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Non-linear hydrodynamic responses of a novel spar type soft-moored floating offshore
wind turbine are investigated via analysis of motion measurements from a wave basin
campaign. A prototype of the TetraSpar floater, supporting a 1:60 scale model of the
DTU 10MW reference wind turbine, was subjected to irregular wave forcing (with no
wind) and shown to exhibit sub-harmonic resonant motions, which greatly exceeded the
wave-frequency motions. These slow-drift responses are excited non-linearly, since the
rigid body natural frequencies of the system lie below the incident frequency range. Pitch
motion is examined in detail, allowing for identification of different hydrodynamic forcing
mechanisms. The resonant response is found to contain odd harmonic components, in
addition to even harmonics expected a priori and excited by second-order difference-
frequency hydrodynamic interactions. Data analysis utilising harmonic separation and
signal conditioning suggests that Morison drag excitation or third-order sub-harmonic
potential flow forcing could be at play. In the extreme survival-conditions sea state, the
odd resonant responses are identified to be drag-driven. Their importance for the tested
floater is appreciable, as their magnitude is comparable to the second-order potential
flow effects. Under such severe conditions, the turbine would not be operating, and as
such neglecting aerodynamic forcing and motion damping is likely to be reasonable.
Additionally, other possible drivers of the resonant pitch response are explored. Both
Mathieu-type parametric excitation and wavemaker driven second-order error waves
are found to have negligible influence. However, we note slight contamination of the
measurements arising from wave basin sloshing.
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1. Introduction

The expansion of offshore wind farms into deeper water requires floating concepts,
as bottom-fixed monopile turbines become prohibitively expensive beyond about 60 m
water depth (IRENA (2019)). Such deep water floating installations benefit from a
more consistent and abundant wind resource as well as greater availability of potential
deployment sites. In a floating concept, the tower, which supports the turbine, sits on
a floater. The floater can be fully or partially submerged and is moored to the sea
bed. In this work, a catenary moored floater system is investigated. To avoid direct
excitation by waves, such systems are typically designed to have large natural periods,
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typically above 25 − 30 s for pitch, roll, heave and yaw. For surge and sway modes, the
natural periods are usually even longer, due to absence of hydrostatic stiffness and low
restoring force provided by the mooring. Since the hydrodynamic damping is weak, the
systems are highly resonant. It is well known that low-frequency resonant motions of soft
moored structures can be excited by second-order difference-frequency hydrodynamic
loads. Here, we show that, for the floater considered, Morison drag forcing can also give
rise to considerable resonant pitch motions. We focus on pitch motions because these are
typically the most critical for turbine performance due to their direct influence on the
effective inflow speed to the rotor. Surge motion is also relevant in this respect, though
its effect is generally weaker due to the motions being slower. Large floater pitch motion
can couple with the blade pitch control system of the turbine (Larsen & Hanson (2007)).
Furthermore, extreme tower inclination angles induce strong overturning moments in
the tower base (see e.g. Madsen et al. (2019)). Understanding the amplified resonant
oscillations is of interest not only for the operational performance of the turbine, but
importantly for design so as to avoid structural fatigue and to maintain mooring system
integrity.

A number of research studies on non-linear hydrodynamic loads for offshore floating
wind turbines have been carried out in recent years. Goupee et al. (2014) performed
model-scale experiments in a combined wave and wind facility for three floater types
supporting a scaled 5MW turbine. The spar and semi-submersible floaters exhibited
notable resonant sub-harmonic surge and pitch motions in the sea states and wind
conditions tested. For the semi-submersible floater, Coulling et al. (2013) successfully
replicated the experiments numerically accounting for second-order wave loads (in addi-
tion to wave-frequency and aerodynamic loading and the flexible behaviour of the tower).
When the turbine was not operating (parked rotor with feathered blades), the difference-
frequency wave forcing was shown to govern the global motion responses. Comparison
of the (parked) floater dynamics, in a severe sea state with and without winds, revealed
the non-linear wave forcing to be dominant and the wind effects to be minimal (even
in strong winds). In contrast, in tests when the turbine was operational, the measured
and simulated dynamics revealed dominance of the aerodynamic excitation of the slow-
drift surge and pitch motions. These low-frequency motions were found to be similar for
wind-only and wind-and-wave tests, though it should be noted that the tested sea state
was fairly mild (see Coulling et al. (2013)). Similarly, Roald et al. (2013) proposed that
inclusion of second-order difference-frequency wave forcing is not essential for conditions
when the turbine is operating based on a numerical study with a spar floater. Simulations
carried out by Bayati et al. (2014) suggest that the sub-harmonic responses are dependent
on both wind and wave environmental conditions. Their study highlighted the importance
of the second-order difference-frequency hydrodynamics in severe wave conditions, while
the wind slow-drift loads were shown to be dominant in a milder sea state.

As outlined above, investigating higher-order hydrodynamic effects is of interest, due to
their relevance for high speed wind conditions (above cut-out speed, so turbine parked)
or when the turbine is not operating for other reasons such as faults, as well as for
severe wave conditions under which the non-linear hydrodynamic forcing is expected to
dominate over aerodynamic effects. For accurate calculation of resonant motions in the
absence of wind, both the slow-drift hydrodynamic excitation and the hydrodynamic
damping levels are crucial (see Pegalajar-Jurado & Bredmose (2019)). In laboratory
tests, however, both of these could be affected, for example due to difficulty of generating
and then absorbing low-frequency wave components in a wave basin/flume and due to
issues with scaling of viscous effects. A number of numerical modelling studies have
reported difficulties in accurately predicting sub-harmonic resonant load and/or motion
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responses of floating wind turbines. The large code comparison initiatives OC5 and OC6
(see Robertson et al. (2017) and Robertson et al. (2020)), as well as works by Azcona
et al. (2019) and Li & Bachynski (2021) for example, reveal model underestimation of
surge and pitch resonant responses, when compared to wave basin experiments. It is
hoped that the detailed examination of small-scale floater measurements presented in
this paper, which allows identification of different excitation mechanisms affecting the
resonant floater dynamics, could be useful in model validation.

The aim of this paper is to present a comprehensive analysis of the dynamic motion
of a model-scale floating wind turbine. We utilise harmonic separation, made possible by
phase-manipulated realisations in the tank. All the stochastic sea states were run with
phase-inversion a novelty for floating structure response tests. The harmonic separation
reveals even harmonic, as well as unexpected odd harmonic, components of the resonant
responses. To identify the dominant hydrodynamic effects, we apply signal conditioning
techniques, where the band-pass filtered even- and odd-harmonic response is correlated
with constructed proxy signals for the forcing. Second-order quadratic potential flow
effects and Morison drag loading are shown to be important. The paper is organised as
follows. First, in Section 2, the floater characteristics and the experiments are outlined. In
Section 3, the signal processing techniques applied to the measured data are explained,
and the non-linear responses identified. Furthermore, in Section 4, we quantify other
potential sources of the resonant motion excitation.

2. Basin experiments

A comprehensive laboratory campaign investigating responses of a model-scale floating
wind turbine under wave and wind forcing was carried out in 2017 in the deep-water
basin at DHI, Hørsholm, Denmark. In this work, we focus on the hydrodynamics alone,
analysing tests in the absence of wind. The tested turbine was a 1:60 scale model of the
DTU 10MW reference wind turbine. The TetraSpar floater (yellow structure in Figure
1), designed by Stiesdal Offshore Technologies, consists of a main column connected
to three sets of tanks, as well as a triangular counterweight suspended from these.
Attached to the tanks, three catenary mooring chains (in a symmetric arrangement,
with one line pointing down-wave, and two lines pointing obliquely up-wave) were used
to soft moor the floater. Here, we analyse the spar configuration where the tanks were
completely submerged (leaving only the base of the tower column projecting through the
free surface). A prototype of the TetraSpar floater design aims to reduce production and
installation costs of floating offshore wind turbines by utilising simple tubular elements
and by use of the counterweight. This counterweight can be lowered once the turbine has
been towed to the deployment site, thus eliminating the need for deep water harbours
and/or the use of expensive offshore operations vessels (see Borg et al. (2020) for details
of the full-scale deployment, with the floater installed in July 2021).

