trafficking of the β2AR. 

 

Phosphorylation regulates SNX27 binding to NMDA but not AMPA glutamate receptors 

NMDA and AMPA receptors in neurons control glutamatergic synaptic transmission 32, and their 

neuronal trafficking is strongly influenced by phosphorylation of their intracellular domains 33,34. SNX27-

retromer co-localises with glutamate receptors in neuronal post-synaptic densities 12,16,17 (Fig. 5A), and 

forms complexes with these receptors by co-immunoprecipitation. We also observe proximal localisation 

with GluN2B in dendrites using proximity ligation assay (PLA) (Fig. S2). Similar to β2AR, glutamate 

receptors are actively phosphorylated at their C-terminus in vivo (Fig. 4A), and we sought to test 

whether phosphorylation may provide a regulatory mechanism controlling SNX27 interaction.  

The PDZbm from the NMDAR subunit GluN1 interacts only weakly with SNX27 in its native form, 

but double phosphorylation on Ser-3 and Ser-5 greatly improves binding (Fig. 5B; Table S1), suggesting 

phosphorylation of GluN1 at these sites can mimic the electrostatic plug for SNX27 Arg58. Similarly, 

phosphorylation of GluN2B at Ser-5 and Ser-6 also confers a much higher affinity, confirming that 

phosphorylation mimics the contribution of Asp/Glu residues found in constitutively high affinity ligands 

(Fig. 5B; Table S1). Retromer association enhances binding to both peptides (Fig. 5B, Table S1). To 

confirm the binding of NMDARs and SNX27 in cells, we performed pulldowns of myc-SNX27 with GST-

GluN1 or GST-GluN2B C-terminal tail fusion proteins harbouring phosphorylation defective (AA) or 

mimetic (DD) mutations. Compared to the wild-type GluN2B, the phosphomimetic mutation at -5/-6 

significantly improves binding. The effect is even more pronounced for GluN1, where binding is hard to 

detect for both the wild-type protein and phosphodefective mutant, but is dramatically enhanced by 

phosphomimetic mutation at -3/-5 sites (Fig. 5C). This supports the idea that certain ‘weak’ sequences 

such as GluN1 lacking an acidic residue at -3 are unable to interact with SNX27 unless they are 

phosphorylated, while cargos that possess this acidic residue such as GluN2B can be significantly 

enhanced by phosphorylation. The identities of the -3 and -5/-6 residues in these cargos are strictly 

conserved, implying they are functionally important (Fig. 5D)35. 

Previous studies have suggested a role for SNX27-retromer in transport of the AMPARs 12,16,17. 

However, we do not detect significant affinity for AMPAR peptides in native or phosphorylated states 

(Fig. S3). GluA1 possesses a type I PDZ motif ([ST]xφ), but lacks the acidic side-chain at the -3 site and 

does not bind strongly to the SNX27 PDZ domain even in the presence of VPS26. GluA2 has a type II 

motif (φxφ) and also does not associate significantly with SNX27, even after phosphorylation of Ser-3 or 

Tyr-7. Based on structural considerations it is clear that although GluA1 may be physically able to 

associate, albeit weakly because of the lack of the acidic -3 side-chain, the binding of GluA2 is precluded 

because it lacks the key Ser/Thr-2 side-chain required for interacting with SNX27 His114. In the context 

of overall postsynaptic receptor trafficking we propose that NMDARs represent vastly more efficient 

cargos than AMPARs for SNX27-mediated recycling. 
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Mechanism of SNX27 binding to phosphorylated PDZbms 

Based on our results with β2AR and NMDARs, we scanned known SNX27 binders for other sequences 

potentially enhanced by phosphorylation at the -3 and -5 or -6 positions and tested two of these; the 

sorting nexin SNX14 9 and the GPCR 5-HT4(a)R 19 (Fig. 6A; Table S1). A phosphomimetic SNX14 

sequence showed significant binding to SNX27 as expected (Kd ~ 9 µM), while a phosphorylated version 

of the 5-HT4(a)R bound to SNX27 with an affinity nearly 4 fold greater than the native sequence and was 

enhanced to a Kd of 1.2 µM by the allosteric effect of VPS26 binding. This further supports the role of 

