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Abstract

A transitive decomposition of a graph is a partition of the edge set
together with a group of automorphisms which transitively permutes
the parts. In this paper we determine all transitive decompositions
of the Johnson graphs such that the group preserving the partition is
arc-transitive and acts primitively on the parts.

1 Introduction

A decomposition of a graph is a partition of the edge set with at least two
parts, which we interpret as subgraphs and call the divisors of the decom-
position. If each divisor is a spanning subgraph we call the decomposition
a factorisation and the divisors factors. Graph decompositions and factori-
sations have received much attention, see for example [2, 23]. Of particular
interest [21, 22] are decompositions where the divisors are pairwise isomor-
phic. These are known as isomorphic decompositions.

A transitive decomposition is a decomposition P of a graph Γ together
with a group of automorphisms G which preserves the partition and acts
transitively on the set of divisors. We refer to (Γ,P) as a G-transitive de-
composition. This is a special class of isomorphic decompositions and a
general theory has been outlined in [20]. Sibley [34] has described all G-
transitive decompositions of the complete graph Kn where G is 2-transitive
on vertices. This generalised the Cameron-Korchmaros classification in [7] of
the G-transitive 1-factorisations of Kn (that is, the factors have valency 1)
with G 2-transitive on vertices. Note that a subgroup of Sn is arc-transitive
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on Kn if and only if it is 2-transitive. Also all G-transitive decompositions
of graphs with G inducing a rank three product action on vertices have been
determined in [1]. A special class of transitive decompositions called homo-
geneous factorisations, are G-transitive decompositions (Γ,P) such that the
kernel M of the action of G on P is vertex-transitive. This implies that each
divisor is a spanning subgraph and so P is indeed a factorisation. Homo-
geneous factorisations were first introduced in [28] for complete graphs and
extended to arbitrary graphs and digraphs in [19].

The Johnson graph J(n, k) is the graph with vertices the k-element sub-
sets of an n-set X, two sets being adjacent if they have k − 1 points in
common. Note that J(n, 1) ∼= Kn and J(n, k) ∼= J(n, n − k) so we always
assume that 2 ≤ k ≤ n

2
. Note that J(4, 2) ∼= K2,2,2 while the complement

of J(5, 2) is the Petersen graph. All homogeneous factorisations of J(n, k)
were determined in [11, 12]. Examples only exist for J(q + 1, 2) for prime
powers q ≡ 1 (mod 4)), J(q, 2) and J(q + 1, 3) for q = 2rf

with r an odd
prime, and for J(8, 3). However, examples of transitive decompositions exist
for all values of n and k (see Construction 2.8). Constructions 2.8(1) and (2)
were drawn to our attention by Michael Orrison. Both constructions were
used in [26] to help determine maximal subgroups of symmetric groups while
Construction 2.8(1) was used in [31] for the analysis of unranked data.

In this paper we determine all G-transitive decompositions of the Johnson
graphs subject to two conditions on G. The first is that G is arc-transitive
while the second is that G acts primitively on the decomposition. We call
G-transitive decompositions for which G acts primitively on the partition,
G-primitive decompositions. We see in Lemma 2.2 that any G-transitive de-
composition is the refinement of some G-primitive decomposition. By The-
orem 3.4, a subgroups G 6 Sn acts transitively on the set of arcs of J(n, k)
if and only if G is (k + 1)-transitive, or (n, k) = (9, 3) and G = PΓL(2, 8).
Using this, we analyse the appropriate groups to determine all primitive de-
compositions arising. In particular we obtain the following theorem.

Theorem 1.1. Let G be an arc-transitive group of automorphisms of Γ =
J(n, k). If (Γ,P) is a G-primitive decomposition then one of the following
holds:

(1). the divisors are matchings or unions of cycles,

(2). the divisors are unions of Kn−k+1, Kk+1 or K3, or

(3). one of the rows of is given by one of the rows of Table 1.

The divisor graphs Σ and Π of Table 1 are investigated further in [13].
Construction 2.10 allows us to construct transitive decompositions of J(n, k)
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Table 1: G-primitive decompositions of J(n, k)for Theorem 1.1

Γ G Divisor Comments

J(6, 3) A6 or 〈A6, (1, 2)τ〉 Petersen graph Construction 4.3(2)
J(12, 4) M12 2J(6, 4) Construction 2.10 and 2.1
J(12, 4) M12 Σ Construction 5.6
J(24, 4) M24 J(8, 4) Construction 2.10
J(23, 3) M23 J(7, 3) Construction 2.10
J(11, 3) M11 J(5, 2) Construction 2.10
J(11, 3) M11 2 Petersen graphs Construction 6.11
J(11, 3) M11 11 Petersen graphs Construction 6.10(2)
J(11, 3) M11 Π Construction 6.10(1)
J(9, 3) PΓL(2, 8) PSL(2, 8)-orbits Construction 6.13(1)
J(9, 3) PΓL(2, 8) Heawood graph Construction 6.13(4)
J(22, 2) M22 or Aut(M22) J(6, 2) Construction 2.10
J(2d, 2), d ≥ 3 AGL(d, 2) 2d−2K2,2,2 Construction 2.10 and 2.1
J(16, 2) C4

2 o A7 4K2,2,2 Construction 2.10 and 2.1
J(q + 1, 2) 3-transitive subgroup J(q0 + 1, 2) Construction 2.10

of PΓL(2, q) q = qr
0, r prime

J(q + 1, 2) 3-transitive subgroup PSL(2, q)-orbits Construction 7.14
q ≡ 1 (mod 4) of PΓL(2, q)
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with divisors isomorphic to J(l, k) for any Steiner system S(k + 1, l, n) and
this accounts for many of the examples in Table 1. Further constructions of
transitive decompositions from Steiner systems are given in Section 2 and
these have divisors isomorphic to unions of cliques or matchings.