The wave basin is 30 m wide and 20 m long, with an absorbing beach and an articulated
flap wavemaker hinged 1.5 m above the basin floor (see Figure 1). Linear wave generation
was used for calculation of the paddle signals, and active absorption by the wavemaker
was not utilised. The water depth was 3 m, and we note that most of the beach structure
at the far end of the basin was submerged. The model was positioned equidistantly
from the basin side walls and 5 m away from the wavemaker (at [x, y] = [5 m, 15 m],
where x and y denote the distance from and along the wavemaker). The relatively close
placement of the model to the wavemakers was necessary for tests with wind forcing (not
reported here) to ensure a consistent wind field over the swept rotor area produced by
the wind generator. The influence of linear evanescent waves at the model location was
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Figure 1. Top left: Diagram of the wave basin, with wave gauges (blue) and the model (yellow).
Top middle and right: Diagram of the model and photograph of the experimental setup. Note
that in the spar configuration tested the buoyancy tanks are fully submerged. Bottom: Target
(solid) and measured (dashed) free surface variance density spectra S(η), together with the
floating system rigid body natural frequencies fni (details in Tables 1 and 2). Note that the
measured spectra are from a wave gauge located at [x, y] = [5 m, 10 m].

examined to ensure these local standing waves (originating from a velocity mismatch
at the paddle face) did not contaminate the experiments. For all components in the
incident wave frequency range, the summed evanescent wave amplitude at the model
location was found to be less than 0.5% of the corresponding progressive component.
Hence, these standing waves almost completely decayed away, and their effect on the
floater motions was negligible.

Free surface elevations were measured with ten wave gauges. Measurement from the
wave gauge at [x, y] = [5 m, 10 m], which is offset from the model laterally, is assumed
to represent the undisturbed wavefield (i.e in the absence of the model) and is used in
the conditioned signal analysis. This is deemed appropriate due to the slender geometry
of the floater (with the diameter of the widest tubular element being 0.11 m in model
scale). The scattered and the radiated wave fields are therefore relatively small, and
their effect on gauge measurements at [x, y] = [5 m, 10 m] is further reduced due to
the geometric spreading associated with radially propagating waves. The wave gauges
placed along the basin centreline were utilised in the second-order error wave and basin
sloshing investigations, in particular readings from the wave gauge closest the wavemaker
at [x, y] = [1 m, 15 m] are used in Section 4.2. A Qualisys optical motion tracking system
was employed to measure the 6 degree of freedom (DoF) motions of the floater. An
extensive range of additional instrumentation was employed to measure tower and nacelle
accelerations, mooring line and counterweight line loads, as well as rotor behaviour.
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reference name EC5 EC6 EC11 EC64
Hs [m] 4.2 (0.069) 6.2 (0.103) 10.5 (0.175) 6.2 (0.103)
Tp [s] 7.3 (0.94) 8.9 (1.15) 14.2 (1.83) 18.0 (2.32)

Table 1. Environmental conditions used in the experimental campaign. Sea states are given in
terms of significant wave height Hs and peak period Tp, with Pierson-Moskowitz spectral shape.
Model scale values are shown in brackets.

motion surge sway heave roll pitch yaw
Tni [s] 133 (17.2) 138 (17.7) 35 (4.5) 33 (4.3) 33 (4.3) 78 (10.1)
fni [Hz] 0.008 (0.06) 0.007 (0.06) 0.029 (0.22) 0.030 (0.23) 0.030 (0.23) 0.013 (0.10)

Table 2. Natural periods of the tested system Tni, where i = 1 . . . 6 denotes the floater rigid
body motion modes of surge, sway, heave, roll, pitch and yaw respectively. Values of the natural
frequencies fni = 1

Tni
are also given for convenience. Model scale values are shown in brackets.

Further details of the campaign are given in Borg et al. (2018). See also Bredmose et al.
(2017) for details on the model turbine.

In the experimental campaign long duration irregular wave tests were performed and
are examined here. We note that regular waves and focused wave group tests were also
carried out. All conditions were long-crested, and in this work only waves propagating in
the x-direction are presented (i.e. propagation direction normal to the wavemaker front).
The analysed sea states are listed in Table 1; a Pierson-Moskowitz spectral shape was used
for all conditions. Sea states EC5, EC6 and EC64 can be considered operational, whereas
EC11 represents a survival extreme-conditions test. The long duration runs were 3 hours
long (in full scale), roughly corresponding to between 600 and 1600 wave periods for the
longest and shortest waves tested. We note that apart from the longest period sea state
(with kpd = 2.3, where kp is wavenumber corresponding to peak period Tp and d is water
depth), the conditions can be considered deep water. In order to facilitate separation of
individual harmonics under the broad-banded wave conditions, phase-manipulated tests
were carried out. For each sea state, two realisations were performed; the first one with
randomly chosen phases while the second one with the phase of every component shifted
by 180◦. We note that this is equivalent to inverting the linear paddle signal, which is
very convenient from a practical point of view. Such pairs of tests are used in Section
3.1, where harmonic separation is discussed.

The precise details of the model floater, tower and turbine will be omitted here for
brevity (see Borg et al. (2021) for this information). The natural frequencies of rigid body
motions of the system are detailed in Table 2. The values were estimated from free decay
tests carried out as part of the campaign. The mismatch of the surge and sway natural
periods is thought to originate from a slight deviation from symmetry in the experimental
setup. These experimentally derived natural periods were closely matched by calculations
using the system mass properties and the linearised mooring and hydrostatic restoring
forces.

3. Identifying non-linear resonant responses

The measured floater surge, heave and pitch motions exhibit responses in the range of
the incident wave energy, as well as in the sub-harmonic range peaking at the respective
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Figure 2. Measured free surface η and floater pitch motion θ time series. First row:
Total undisturbed free surface. Second row: Total pitch. Third row: High-pass filtered
(HPF) odd-harmonics signal representing linear wave-frequency pitch motion. Fourth row:
Even-harmonics signal (red) and low-pass filtered (LPF) odd-harmonics signal (blue) both
representing sub-harmonic pitch motion.

natural frequencies. Figure 2 shows short segments of the wave and pitch motion signals
from two sea states. The notable low-frequency motions are clearly seen. In addition,
pitch motion spectra for the four wave conditions investigated are displayed in Figure
4. Since, for the floater considered, the natural frequencies of all 6 DoF lie below the
incident wave frequencies (see Figure 1), the motion at the natural frequencies must
be driven non-linearly. The analysis that follows identifies the source of these resonant
sub-harmonic motions.

3.1. Harmonic separation

Utilising the two phase-shifted realisations (the original and the inverted test), odd
and even harmonics can be separated via subtraction and addition of the two signals
(e.g. Jonathan & Taylor (1997) and Fitzgerald et al. (2014)).
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where X0 and X180 represent the two phase-shifted signals. In the above, An = |An|eiϕn

and Q
(1)
n denote the complex wave amplitude and the complex linear transfer function

of a fn frequency component, with ϕn being the phase of the wave component. The
superscript −:∗ denotes complex-conjugation, which only applies to sub-harmonic compo-
nents. The double and triple summations each comprise both super- and sub-harmonics

with coefficients Q
(2±)
n,m and Q

(3±)
n,m,p representing second- and third-order transfer func-

tions/interaction kernels respectively. Further details on higher harmonic components
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are provided in Appendix B. The reason the subtraction and addition time series contain
the odd and even harmonics respectively becomes clear when one considers the individual
complex amplitudes in the inverted signal, which are given by |An|eiϕn+π = −An. With
the complex amplitudes pre-multiplied by a minus sign, all odd harmonic terms become
inverted while the even harmonic terms remain unaffected in the inverted signal.