PDZbm phosphorylation in conferring high affinity interaction with SNX27 by mimicking key acidic 

residues. To confirm the mechanism of phosphorylation-enhanced binding we determined the high 

resolution crystal structure of the complex between the SNX27 PDZ domain and phosphorylated 5-

HT4(a)R PDZbm (Fig. 6B; Table S2). The crystal structure shows that the phosphoserine pSer-5 

cooperates with the acidic Glu-3 side chain to enable the clamping of SNX27 Arg58 as done by 

glutamates and aspartates of other PDZbms (Fig. 6B).  

We next confirmed the structural basis for enhanced SNX27 affinity via phosphorylation of the 

critical PDZbm -3 side-chain. We solved the crystal structures of two different peptide complexes; a 

mutated version of the PTHR PDZbm where Glu-3 was artificially altered to phosphoserine, and the 

leucine-rich repeat-containing protein 3B (LRRC3B; identified in bioinformatics analyses discussed 

below (Fig. 6D and 6E; Table S2)). The phosphorylated PTHR PDZbm has a similar affinity to the native 

peptide (not shown), indicating pSer-3 establishes similar functional bonds to maintain the previously 

described Arg58 plug. Phosphorylation of LRRC3B dramatically increases affinity compared to the native 

sequence as expected (Fig. 6C). The two co-crystal structures reveal at ultra high resolution the 

mechanism of interaction, where the phosphate modification is intimately coordinated by hydrogen 

bonds and electrostatic interactions with Asn56, Arg58 and Ser82. The precision of our data also 

confirms that while the four terminal residues of the PDZbm adopt a precise orientation to satisfy the 

constraints of these bonds, upstream residues can adapt their backbone conformation to promote pairing 

with Arg58. In addition, Arg58 adopts a flipped conformation to accommodate pSer-5 in the 5-HT4(a)R 

peptide (Fig. 6F). These structures provide a clear description of how phosphorylated residues at -3 and 

-5 positions mimic acidic residues present in constitutively high affinity SNX27 ligands. 

A question that arises is whether phosphorylation may be a more general signal for enhancing 

PDZ domain interactions. Sequence alignments of PDZ domains suggest that only those of NHERF1 

and NHERF2 possess side-chains with potential to coordinate negative charges similar to the 

Asn56/Arg58/Ser82 triplet in SNX27 36. For example NHERF1 PDZ2 has His/His/Arg in the analogous 

sites (Fig. S4A and B). CFTR is a validated binder of both NHERF1 and NHERF2 37, and we see robust 

interaction of NHERF1 PDZ2 domain with the CFTR control by ITC (Fig. S4C; Table S1). We also see 

similar binding of CFTR to SNX27, and SNX27 was recently identified as a high confidence binder in 

CFTR proteomics 38. However, when we tested either GluN2B (Fig. S4C), GluN1 or LRRC3B (not 
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shown) in either their native or phosphorylated states, we could not detect any binding by NHERF1. This 

suggests that phosphorylated PDZbms bind preferentially to SNX27. 

 

Bioinformatic discovery of SNX27 interacting proteins 

Combining our data with analysis of previously identified SNX27-interacting proteins (Table S3) we can 

define three major classes of PDZbm-containing ligands, where the identities of the last seven amino 

acids of the protein influence binding affinity. Acidic residues or phosphorylated side-chains at the -3, -5 

(and to a lesser extent -6) positions consistently enhance SNX27 affinity (Fig. S5; Table S1). Modulating 

these three positions thus yields predictable classes of SNX27 binders (Fig. 7A). Class 1a peptides are 

strong interactors that clamp Arg58 in SNX27, and are likely to constitutively associate under 

physiological conditions. Class 2a binders possess motifs where binding is enhanced by phosphorylation 

at the -5 position, whereas Class 2b and 2c peptides contain potential sites of phosphorylation at the -3 

position that is critical for SNX27 binding. Our data also suggests that additional acidic or phosphorylated 

residues upstream at the -6 position positively influence association through localised electrostatic 

interactions with SNX27 (Classes 1b, 2b and 2c). Class 3a binders are ligands that bind relatively weakly 

to SNX27. Finally, Class 3b binders are those with Thr or Ser at the -3 position that are unlikely to bind at 

all to SNX27 without phosphorylation.  

 These newly defined consensus motifs allowed us to search the human genome, and identify 432 

putative ligand and cargo molecules that possess the molecular signatures required to bind the SNX27-

retromer complex (Fig. S6, Table S4). A number of these were previously identified, but our 

bioinformatics imply that most of the SNX27 PDZ interactome still remains unexplored. Correlating with 

our predictions, the greatest proportion of previously identified ligands fall within the classes we predict 

will have the highest affinity for the SNX27-retromer complex. To begin to test these predictions we 

analysed the levels of several receptors in HeLa cells with SNX27 deleted by CRISPR/Cas9. Consistent 

with defective recycling and lysosomal turnover the levels of ATP7A and PDGFRβ were reduced in 

SNX27 knockout cells, as was the sorting nexin SNX14 (Fig. 7B). SNX14 is member of a distinct sorting 

nexin sub-family localised at endosomes at steady state 39,40, but whether it undergoes plasma 

membrane trafficking like other transmembrane cargos or is simply stabilised at endosomal 

compartments by interaction with SNX27 is unclear. Interestingly, the solute carrier EAAT1/SLC1A3 

does not appear to be degraded in SNX27 knockout cells, although a reduction was previously observed 

in proteomics studies following siRNA of SNX27 9.  
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DISCUSSION 

We have investigated the molecular aspects of cargo and accessory protein binding to the endosomal 

trafficking complex SNX27-retromer. The combined action of Arg58, Asn56 and Ser82 in SNX27 

provides a key binding site for a negatively charged acidic side-chain at the -3 site of ligand PDZbms that 

is essential for interaction. This correlates with proteomics data suggesting that the large majority of 

identified SNX27 interactors that possess a PDZ motif incorporate an acidic residue at the -3 position 9. 

In addition Arg58 can accommodate binding to an adjacent acidic side-chain in the peptide -5 position, in 

an arrangement we refer to as the ‘electrostatic plug’. To a lesser extent acidic side-chains in the -6 

position also promote SNX27 interaction through general electrostatic interactions. Previous work by 

Balana and colleagues on the G-protein inwardly rectifying potassium channels support these findings 14. 

Our data shows that retromer allosterically enhances binding to SNX27 for all cargo and ligand PDZbms, 

and it is also worth noting that association within the context of the membrane bilayer, coupled to lipid 

interactions of the SNX27 PX and FERM domains 41,42, will act to coordinate their physiological 

association at the endosome. It should be noted that many proteins identified in SNX27 proteomics do 

not possess PDZ motifs 9, some of these possess NPxY sequences 43, while others may be recruited 

through yet to be determined mechanisms. 

 The most striking observation is that the binding of many PDZbms to SNX27 is enhanced by 

phosphorylation. Our data shows phosphate groups add negative charges that when placed in -3, -5 and 

-6 positions promote SNX27-retromer association. In contrast, phosphorylating the -2 side-chain inhibits 

binding as the phosphate group is sterically precluded. Phosphorylation of the -2 residue in Type 1 

PDZbms of several proteins, including NMDARs and β2AR 44-52, has previously been found to negatively 

regulate binding to other PDZ domains. Only one previous structure of a PDZ domain bound to a 

phosphorylated peptide has been determined, describing the complex between the PDZ domain of 