This phase-based harmonic separation method relies on a Stokes-like structure of
the studied wave-driven response. It has been used to analyse various non-linear wave
phenomena involving fixed (Fitzgerald et al. (2014), Zhao et al. (2017), Chen et al. (2018))
and floating offshore structures (Roux de Reilhac et al. (2011), Chen et al. (2021)), as
well as higher-order responses in coastal problems (Orszaghova et al. (2014), Whittaker
et al. (2017), Judge et al. (2019)). The above studies utilise short deterministic wave
groups. More recently, the method has been applied to random time series (Adcock et al.
(2019), Zheng et al. (2020), Kristoffersen et al. (2021)), which we also pursue here.

To illustrate the frequency range of the various harmonics, Figure 3 shows the free
surface variance density spectra for the free linear components and the associated
second- and third-order bound waves. Details of the spectral calculations are included
in Appendix B. For clarity, a broad-banded top-hat spectral shape with clearly defined
cut-off frequencies is shown, in addition to sea state EC5. As seen from the spectral
plots, due to the overlap between different-order terms, the individual harmonics cannot
be easily separated via frequency filtering, highlighting the usefulness of the harmonic
separation using phase-manipulated realisations. We note that straightforward frequency
filtering is only possible for very narrow-banded processes.

Within the even-harmonics signal, the second-order difference-frequency components

(terms with Q
(2−)
n,m in Equation (3.1) and denoted by S(2−) in Figure 3) span frequencies

within (0, fmax − fmin), which includes the pitch natural frequency. The second-order

sum-frequency components (terms with Q
(2+)
n,m in Equation (3.1) and denoted by S(2+)

in Figure 3) comprise frequencies (2fmin, 2fmax), so do not extend to the low-frequency
sub-harmonic range where the natural frequencies lie. The second-order super- and sub-
harmonics can be suitably separated by frequency filtering.

Now inspecting the odd-harmonics signal, the third-order super-harmonic (terms with

Q
(3+)
n,m,p in Equation (3.1) and denoted by S(3+) in Figure 3) is typically centered around

3fp in frequency and can be isolated by frequency filtering. However, the linear com-

ponents (terms with Q
(1)
n in Equation (3.1) and denoted by S(1) in Figure 3) and the

third-order sub-harmonic components (terms with Q
(3−)
n,m,p in Equation (3.1) and denoted

by S(3−) in Figure 3) cannot be separated as their frequency ranges overlap. As detailed
in Appendix B, the third-order sub-harmonic terms arise from + +−, +−+ and +−−
combinations of linear frequencies. Their frequency range is (max(0, 2fmin−fmax), 2fmax−
fmin) and as such they extend below and above the linear frequency range. We note that
only the low- and high-frequency tails of the third-order sub-harmonic spectrum S(3−)

are shown in Figure 3, and that the range spans the pitch natural frequency.
The harmonic separation is applied to both the free surface η and the pitch motion θ

experimental signals. Careful alignment of the measured signals X0 and X180 is critical in
ensuring correct cancellation of the relevant harmonics and in avoiding spectral leakage.
The linearised free surface ηL is obtained from the odd-harmonics free surface signal,
which has been low-pass filtered to remove third- and higher-order odd super-harmonic
content. In the remaining signal, the third-order sub-harmonic bound wave content is
very small, due to the (mostly) deep water conditions analysed here. For this reason, the
low-pass filtered free surface subtraction time series is taken to represent linear waves.

Figure 4 shows spectra of the total (dotted black), as well as the even (solid red) and
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Figure 3. Theoretical free surface variance density spectra S(η): linear free wave spectrum

S(1) (black), second-order difference-frequency bound wave spectrum S(2−) (red), second-order

sum-frequency bound wave spectrum S(2+) (purple), third-order difference-frequency bound

wave spectrum S(3−) (blue) and third-order sum-frequency bound wave spectrum S(3+) (green).
Note that only the low- and high-frequency tails of the third-order difference-frequency spectrum
S(3−) are shown. The solid green vertical line denotes the pitch natural frequency fn5. Top:
Pierson-Moskowitz input spectrum EC5, with linear wavemaking up to 2.5 Hz. Bottom: Top-hat
input spectrum with frequency range (fmin, fmax) = (0.5, 2.5 Hz) and Hs = 0.069 m (same as
EC5).

the odd (solid blue) pitch motion. We would expect the response at the low natural
frequency to appear in the even signal due to second-order sub-harmonic wave-floater
interactions. However, for the longer sea states EC11 and EC64, a comparably large
response at the pitch natural frequency also manifests in the odd signal. As mentioned
above, there is virtually no linear excitation at the natural frequency. The fact that this
motion is not driven linearly is confirmed by calculation of linear motion (dashed blue),
which completely fails to reproduce the response peak at the natural frequency. This
calculation uses a theoretical linear transfer function for pitch motion (based on the
work of Pegalajar-Jurado et al. (2018)) applied to the linearised free surface ηL. Further
details can be found in Appendix A. The linearised hydrodynamic damping estimates are
taken from Pegalajar-Jurado et al. (2019). Their analysis of this experimental campaign
reveals the pitch damping to be sea state dependent with the damping values positively
correlated to the significant wave height Hs.

For all conditions tested, the odd-harmonics pitch motion spectra exhibit a clear
frequency gap between the resonant and the wave-frequency responses (see Figure 4).
Frequency filtering can thus be carried out with the cut-off frequency chosen to corre-
spond to the spectral minimum in the gap. The separated pitch motion time series are
shown in Figure 2. The high-pass filtered (HPF) odd-harmonics signal represents linearly
excited pitch motions. The resonant sub-harmonic pitch motions comprise contributions
from the even-harmonics signal and the low-pass filtered (LPF) odd-harmonics signal.
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Figure 4. Measured floater pitch motion variance density spectra S(θ): total, odd and even
components shown respectively in dotted black, solid blue and solid red lines. The dash-dotted
blue curve represents the reconstructed linear pitch motion via application of the linear transfer
function to the linearised free surface. The solid green and the dashed black vertical lines denote
the pitch natural frequency fn5 and the input peak wave frequency fp respectively.

3.2. Fluid forcing proxies

The non-linear resonant pitch motions comprise both even and odd harmonics. The
odd response is somewhat unexpected, as one would typically assume the sub-harmonic
resonant motions to arise from second-order potential flow wave-structure interactions.
The spectral content of the second- and third-order bound waves is seen to encompass the
pitch natural frequency suggesting quadratic and cubic interactions as plausible loading
mechanisms. Additionally, we also consider Morison drag loading as its frequency content
is also relevant in the sub-harmonic range. In our data-driven analysis approach, we utilise
proxies for the three possible forcings at play.

The linearised free surface raised to the nth power, i.e. ηnL, represents the nth order
bound waves (and in fact other wave properties/contributions), assuming unit transfer
function values. It is thus a proxy for the nth order potential flow forcing, which is
generally due to contributions from both the local nth order processes and scattering of
the nth harmonic of the incident wave. Figure 5 shows spectra of the sum- and difference-
frequency content of η2L and η3L signals, where here ηL denotes a linear synthetic, rather
than the linearised experimental, free surface signal. The difference-frequency content
of the squared and cubed signals is given by 1

2

(
η2L + [H(ηL)]2

)
and 3

4ηL
(
η2L + [H(ηL)]2

)
respectively, where H denotes the Hilbert transform, which introduces a 90◦ phase shift
into the signal. The equivalent expressions for the sum-frequencies are 1

2

(
η2L − [H(ηL)]2

)
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and 1
4ηL

(
η2L − 3[H(ηL)]2

)
, and follow from Walker et al. (2004). The magnitude of these

proxy forcing signals is irrelevant and as such the spectra presented in Figure 5 have been
scaled to aid comparison with Figure 3. As expected, the proxy signals have comparable
spectral content to the bound wave components.