TIAM1 and a type 2 PDZbm from syndecan-1 Tyr-phosphorylated at the -1 position 53. Binding studies 

have also been performed with the ZO-1 PDZ domain binding type 2 PDZbm from claudin-2 Tyr-

phosphorylated at the -6 residue 54. In the former case phosphorylation alters the tyrosine binding 

conformation but has no effect on binding affinity, while in the latter case phosphorylation inhibits the 

interaction. Although inhibitory effects of phosphorylation are well established, to the best of our 

knowledge a positive role in PDZ interactions has not previously been observed. The dramatic 

enhancement of PDZbm binding to SNX27 suggests an important and previously unidentified role for 

post-translational modification in promoting PDZ domain interactions.  

Structural studies demonstrate how phosphorylation mimics the electrostatic plug centred on 

Arg58 to potentiate SNX27 binding. The consistent enhancement of binding by phosphorylation of highly 

conserved sequences indicates that it almost certainly represents a functional signal for regulating cargo 

transport along the SNX27-retromer pathway. The PhosphositePlus Database (phosphosite.org) 

confirms that many of the predicted ligands are phosphorylated at the required sites, although the 

signals leading to these modifications remain unknown (e.g. Fig. 4A). Many transmembrane cargos are 
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modified at their C-termini by kinases and phosphatases 49,55, and an important question will be to 

determine which enzymes are involved in regulating SNX27-retromer interactions, and what impact 

these modifications have on endosomal transport. For example, GRK2 phosphorylates β2AR at both Ser-

2 and Ser-6 upon agonist stimulation 56, although it is unknown whether this particular kinase modulates 

endocytic recycling.  

Our results delineate three broad classes of SNX27 PDZbm ligands; strongly and weakly 

associated cargoes with and without acidic side-chains respectively at the -3, -5 and -6 positions, and 

others whose association is controlled by phosphorylation. We speculate that this ‘electrostatic code’ 

defines a specificity for SNX27-retromer association that will determine the efficiency and timing of 

endosomal recycling; some cargos being recycled constitutively, and others being recycled efficiently 

only under certain conditions of cellular stimulation causing their phosphorylation. A pathway analysis of 

the molecules we identified in the SNX27 interactome supports a prominent role for SNX27-retromer in 

trafficking cargoes involved in synaptic function and cell signalling as suggested by previous studies 9 

(Fig. 7C; Table S4; Table S5). Surprisingly however, the largest subset of putative ligands are members 

of the metabolite transporters/solute carrier family, transmembrane proteins whose trafficking is very 

poorly understood, although they are of major importance in human physiology 57. Many putative SNX27 

binding proteins are of unknown biological function, suggesting novel discoveries regarding SNX27’s role 

in endosomal transport and signalling are yet to come. It is also worth noting that some pathogens can 

interact with SNX27 through similar mechanisms, and are likely to compete with and perturb normal 

transport processes 58,59.  

In summary, our study describes an adaptable molecular code controlling SNX27-retromer 

recruitment of many different cargos including GPCRs, ion channels and solute carriers, as well as 

soluble signalling and regulatory proteins. In a broader context our data provides new mechanistic 

insights into how PDZ domains can fine-tune the dynamics of protein interaction networks. 
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METHODS 

Methods and any associated references are available in the online version of the paper.  
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Accession Codes 

Structural data is deposited in the protein data bank (PDB) under accession numbers 5ELQ, 5EM9, 

5EMA and 5EMB for the SNX27 PDZ domain in complex with PDZbm peptides from DGKζ, and 

phosphorylated 5-HT4(a)R, LRR3CB and PTHR(pSer) respectively. Raw diffraction images are available 

at the University of Queensland eSpace (https://espace.library.uq.edu.au).  
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FIGURE LEGENDS 
 
Figure 1. High affinity binding of PTHR to SNX27-retromer requires upstream acidic residues 

(A) Cartoon illustration of the endosomal recycling pathway mediated by the SNX27-retromer complex. 