In addition to potential flow forcing we consider viscous effects and approximate these
via the drag term of the Morison equation (see Morison et al. (1950)). Following the
approach of Pegalajar-Jurado & Bredmose (2019), we can expand the relative velocity
formulation of the drag term (see for example Faltinsen (1993)) into a pure forcing
term which is independent of the body velocity, as well as linear and quadratic damping
terms. We choose the drag forcing proxy to be uL|uL|, where uL represents the linearised
experimental horizontal fluid velocity at the mean free surface and | | represents the
modulus. Assuming deep water, we evaluate the velocity signal using the linearised
free surface measurement ηL such that uL = H[η̇L], where the ˙ operator denotes time
differentiation. The frequency content of the drag forcing proxy is shown in Figure 5. The
spectrum can be seen to have a peak around fp and (3− 4)fp, similar to the third-order
potential flow terms. The low-frequency components extend below the linear range and
span the natural frequencies, thus possibly exciting the resonant motions.

To our knowledge, a closed-form expression for the uL|uL| signal using a broad-band
harmonic content of uL, similar to the summation expressions given in Equation 3.1 for
the second- and third-order potential flow terms, is not possible. We can only write a
regular wave approximation, with simple sinusoidal velocity uL = a cos(ωt + p), which
reads

a cos(ωt+ p)|a cos(ωt+ p)| = 8

3π
a2 cos(ωt+ p) +

8

15π
a2 cos(3ωt+ 3p)+ (3.2)

+

∞∑
n=2

(−1)(n+1) 8 a2

(2n− 1)(2n+ 1)(2n+ 3)π
cos((2n+ 1)ωt+ (2n+ 1)p).

The above is an infinite summation of progressively smaller odd harmonic terms, with
no even harmonics. The drag forcing signal is thus dominated by the components close
to the linear spectral peak, as can be seen in Figure 5. It is worth presenting here the
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Figure 6. Third-order potential flow forcing η3L and Morison drag forcing uL|uL| signals for sea
state EC11 calculated using the experimental linearised free surface signal ηL. Top: raw signals.
Bottom: band-pass filtered (BPF) signals.

third-order potential flow forcing proxy for a sinusoidal linear signal, which is given by(
a cos(ωt+ p)

)3
=

3

4
a3 cos(ωt+ p) +

1

4
a3 cos(3ωt+ 3p). (3.3)

The first term represents the sub-harmonics, while the second term the super-harmonics.
Comparing Equations 3.2 and 3.3, we note a number of similarities and differences. In a
Stokes-like harmonic structure, an nth harmonic can be approximated to be proportional
to an cos(nωt+ np), i.e. it scales as the nth power of the linear amplitude. We note that
the complete expression also contains higher-order sub-harmonic terms which scale as
the (n+ 2m)th power of the linear amplitude, and as such are much smaller. The third-
order effects investigated here are precisely such higher-order sub-harmonic terms of the

first harmonic (see the first term in Equation 3.3, terms with Q
(3−)
n,m,p in Equation (3.1)

and denoted by S(3−) in Figure 3). The key point is that Stokes odd harmonics only
have odd amplitude power scalings. On the other hand, in the drag forcing expression,
all harmonics depend quadratically on the linear amplitude, so the amplitude scaling is
independent of the harmonic number. The relationship between the harmonic number
and the amplitude power is thus different. Focusing on the first harmonic ω components in
the two expressions, as these are most relevant for the analysis here, we note their phase
alignment. Extrapolating to a broad-banded situation, we anticipate the two forcing
signals to be strongly correlated, and to respectively scale as a square and a cube of the
linear content amplitude.

As we are interested in the resonant pitch motion, we band-pass filter (BPF) all the
response and the forcing proxy signals around the natural frequency (roughly between
0.75fn5 and 1.20fn5). We note that the strong similarity in shape between the BPF drag
and the BPF third-order loading signals remains. This is illustrated in Figure 6 for sea
state EC11, where the experimental linearised free surface ηL was used. The assumed
amplitude scaling between the BPF uL|uL| and the BPF η3L, i.e. power coefficient of 3

2 ,
will be utilised in analysis presented in Section 3.4.
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3.3. Conditioned signal analysis

In order to identify the source of the pitch motion at the natural frequency, we use
signal conditioning (similar to Zhao et al. (2018)). The conditioning analysis involves
selecting a number (here 30) of the largest events in the conditioning signal, as well as
the corresponding sections of the conditioned signal. A portion of time series around each
identified peak is cut out, followed by shifting of each time axis such that the maximum
value occurs at zero relative time, and finally the 30 series are averaged. The remaining
structure in time of the averaged signals is indicative of the coupling between the two
processes. This is because the averaged conditioned signal would simply reduce to zero-
mean noise if there was no phase relationship to the conditioning process. Figures 7 and
8 show the even and odd pitch motion conditioned on second and third powers of ηL as
well as on uL|uL|, with all signals having been suitably band-pass filtered (BPF). The
conditioning signals are locally symmetric, as expected. For all sea states, the plots clearly
show a coupling between η2L and even-harmonic pitch (left-hand-side plots), confirming
that these motions are caused by quadratic interactions. For sea states EC6 and EC11,
strong coupling is also strikingly demonstrated between the odd-harmonic pitch signals
and both the η3L and uL|uL| forcing proxies (middle and right-hand-side plots). The
fact that the pitch motions correlate with both conditioning signals is consistent with
Figure 6, which shows their shape similarity. For the shortest and longest sea states EC5
and EC64, however, these couplings appear less well defined as the expected response is
mostly hidden within the noise band.

The conditioned signal analysis can also be performed in reverse, whereby we condition
on large even/odd pitch events. The equivalent plots to Figures 7 and 8 are omitted for
brevity. However, we utilise the resulting conditioned signals to highlight reciprocity
between the two sets of coupled processes. For a linear system of two Gaussian processes
(with a linear relationship between input and output), the averaged output signal
conditioned on an extreme input event is identical to the scaled time-reversed/mirrored
averaged input signal conditioned on an extreme output event. The derivation of this
reciprocity relation is omitted here, but can be found in Zhao et al. (2018) for example.
The additional dash-dotted curves in Figures 7 and 8 show the mean forcing time histories
which give the largest pitch response. Note that the time axis has been reversed for the
ηnL and uL|uL| forcing time series and that the curves have been scaled.

For the even pitch and the assumed η2 loading, each pair of these reciprocity curves,
where above the noise levels, shows a distinct similarity. We note of course that the
second-order potential flow quadratic interactions are pair-wise in frequency. However,
between a higher-order response and the corresponding higher-order forcing signal there
is a linear relationship. In other words, the non-linear forcing operates on a linear hydro-
mechanical system through a linear transfer function, which we have confirmed with this
reciprocity analysis. It follows from Stokes theory that the second-order sub-harmonic
bound wave content in the undisturbed incident waves is very low for the (mostly)
deep water conditions analysed in this work. Moreover, as the structure considered
is rather slender, the identified non-linear responses are presumably excited by local
quadratic processes at the structure, as opposed to the incident or diffracted bound wave
components. This agrees with Simos et al. (2018), who carried out a comprehensive
numerical investigation of second-order difference-frequency wave forcing of a semi-
submersible floating turbine. Their study demonstrated that in deep water the second-
order diffraction contribution is negligible, and thus the second-order forcing follows
primarily from the quadratic/product terms of first-order wave and body variables.

The reciprocity analysis for the odd pitch motions appears to work equally well for the



Wave- and drag-driven sub-harmonic responses of a floating wind turbine 13

-202

BPF L
2

(m
2
)

10
-4

E
C

5

-0
.20

0.
2

BPF  even
(degs)

B
P

F
 

L2
 | 

B
P

F
 

 e
ve

n

-2
0

-1
0

0
10

20

t (
s)

-0
.0

20

0.
02

BPF  odd
(degs)

-101

BPF L
3

(m
3
)

10
-6

-0
.20

0.
2

BPF  even
(degs)

-2
0

-1
0

0
10

20

t (
s)

-0
.0

20

0.
02

BPF  odd
(degs)

-202

BPF uL|uL|

(m
2
/s

2
)

10
-3

-0
.20

0.
2

BPF  even
(degs)

-2
0

-1
0

0
10

20

t (
s)

-0
.0

20

0.
02

BPF  odd
(degs)

-505

BPF L
2

(m
2
)

10
-4

E
C

6

-0
.20

0.
2

BPF  even
(degs)

B
P

F
 

L2
 | 

B
P

F
 

 e
ve

n

-2
0

-1
0

0
10

20

t (
s)

-0
.0

50

0.
05

BPF  odd
(degs)

-505

BPF L
3

(m
3
)

10
-6

-0
.20

0.
2

BPF  even
(degs)

-2
0

-1
0

0
10

20

t (
s)

-0
.0

50

0.
05

BPF  odd
(degs)

B
P

F
 

L3
 | 

B
P

F
 

 o
dd

-4-2024

BPF uL|uL|

(m
2
/s

2
)

10
-3

-0
.20

0.
2

BPF  even
(degs)

-2
0

-1
0

0
10

20

t (
s)

-0
.0

50

0.
05

BPF  odd
(degs)

B
P

F
 u

L
|u

L
| |

 B
P

F
 

 o
dd

 conditioning
signal

 conditioned
signal

 conditioned
signal

 conditioning
signal

 conditioned
signal

 conditioned
signal

Figure 7. Conditioned signal analysis: Local average profiles of band-pass filtered (BPF)
even-harmonics and odd-harmonics pitch motion (second and third row, for each sea state)
conditioned on extrema in the BPF η2L, η3L and uL|uL| time series (first row, for each sea
state). The grey shading represents 95% confidence intervals on the estimation of the mean
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Figure 8. As in Figure 7, but for sea states EC11 and EC64.
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third-order and the drag loading proxies. Clearly there cannot be a linear relationship
between the odd resonant motions and both the forcings. We postulate that due to
averaging over only a limited number of events (spanning a range of amplitudes), we are
unable to determine which of the two processes is driving the odd pitch motions. We
note that since the conditioned time histories are so similar (in magnitude and shape), it
could be that both effects are present and provide roughly equal excitation. Additional
processing of the data presented in the next section will reveal the dominant effect.

Lastly, we briefly comment on the surge and heave motions of the TetraSpar floater.
Analysis equivalent to that presented in Figure 4 suggests that in these modes, the sub-
harmonic odd responses are not as significant, and that the resonant motions are driven
by second-order interactions. We also note that bi-spectral (and tri-spectral) analysis
(see for example Stansberg (1997)) may also be used to identify non-linear interactions
and could have been applied as a complementary approach to the signal conditioning
pursued here.

3.4. Amplitude dependence analysis

In this section we attempt to establish whether the odd-harmonics resonant pitch
motions are due to third-order potential flow forcing or due to Morison drag loading,
through an amplitude scaling analysis. We focus on sea state EC11 which exhibits the
largest odd pitch motions, which we found to be strongly correlated to both the η3L and
uL|uL| signals. We probe the linearity assumption of these correlations by examining the
transfer function at different response and forcing amplitudes. Rather than averaging
across the top 30 events as above, we split the data into groups of 20, such that events
1-20 form the first group, events 2-21 the second etc. The averaged conditioning and
conditioned signals of each group are calculated. The conditioned profiles from different
groups are found to be similar, apart from scaling differences. This would be expected
for a true linear correlation, while profile changes would be expected to arise if the
relationship was not linear. These subtle changes in the mean profiles are not possible
to detect due to the small number of events available as well as due to the rather
limited range of levels/amplitudes arising from the different groups. We thus extract the
maxima in these mean signals to establish a representative amplitude/scale associated
with each group of events. For the conditioning signals the maxima are at t = 0 s. For
the conditioned signals the maxima occur in very close proximity to the extrema seen in
Figures 7 and 8.

We first illustrate the outcomes of this analysis on the even pitch motion and the
second-order forcing proxy in EC11 wave conditions. The extracted correlated amplitudes
are shown in the first two plots in the top row in Figure 9. The linear relationship between
the response and the assumed forcing is confirmed, as the ratio between the representative
conditioning and conditioned amplitudes remains fairly constant. As such the data from
the eleven different sub-groups closely trace a best-fit straight line (forced to go through
the origin), irrespective of whether we condition on the forcing or the response. The third
plot in the top row in Figure 9 presents an ordered peaks analysis, whereby the top 30
peaks in the forcing signal are plotted against the top 30 peaks in the even pitch signal.
As such there is no imposed time-association between the extrema extracted from the
two signals. The fairly linear trend again confirms the already established deduction that
the even resonant pitch motion is driven by quadratic interactions.

The same analysis performed on the odd pitch motion reveals differences in correlations
with the cubic potential flow and the Morison drag forcings. The relationship is found
to be more closely linear for the drag excitation, both using the time-correlated and the
ordered amplitudes. The amplitude scaling between η3L and the odd pitch appears non-
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Figure 9. Amplitude dependence investigation for sea state EC11. Left column: Representative
response and forcing amplitudes derived from multiple groups of events using conditioning on
forcing. Middle column: Representative response and forcing amplitudes derived from multiple
groups of events using conditioning on response. Right column: Ordered forcing peaks versus
ordered response peaks. The solid lines represent best-fit straight lines through the origin. The
dotted lines represent best-fit power curves through the origin, with the power coefficient given
in the legend.

linear. For the relevant plots in Figure 9 we have also displayed best-fit lines with a power
coefficient of 2

3 (and 3
2 as appropriate). The reasonable alignment of the data points with

these curves provides an additional consistency check. Our analysis suggests that for this
sea state EC11, the odd resonant pitch motion is driven by a low-frequency contribution
from Morison drag. As such it exhibits a quadratic dependence on the underlying wave
amplitudes and therefore also scales reasonably well with the cubic forcing term raised
to the power of 2

3 .
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We note that for the other wave conditions tested, the equivalent analysis was not
successful in determining the source of the odd-harmonic pitch motions. The data was
either too clustered and/or too noisy to detect the subtle amplitude dependencies.
Presumably the analysis is simply more distorted by noise as the non-linearity is weaker
in the less severe sea states (see also Section 4.2 and Figure 10).

In the procedure outlined above, there is a need to average over a large enough number
of events to derive reliable amplitude estimates, while also ensuring that all individual
events are large enough (ideally greater than twice the standard deviation of the record,
as per Taylor & Williams (2004)). Very long records are thus needed, which is difficult
experimentally as discussed in the next section. Alternatively, having multiple tests with
the same incident wave spectral content with different significant wave height would have
been useful. We will adopt this recommendation into the next round of experiments.

4. Investigating other drivers of low-frequency oscillations

4.1. Parametric excitation

In this section we investigate whether the measured pitch floater motions could also
be driven through parametric resonance. Parametric resonance is a phenomenon that
can arise in mechanical systems, whereby a response in a particular mode is excited
via a time-varying parameter, as opposed to via direct forcing. A well-known example
in ocean engineering is the parametric roll of ships in head or following seas, where, in
the absence of direct forcing from waves (due to the port-starboard symmetry), large
amplitude roll motions can occur. The roll motion is excited indirectly by time-varying
roll stiffness (see for example Shin et al. (2004) and Oh et al. (2000)). In moored
structures, a similar mechanism exists, whereby pitch/roll instability can arise due to
the pitch/roll restoring stiffness dependency on the instantaneous displaced volume and
metacentric height, both of which vary in time as the structure heaves and/or the free
surface interacts with the hull. According to Haslum & Faltinsen (1999) and Koo et al.
(2004), who investigate roll/pitch motions in spar platforms in the framework of Mathieu
instability, the problematic conditions leading to indirectly excited resonant roll/pitch
motions are when there is substantial heave motion at twice the natural roll/pitch
frequency (2fn5). This could occur when the heave natural frequency fn3 is close to
twice the roll/pitch natural frequency, and/or when energetic wave components align
with twice the natural roll/pitch frequency. We note that for a structure with symmetry
properties of the TetraSpar, the resultant parametrically excited motions would be a
combination of roll and pitch (see Orszaghova et al. (2019) for analysis of sway/surge
instability in a moored axi-symmetric buoy). One can therefore gauge the presence of
the instability by observing the roll spectra. In all conditions tested, the measured roll
spectra are found to be considerably smaller than the corresponding pitch spectra. In the
two potentially troublesome sea states, EC11 and EC64, which span 2fn5 (see Figure 4),
the measured roll motions are in fact smaller than in the other sea states. This suggests
that the observed peaks at the natural pitch frequency are not contaminated by motions
arising from parametric resonance.