Endocytosed cargo molecules (often stimulated by ligand binding and activation) associate with SNX27 

within the endosome, are sorted into tubulovesicular membrane domains through allosteric coupling with 

the retromer complex, and return to the cell surface, avoiding degradation within the late 

endosome/lysosome compartment. (B) Structure of the SNX27 PDZ domain bound to PDZbm peptides 

from Kir3.3 potassium channel (green; PDD ID 3QDO) 14 and PTHR (yellow; PDB ID 4Z8J) 13. The 

peptides bind to the SNX27 PDZ domain canonical binding groove in a β-strand conformation. Two 

glutamate residues in -3 and -5 positions interact with a basic patch to potentially stabilise the complex. 

(C) Mutagenesis of the PTHR PDZbm and binding to the SNX27 PDZ domain (data marked with an 

asterisk (*) from 13 are shown for comparison. (D) Colocalisation of SNX27 (green) with internalised 

PTH-PTHR ligand-receptor complexes following agonist stimulation with 100 nM PTHTMR (magenta) for 

15 minutes in HEK293 cells stably expressing PTHR. Bar, 10 µm. Correlative line-scan analysis of 

SNX27 and PTHTMR intensity profiles as shown in the merged inset. Bar, 1 µm. (E) PTHR constructs 

containing C-terminal PDZbms as indicated in panel C show differential endosomal recruitment with 

SNX27 following agonist stimulation and endocytosis. Deletion of the PDZbm or alteration of the acidic 

plug causes a defect in SNX27 association. Bar, 1 µm. (F) Colocalisation analysis (Pearson’s coefficient, 

Rr) of SNX27 with internalised PTH-TMR at 15 minutes. Values are mean ± SEM n=10. ** p < 0.01, *** p < 

0.001. 

 

Figure 2. Electrostatic interactions established by a subset of PDZbms promote high affinity 

binding to SNX27-retromer 

(A) ITC experiments with the SNX27 PDZ domain alone (black) or in complex with VPS26 (blue) show 

binding to two ligands of the SNX27-retromer complex β2AR and DGKζ. The H114A mutation in SNX27 

is a negative control that disrupts binding to PDZbms (orange). Artificial introduction of acidic residues in 

β2AR at the -5 and -6 positions or removal of the analogous residues in DGKζ enhance and decrease 

binding to the SNX27 PDZ domain respectively (purple). Raw data and integrated and normalised data 

are shown at top and bottom respectively. (B) ITC binding curve of the KIDINS220 PDZbm peptide 

interacting with SNX27. (C) ITC binding curves of the PHLPP1 and PHLPP2 PDZbm peptides interacting 

with SNX27. 

 

Figure 3. Crystal structure of the SNX27 PDZ domain in complex with the DGKζ PDZbm peptide 

(A) The 1.1 Å resolution crystal structure of the SNX27 PDZ domain is shown in ribbon representation, 

the bound DGKζ PDZbm peptide is shown in brown stick representation, and its refined 2Fo-Fc electron 

density contoured at 2σ is shown in magenta. (B) Comparison of the DGKζ peptide (brown) with Kir3.3 

(green) 14 and PTHR (yellow) 13. Each of these peptides make electrostatic and hydrogen bonds to 
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Arg58 and Asn56 of SNX27 through the conserved Glu-3 side chains. The Asp-5 of DGKζ and 

corresponding Glu-5 of PTHR also make stable contact to Arg58 of SNX27 forming what we refer to as 

the electrostatic plug. (C) Surface representation of the SNX27 PDZbm binding groove (centre panel), 

highlighting the significant positive electrostatic potential of the binding surface (blue). An expanded view 

of the variable side-chains at the peptide -4 position for DGKζ (brown), PTHR (yellow) and Kir3.3 (green) 

is shown in the left panel. An expanded view of the canonical PDZbm C-terminal triplet for DGKζ is 

shown in the right panel. This highlights the hydrogen bonding of the C-terminal carboxyl group to 

SNX27 main chain atoms, and the hydrogen bond interaction of Thr-2 to SNX27 His114. (D) GFP-DGKζ 

wild type and mutant constructs expressed in Jurkat T-cells were analysed for binding to SNX27 by 

GFP-trap immunoprecipitation and immunoblotting with the indicated antibodies. 