4.2. Second-order error waves and basin sloshing

It is well known that performing tests in a wave basin, compared to the open ocean,
introduces undesirable effects arising from the mechanical laboratory wave generation
and the finite basin domain coupled with imperfect absorption along basin walls. These
artefacts include higher-order spurious wave generation by non-linear boundary condition
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basin mode 1 2 3 4 5
wavelength [m] 40 20 13.3 10 8
Tbi [s] 7.6 4.2 3.1 2.6 2.3
fbi [Hz] 0.13 0.24 0.32 0.39 0.44

Table 3. Longitudinal basin sloshing modes: first five sloshing modes, for basin length L,
characterised by wavelengths 2L

i
and wave frequencies fbi for i = 1 . . . 5 with the corresponding

sloshing periods Tbi = 1
fbi

.

mismatch at the wavemaker, as well as linear and non-linear excitation of resonant
basin modes (see for example Section 10.2.2 in Dean & Dalrymple (2001), Bonnefoy
et al. (2006)). In this section we investigate the potential impact of these effects on
the measured dynamics of the floater. We note that additional complications arise in
directional experiments due to finite-width wavemaker elements and reflections from side
walls. However, these are irrelevant here due to the uni-directional nature of the tests
analysed.

When linear wave generation theory is applied, spurious higher order waves are
inadvertently generated (see Barthel et al. (1983), Hughes (1993), Schffer (1996)). Here
we are primarily concerned with the second-order sub-harmonic error waves due to their
frequency content spanning the floater natural frequencies. In shallow water experiments,
these low-frequency free waves are known to contaminate floating body responses as well
as coastal responses (see for example Orszaghova et al. (2014) and Whittaker et al.
(2017)). This is due to the depth dependence of Stokes theory whereby second-order
interactions increase with decreasing water depth. As such, the bound set-down, as well
as the second-order error waves, are non-negligible in shallow water. On the other hand,
in deep water, the low-frequency bound content is low, and typically so are the error
waves arising from application of linear wave generation. For reference, in EC11, which
is the most non-linear sea state tested, the amplitude (in laboratory scale) of the bound
set-down underneath large wave groups is in the order of 5− 10 mm and the amplitude
of the long error wave (a positive-elevation hump) is around 1 mm, for random waves
with Hs = 175 mm. Nevertheless, we evaluate the error waves to assess their potential
effect on the measured floater motions. The second-order sub-harmonic spectra of the
bound, error and total waves are calculated via

S
(2−)
bound(fn) = 2 ∆f

N−n∑
m=1

S(1)(fm) S(1)(fm+n) |Q(2−)
bound(fm, fm+n)|2, (4.1)

S(2−)
error(fn) = 2 ∆f

N−n∑
m=1

S(1)(fm) S(1)(fm+n) |Q(2−)
error(fm, fm+n)|2, (4.2)

S
(2−)
total(fn, x) = 2 ∆f

N−n∑
m=1

S(1)(fm) S(1)(fm+n) |Q(2−)
bound(fm, fm+n) e−i(km+n−km)x+

Q(2−)
error(fm, fm+n) e−iknx|2, (4.3)

where the discretised representation has been adopted; for a time series of duration
tmax with sampling interval ∆t, the corresponding resolution in the frequency domain
is ∆f = 1

tmax
with fn = n∆f and kn being the wave frequency and wavenumber linked

via the dispersion relation, and N = tmax

2∆t being the number of Fourier components

(excluding the zero frequency mean component). S(1) and S(2−) denote the linear and
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second-order difference-frequency free surface variance density spectra respectively and
Q(2−) represents the second-order difference-frequency kernels/transfer functions, which
can be found in Schffer (1996). We note that in the equations above a factor of 2 is quoted,
instead of the commonly used definition with a factor of 8 (see for example Pinkster
(1980) and Kim & Yue (1990)). This is due to different summation indices used (i.e.
summing up over an octant versus a quadrant) with more details provided in Appendix
B. We also remark that here it is sufficient to evaluate only the progressive error wave
components, as the evanescent non-propagating second-order terms are negligible already
at the first wave gauge, which is positioned 1 m from the wavemaker. Due to their different
propagation speeds, the presence of free and bound waves can give rise to an undesirable
interference pattern in the basin (see Equation (4.3)). This is particularly noticeable for
the super-harmonics (not shown here), since the free and bound components come in-
and out-of-phase repeatedly resulting in the combined second-order spectra exhibiting
multiple peaks which vary with distance from the wavemaker, as also documented by
Pierella et al. (2021). The left-hand-side plots in Figure 10 show the calculated second-
order sub-harmonic bound and error wave spectra (based on the input Pierson-Moskowitz
linear spectrum). In general, the bound waves are more prominent. The error waves are
particularly low around the floater pitch natural frequency. Applying the theoretical
pitch linear transfer function (LTF) to the calculated error waves gives the predicted
contaminating pitch motion. This is shown by the dash-dotted lines in the right-hand-
side response spectral plots (zoomed in on the low-frequency content). It is clear that the
influence of the sub-harmonic error waves is completely inconsequential for the sea states
tested. The use of linear wave generation theory is thus justified in these deep water
tests. We note in passing that, contrary to intuition, the magnitude of the propagating
bound and error waves do not need to be equivalent. Barthel et al. (1983) shows them
to be the same for long waves generated by a piston wavemaker, but, as demonstrated
here, in other scenarios this need not be the case.

We next analyse the extent of sloshing in the tank and the associated influence on the
low-frequency resonant pitch motion. Figure 10 shows the measured free surface spectra
from two wave gauges, one close to the wavemaker at [x, y] = [1 m, 15 m], and the other
at [x, y] = [5 m, 10 m] which is aligned with the floater location but offset laterally. In
the wave-frequency range, the measured spectra agree well with the theoretical input
spectrum. In the sub-harmonic range, however, there are clear differences between the
measured and the predicted total spectra. Note that, for each sea state, the total predicted
spectrum (as per Equation (4.3)) shown is for location x = 1 m; the equivalent spectra
at other wave gauge locations are similar due to the bound waves dominance and the
resulting weak interference. In general, there appears to be more sub-harmonic wave
energy present in the basin compared to the theory. The measured spectra show distinct
peaks, which align well with the calculated longitudinal sloshing frequencies (see Table
3), of which the first three are highlighted with the vertical grey lines. We note that
the location x = 5 m corresponds to a free-surface node of the second mode standing
wave pattern. Accordingly, the second sloshing mode peak appears to be absent in the
measurements from this wave gauge. Sloshing (also referred to as seiching) is a common
problem in wave basins and flumes, and can arise through linear and/or non-linear
excitation of the basin eigen-modes. Molin (2001) proposes a mechanism for basin mode
excitation resulting from the wavemaker transient as the generation starts and stops.
In practice, the first few modes tend to be dominant due to ineffective absorption of
these very long waves (since the passive beach would typically only be a fraction of
their wavelengths). For this reason, the first few basin frequencies can typically be fairly
accurately estimated assuming a complete reflection at the basin far end, which is what
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Figure 10. Left: Free surface variance density spectra: total measured free surface from two
wave gauges shown by bold black solid and dotted lines, theoretical linear waves shown in blue,
and theoretical second-order subharmonic waves shown in red (solid, dashed and dash-dotted
red lines denote the total, bound and error components respectively). The solid green and the
grey vertical lines denote the pitch natural frequency fn5 and the first three basin longitudinal
sloshing frequencies fb1...3 respectively. Right: Pitch motion variance density spectra: total,
even and odd measured motions shown by solid black, red and blue lines respectively, calculated
pitch via application of the LTF to the second-order subharmonic error waves shown by the
dash-dotted red line, and calculated pitch via application of the LTF to the measured free
surface band-pass filtered around the second basin sloshing frequency fb2 shown by the dashed
black line.