 

Figure 4. Phosphorylation of upstream residues in the β2AR PDZbm promote specific association 

with SNX27  

(A) Sequence alignment of synaptic plasticity receptors cytoplasmic C-termini highlight the presence of 

serine/threonine residues which we predict promote or disrupt (red and blue respectively) binding to 

SNX27 and are phosphorylated in vivo according to the PhosphoteSite database (grey boxes). (B) (Left) 

ITC experiments show binding of β2AR phosphorylated peptides (colours) compared to the wild type 

receptor (black). Thermodynamic parameters of binding are given in Table S1. Phosphorylation at -5 or -

6 positions significantly increases affinity and enthalpy of binding. Phosphorylation at the -2 position 

abolishes interaction. (Right) VPS26 engagement improves binding parameters of both wild type (blue) 

and β2AR peptides phosphorylated at the -6 position (cyan). (C) According to the NMR titration of β2AR, 

β2AR-pS-2 and β2AR-pS-6 (see 1H-15N HSQC spectra in Fig. S2), residues showing significant line 

broadening and change of chemical shift upon peptide addition are mapped in blue/cyan, pink/purple 

and red/orange respectively onto the SNX27 PDZ domain surface (a modelled DGKζ peptide displayed 

in purple sticks highlights the elements involved in binding PDZbms). 

 

Figure 5. Phosphorylation of the GluN1 and GluN2B subunits of NMDARs triggers interaction 

with SNX27  

(A) Hippocampal neurons (15 days in vitro) were transfected with GFP-GluN2B (green) and myc-SNX27 

(magenta) for 48 hours. Arrowheads indicate colocalisation of these two proteins in dendritic spines 

(white). Scale bars, 50 µm (top) and 5 µm (bottom). (B) Comparison of the binding profile of both normal 

and phosphorylated NMDAR PDZbm peptides to free or VPS26-engaged SNX27 PDZ domain. Peptide 

sequences used for each experiment are indicated on the right. (C) HEK293 cells were co-transfected 

with myc-SNX27 and GST-GluN1 or GST-GluN2B C-terminal tails, either WT, PDZ mutant, 

phosphodefective (AA) or phosphomimetic (DD) mutant and pull-down experiments from cell lysates 

were performed with GST proteins as bait. (D) Amino acid conservation of the PTHR and NMDAR 

GluN1/N2B PDZbms. PDZbms were aligned with their closest 100 homologs found by BLAST search, 



21  9/07/2016 

and the consensus sequence of the alignment based on the C-terminus was extracted for comparison. 

Alignment was made with CLC sequence viewer. 

 

Figure 6. Crystal structure of the SNX27 PDZ domain in complex with phosphorylated PDZbm 

peptides 

(A) ITC experiments with the SNX27 PDZ domain alone (black and red) or in complex with VPS26 (blue) 

show binding to 5-HT4(a)R, 5-HT4(a)R-pS-5 and SNX14 (phosphomimetic) peptides. (B) The 1.6 Å 

resolution crystal structure of the SNX27 PDZ domain is shown in ribbon representation, the bound 5-

HT4(a)R PDZbm peptide is shown in blue stick representation, and its refined 2Fo-Fc electron density 

contoured at 1.5σ is shown in orange. The higher black panel shows a zoom of the Arg58 plug, and the 

lower black panel shows distance measurements for critical bonds that maintain the peptide bound to the 

PDZ cavity. (C) ITC experiments of SNX27PDZ binding to native and phosphorylated LRRC3B PDZbms. 