we have done here and summarised in Table 3. The shorter modes are more strongly
dissipated, and in general do not become established as easily. Basin sloshing is reported
in the works of van Essen et al. (2016) and Shemer & Sergeeva (2009) for example. In
our tests we note that the pitch natural frequency fn5 is very close to the second basin
mode frequency fb2. Even though there are no free surface oscillations associated with
these standing waves at the floater location, the wave kinematics stipulate horizontal fluid
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motions (in fact this location is an anti-node for the fluid horizontal properties/variables,
see e.g. Section 4.4 in Dean & Dalrymple (2014)), which can drive horizontal floater
motions. In order to assess the influence of the basin sloshing on the measured floater
motions, we apply the theoretical pitch linear transfer function to the band-pass filtered
measured free surface spectra from the wave gauge at [x, y] = [1 m, 15 m]. This location
exhibits close to the full standing wave height. Since the absolute value of the pitch
transfer function is very similar for incident waves from 0 and 180◦, its application in
this way is justified. In doing so, we also presume the sloshing waves to satisfy the linear
dispersion equation. The minimum and maximum frequencies for the band-pass filter
applied to the measured free surface are 0.8fb2 and 1.2fb2 respectively. The resulting
motion spectra are shown in dashed back lines in the right-hand-side plots in Figure
10. For the three shorter sea states, the sloshing-driven pitch motions are relatively
small, though noticeable. For the longest-period sea state EC64 our estimates suggest
that basin sloshing contaminates the measured responses around the natural frequency
to a considerable extent. This appears consistent with our analysis above, where the
conditioned odd pitch motion signal in sea state EC64 was found to be rather small
compared to the corresponding signal from EC6 (see Figures 7 and 8) even though the
odd motion content (around the natural frequency) was higher. We also note that for sea
state EC64, the effect of the third basin mode fb3 ≈ 0.32 Hz can be seen within the linear
frequency range in the measured wave spectra (see bottom left plot in Figure 10). It is
also manifested in the calculated linear pitch motion spectrum in Figure 4 (bottom plot)
in which the linearised measured free surface ηL has been assumed to represent purely
incident waves. We conclude by remarking that standing waves are hard to eliminate in
basin tests due to their potential multiple generation sources, as well as the inherent space
limitations for their passive absorption and the wavemaker stroke limitations for their
active absorption. Since their frequency content can be similar to the natural frequencies
of softly-moored structures, their effect should be taken into account when comparing
experimental and numerical floating body responses.

5. Conclusions

A detailed analysis of motion responses of a model-scale soft-moored floating wind
turbine in irregular waves revealed significant sub-harmonic excitation of the pitch mode.
The floater was subjected to long-duration wave only (zero wind speed) and resonant
motions were at the soft-moored rigid body natural frequencies, which lie well below
the incident wave frequency range. Applying a harmonic separation technique to pairs
of phase-manipulated realisations revealed both even and odd harmonic content of these
slow-drift resonant responses. The even pitch motion was found to be excited by second-
order difference-frequency wave-structure interactions, as expected. In the milder wave
conditions, these second-order motions comprised the bulk of the resonant pitch response.
However, in the extreme sea state tested, the unexpected odd resonant pitch motion was
considerable, which prompted further investigation.

Using conditioned signal analysis, forcing arising from third-order potential flow, as
well as from Morison drag, were probed as possible drivers of the odd resonant motions.
The harmonic structure of u|u| drag loading, where u is the fluid velocity, differs from a
Stokes-like harmonic series. The third-order sub-harmonic potential flow forcing scales as
a cube of the linear amplitude, whereas drag is predominantly a quadratic effect. Thanks
to the observed amplitude dependence not following the usual Stokes structure, Morison
drag was found to dominate over the cubic low-frequency forcing under the severe wave
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conditions and result in pitch motion of comparable magnitude to the second-order even
response.

Since in the studied experiments wind forcing was omitted and as such the aerodynamic
effects of the turbine were excluded, the identified considerable drag-driven responses in
severe wave conditions may be applicable to other soft-moored spar platforms. Even
in weaker sea states, drag may presumably be the governing odd-harmonic effect due
to its square amplitude dependence, though this could not be unambiguously proven
with the available data. This analysis is a demonstration of harmonic decomposition
treatment in the presence of drag effects. As a recommendation for future wave-structure
interaction experimental campaigns, it is suggested to use two- or four-phase realisations
carried out at two or three different amplitudes. Such data sets will aid identification
of the different excitation mechanisms influencing the floater dynamics, and can provide
valuable validation of different hydrodynamic components within numerical models.

This study highlights the importance of careful interrogation of free surface and
response measurements collected in wave basin experiments. In addition to the above
analysis, it was verified that second-order sub-harmonic error waves (present in the
tests due to use of linear wave generation theory) had negligible effects, while some
contamination from basin sloshing was identified in the longest wave conditions tested.
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Appendix A

In this appendix we present the linear transfer function (LTF) extracted from the
measurements and compare it to the theoretical curves. Utilising the linearised free
surface ηL and the high-pass filtered (HPF) odd-harmonics pitch motion, the linear
transfer function can be derived from

LTF(f) =
FT of

(
HPF θ odd

)
FT of ηL

, (A 1)
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Figure 11. Experimental pitch motion linear transfer functions (LTF) derived from the four
different sea states considered. Note that only the absolute value is shown. The theoretical linear
transfer function from Pegalajar-Jurado et al. (2018) with linearised pitch damping estimates
from Pegalajar-Jurado et al. (2019) is also shown.

where FT denotes the Fourier transform (i.e. the complex amplitudes of the individual
frequency components of the signal). In Figure 11, the experimental linear transfer
functions are super-imposed on the theoretical curves, which exhibit sharp resonant
peaks. Note that the lower peaks centered at fn1 = 0.06 Hz arise due to coupling between
pitch and surge. The resonant peaks attain different values according to the amount
of linearised damping estimated to be present in each test (according to Pegalajar-
Jurado et al. (2019)). Away from resonance, the relevance of damping diminishes and the
three theoretical curves coalesce. The experimental LTFs are displayed for their relevant
frequency ranges, and can be seen to closely agree with the theoretical curves. The inset
provides a zoomed-in view with the same frequency scale.

Appendix B

In this appendix we derive the second-order spectrum formula (see Equation (4.1))
and explain the appearance of factor 2, instead of the common definition which utilises a
factor of 8. We illustrate this using second-order bound waves, but the same methodology
applies to other second-order wave and body hydrodynamic quantities. Additionally, the
method is extended to calculation of third-order bound wave spectra.

The second-order difference-frequency bound free surface (as per Schffer (1996) or
Madsen & Fuhrman (2012) for example) is given as

η(2−)(t) = Re

N∑
n=1

N∑
m=n+1

An A
∗
m Q(2−)

n,m ei2π(fn−fm)t, (B 1)

where An denotes the complex amplitude (with An = |An|eiϕn , where ϕn is the phase)
of a fn frequency component (with fn = n∆f , where ∆f is the frequency resolution).
The superscript ∗ denotes complex-conjugation such that A∗n = |An|e−iϕn . N represents
the number of discrete frequency components (excluding the 0 frequency component)

and Q
(2−)
n,m = Q(2−)(fn, fm) is the second-order sub-harmonic bound free surface transfer

function.
In the above, the double summation is performed along row/columns in the two-

dimensional (fn, fm) frequency space. However, it can be re-written using diagonal
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coordinates, where we note that the resultant second-order difference frequency fn − fm
is constant along the anti-diagonals (see for example Stansberg (1997)).