(D) The crystal structures of the SNX27 PDZ domain (grey) bound to the LRRC3B-pSer-3 (violet) and (E) 

PTHR-pSer-3 (green) PDZbm peptides are shown with their refined 2Fo-Fc electron density contoured at 

1.5σ and 1.8σ respectively. (F) The structural alignment of phosphopeptides bound to the SNX27 PDZ 

domain highlights the contribution of phosphate ions and their mimicry of acidic residues in two separate 

positions to promote binding to conserved SNX27 residues. 

 

Figure 7. Classification of the SNX27 putative PDZ interactome on the basis of C-terminal 

sequence 

(A) Schematic representation of the SNX27 PDZ binding pocket (brown) and the molecular contacts 

(orange dashed lines) established with strong PDZ ligands (black). The presence of acidic residues or 

phosphate headgroups (green) in positions -3/5/6 introduces a negative charge, binding to the SNX27 

surface. For all PDZ ligands, phosphorylating the Ser/Thr-2 residue disrupts binding to the PDZ domain. 

The three classes of PDZbms can be sub-categorised and are defined by consensus sequences 

emerging from our findings (bottom). φ = I, L, V, M or F. (B) Steady state levels of putative SNX27 

cargos are reduced following SNX27 knockout by CRISPR/Cas9 deletion. Whole cell lysates from 

control HeLa cells (stably expressing Cas9) and SNX27 knockout cells were probed for several PDZbm-

containing cargos by western blotting. Reduction of PDGFRβ, ATP7A and SNX14 suggests a defect in 

endosomal transport leading to lysosomal degradation. EAAT1 total levels are apparently unaltered. 

Na+/K+-ATPase is a control plasma membrane protein. (C) Schematic representation of the different 

functions of PDZbms trafficked by SNX27. The 432 putative interacting proteins curated from our human 

proteome screen were analysed by Gene Ontology (GO) processes, and the top 250 enriched pathways 

(based on their false discovery rate) were manually classified into functional groups and pictured as 

spheres. The proteins comprising the network are also annotated based on their molecular function 

(bottom right histogram) (related to Table S5).  
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Figure 5

61;��3'=�+���$

B

D

GluN1

GluN2B

PTHR

100%

0%

100%

0%

100%

0%

D

P

S

V

S

T

V

V

GluN1

D

P

S

V

S

T

V

D

D

P

$
V

$
T

V

V

D

P

D

V

D

T

V

V
0

-1

-2

-3

-4

-5

-6

-7

W
T

P
D
Z
m $$ D
D

GluN2B

W
T

P
D
Z
m $$ D
D

L

S

S

I

E

S

D

V

L

S

S

I

E

S

D

D

L

$
$
I

E

S

D

V

L

D

D

I

E

S

D

V
0

-1

-2

-3

-4

-5

-6

-7

A 

C

њ�
P
\F

 S
N

X
2
7

њ�
*
67

1
0
'
$5

њ�
P
\F

 S
N

X
2
7

њ�
*
67

1
0
'
$5

GluN

SNX27PDZ

D

P

S

V

S

T

V

V 0

-1

-2

-3

-4

-5

-6

-7
L

S

S

I

E

S

D

V 0

-1

-2

-3

-4

-5

-6

-7
D

P

S

V

S

T

V

V 0

-1

-2

-3

-4

-5

-6

-7

L

S

S

I

E

S

D

V 0

-1

-2

-3

-4

-5

-6

-7

P

P

P

P

L

S

S

I

E

S

D

V 0

-1

-2

-3

-4

-5

-6

-7

P

P

D

P

S

V

S

T

V

V 0

-1

-2

-3

-4

-5

-6

-7

P

P

+VPS26

GluN1 GluN2B

+VPS26



Figure 6
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Figure 7
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Figure S2
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Figure S5
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Figure S6
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