η(2−)(t) = Re

N∑
d=1

ei2πfdt
N−d∑
i=1

Ai A
∗
i+d Q

(2−)
i,i+d, (B 2)

where fd = fn − fm. In the re-arranged expression, the inner summation represents the
complex amplitude of the second-order fd component. The associated spectral represen-
tation thus follows from

S(2−)(fd) =
1

2∆f

∣∣∣N−d∑
i=1

Ai A
∗
i+d Q

(2−)
i,i+d

∣∣∣2 (B 3)

=
1

2∆f

N−d∑
i=1

|Ai A∗i+d Q
(2−)
i,i+d|

2 + . . .

1

∆f

N−d∑
i=1

N−d∑
j=i+1

|Ai A∗i+d Q
(2−)
i,i+dAj A

∗
j+d Q

(2−)
j,j+d| cos(ϕi,i+d − ϕj,j+d),

where ϕi,i+d = ϕi − ϕi+d + ϕQi,i+d represents the phase difference between the two
interacting components as well as any phase shift arising from the transfer function.
We note in passing that for bound waves this phase shift is zero, as the transfer function

Q
(2−)
i,i+d is real (though the value is negative for sub-harmonics).
The double summation consists of terms of the form X = α cosϕ, where α is a positive

real number and ϕ is a random variable uniformly distributed between (−π, π). Here, it
is sufficient to consider ϕ between (0, π), since cosϕ is an even function. The expected
value of each term in the double summation is 0, i.e. E(X) = 0. This follows from the
probability density function PDFX(x) = (π2(A2 − x2))−1/2. Consequently, the entire

double summation in Equation (B 3) reduces to 0. Finally, using |Ai|2 = 2∆fS
(1)
i , where

S
(1)
i = S(1)(fi) denotes the linear variance density spectrum, the second-order spectrum

becomes

S(2−)(fd) = 2∆f

N−d∑
i=1

S
(1)
i S

(1)
i+d |Q

(2−)
i,i+d|

2, (B 4)

which is independent of the phase information of the interacting linear components and
the phase of the transfer function. The commonly quoted expression for second order
spectra which uses a factor of 8, rather than 2, (see for example Pinkster (1980) or Kim
& Yue (1990)), can be derived following the procedure outlined above. The difference
originates from the second-order time series definition (see Equation (B 1)), where the
inner summation indices would be m = 1 . . . N , and the transfer function would be
appropriately defined over the whole quadrant.

The use of diagonal coordinates is helpful in the derivation and the physical inter-
pretation. However, for practical computation, the second-order free surface spectra can
simply be evaluated via

S
(2−)
n−m = S(2−)(fn − fm) = 2∆f

N∑
n=1

N∑
m=n+1

S(1)
n S(1)

m |Q(2−)
n,m |2, (B 5)

S
(2+)
n+m = S(2+)(fn + fm) = 2∆f

N∑
n=1

N∑
m=n

S(1)
n S(1)

m |Q(2+)
n,m |2, (B 6)
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where the definition of the transfer function for the self-self interactions Q
(2+)
n,m contains

a factor of 1
2 (see Equation (25b) in Schffer (1996) or Equation (3.11) in Madsen &

Fuhrman (2012)).

Extending the above, one can derive expressions for third order spectra. Following
Madsen & Fuhrman (2012), the third-order bound wave components are given as

η(3+)(t) = Re

N∑
n=1

N∑
m=n

N∑
p=m

An Am Ap Q
(3+)
n,m,p ei2π(fn+fm+fp)t, (B 7)

η(3−)(t) = Re

N∑
n=1

N∑
m=n

N∑
p=m+1

An Am A∗p Q
(3−)
n,m,p ei2π(fn+fm−fp)t + . . . (B 8)

N∑
n=1

N∑
m=n+1

N∑
p=m+1

An A
∗
m Ap Q

(3−)
n,m,p ei2π(fn−fm+fp)t + . . .

N∑
n=1

N∑
m=n+1

N∑
p=m

An A
∗
m A∗p Q

(3−)
n,m,p ei2π(fn−fm−fp)t,

where the definition of the transfer function for the self-self-self interactions Q
(3+)
n,n,n

contains a factor of 1
6 (see Equations (3.38), (3.39) and (3.63) in Madsen & Fuhrman

(2012)) and the transfer functions for the self-self-not self interactions Q
(3+)
n,n,m, Q

(3+)
n,m,m,

Q
(3−)
n,n,−m and Q

(3−)
n,−m,−m contain a factor of 1

2 (see Equations (3.36) and (3.37) in Madsen
& Fuhrman (2012)).

The third-order sum-frequency spectrum is defined as

S
(3+)
n+m+p = S(3+)(fn + fm + fp) = (2∆f)2

N∑
n=1

N∑
m=n

N∑
p=m

S(1)
n S(1)

m S(1)
p |Q(3+)

n,m,p|2. (B 9)

However, the existence of harmonic resonance poses difficulty in evaluation of the third-
order difference-frequency free surface time series (B 8) and the associated spectra.
Resonant interactions arise when the resulting third-order bound frequency is equal to the
frequency of a free component of the same wavenumber (see Phillips (1960)). Physically
this represents a continuing transfer of energy, resulting in a substantial growth of the
amplitude of the third-order component. At resonance, the third-order theory of Madsen
& Fuhrman (2012) breaks down due to inherent singularities in the difference-frequency

transfer function Q
(3−)
n,m,p. Moreover, even in near-resonant conditions, the perturbation

expansion can be violated when the third-order components become larger than the
corresponding lower-order terms. For this reason, we can only use the third-order theory
of Madsen & Fuhrman (2012) (or the deep water uni-directional theory of Zhang & Chen
(1999)) when far away from resonance. The frequency range of difference-frequency third-
order components is (max(0, 2fmin − fmax), 2fmax − fmin), where fmin and fmax denote
the lowest and highest linear frequency components. We note that this is broader than
the linear frequency range, and that the low-frequency third-order terms (below fmin)
arise from the + +− interactions, whereas the high-frequency third-order terms (above
fmax) arise from the + − − interactions. In the uni-directional seas investigated herein,
the harmonic resonance condition can be satisfied everywhere within the linear range,
and as such only when fn+fm−fp � fmin and when fn−fm−fp � fmax the third-order
solution can be practically evaluated. Bearing this in mind, the low- and high-frequency
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Figure 12. Free surface variance density spectra for linear (black), second-order difference-fre-
quency (red), second-order sum-frequency (purple), third-order difference-frequency (blue) and
third-order sum-frequency (green) interactions. Note that only the low- and high-frequency tails

of the third-order spectrum S(3−) are shown. The solid lines show the calculated spectra using
linear spectral components S(1) and the absolute values of the transfer functions from Equations
(B 5), (B 6), (B 9), (B 10) and (B 11). The dashed lines and the faint lines show the corresponding
smoothed and raw spectra calculated from a random-phase realisation.

tails of the third-order difference-frequency spectrum are given by

S(3−)(fn + fm − fp � fmin) = (2∆f)2
N∑

n=1

N∑
m=n

N∑
p=m+1

S(1)
n S(1)

m S(1)
p |Q(3−)

n,m,−p|2,

(B 10)

S(3−)(fn − fm − fp � fmax) = (2∆f)2
N∑

n=1

N∑
m=n+1

N∑
p=m

S(1)
n S(1)

m S(1)
p |Q(3−)

n,−m,−p|2.

(B 11)

Figure 12 shows the free surface linear spectrum and the higher-order bound spectra for
sea state EC5, using N = 500 components with the frequency range up to fmax = 2.5 Hz,
which was the high frequency cut-off in the laboratory experiments. The second- and
third-order spectra calculated from the linear spectral components S(1) and the absolute
values of the transfer functions (via Equations (B 5), (B 6), (B 9), (B 10) and (B 11)) are
shown with solid lines. The raw and smoothed spectra from a single realisation with
random phases are shown in faint solid and dashed lines respectively. The smoothed
spectral curves are seen to agree with the calculated spectra closely, confirming the
validity of the derived equations.
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