2 General constructions

First we show that the study of transitive decompositions can be reduced to
the study of primitive decompositions. We denote by V Γ, EΓ and AΓ, the
sets of vertices, edges and arcs respectively, of the graph Γ.

Construction 2.1. Let (Γ,P) be a G-transitive decomposition and let B be
a system of imprimitivity for G on P . For each B ∈ B, let QB = ∪P∈BP and
let Q = {QB | B ∈ B}. Then (Γ,Q) is a G-transitive decomposition.

Lemma 2.2. Any G-transitive decomposition (Γ,P) with |P| finite is the
refinement of a G-primitive decomposition (Γ,Q).

Proof. If GP is primitive then we are done. If not, let B be a nontrivial
system of imprimitivity for G on P with maximal block size. Then GB is
primitive and P is a refinement of the partition Q yielded by Construction
2.1. Thus (Γ,Q) is a G-primitive decomposition.

We have the following general construction of transitive decompositions.

Construction 2.3. Let Γ be a graph with an arc-transitive group G of
automorphisms. Let e be an edge of Γ and suppose that there exists a
subgroup H of G such that Ge < H < G. Let P = eH and P = {P g | g ∈ G}.

Lemma 2.4. Let (Γ,P) be obtained as in Construction 2.3. Then (Γ,P) is
a G-transitive decomposition. Conversely, every G-transitive decomposition
with G arc-transitive arises in such a manner. Moreover, if the subgroup H
is maximal in G, then (Γ,P) is a G-primitive decomposition.

Proof. Since G is arc-transitive and Ge < H < G, then P is a partition of
EΓ which is preserved by G and such that GP is transitive. Thus (Γ,P)
is a G-transitive decomposition. Conversely, let (Γ,P) be a G-transitive
decomposition such that G is arc-transitive. Let e be an edge of Γ and P
the divisor containing e. Since P is a system of imprimitivity for G on EΓ
it follows that for H = GP we have Ge < H < G and P = eH . Moreover,
P = {P g | g ∈ G} and so (Γ,P) arises from Construction 2.3. The last
statement follows from the fact that H is the stabiliser in G of the divisor
P .
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Remark 2.5. Lemma 2.4 implies that there are two possible ways to deter-
mine all G-transitive decompositions such that the divisor stabilisers are in
a given conjugacy class HG of subgroups of G. One is to fix an edge e and
run over all subgroups conjugate to H which contain the stabiliser of e. Note
that different conjugates may give different partitions. The second is to run
over all edges whose stabiliser is contained in H. Again, different edges may
give different partitions.

We say that two decompositions (Γ,P1) and (Γ,P2) are isomorphic if
there exists g ∈ Aut(Γ) such that Pg

1 = P2. If both are G-transitive de-
composition, then they are isomorphic G-transitive decompositions if there
is such an element g ∈ NAut(Γ)(G). The following lemma gives us a condition
for determining when different conjugates give the same decomposition.

Lemma 2.6. Let (Γ,P1), (Γ,P2) be two G-transitive decompositions with G
arc-transitive.

(1). Let e be an edge of Γ and P1, P2 be the divisors of P1, P2 respectively
that contain e. If there exists an automorphism g ∈ NAut(Γ)(G) fixing
e such that Gg

P1
= GP2 then (Γ,P1) and (Γ,P2) are isomorphic.

(2). Let e1, e2 be two edges of Γ with divisors P1 = eH
1 and P2 = eH

2 of P1, P2

respectively. If there exists an automorphism g ∈ NAut(Γ)(G) mapping
e1 onto e2 such that Hg = H then (Γ,P1) and (Γ,P2) are isomorphic.

Proof. (1). By Lemma 2.4, P1 = eGP1 and P2 = eGP2 . Thus P2 = eg−1GP1
g =

eGP1
g = P g

1 . Moreover, P2 = PG
2 = (P g

1 )G = (PG
1 )g = Pg

1 and so (Γ,P1)
and (Γ,P2) are isomorphic.

(2). We have P2 = eH
2 = (eg

1)
H = (eH

1 )g = P g
1 . Hence we get the same

conclusion.

We also have the following useful lemma.

Lemma 2.7. Let (Γ,P) be a G-primitive decomposition, with H the stabiliser
of a divisor P . If G 6 G is such that G 66 H, G is arc-transitive on Γ and
G′ ∩H is maximal in G, then (Γ,P) is a G-primitive decomposition.

Proof. Since G′ is arc-transitive and contained in G, it follows that G′ acts
transitively on P . Moreover, since H ∩G′ is the stabiliser in G′ of a part, it
follows that G′ acts primitively on P .

We now describe some general methods for constructing transitive de-
compositions of Johnson graphs.
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Construction 2.8. Let X be an n-set.

(1). For each (k − 1)-subset Y of X, let PY be the complete subgraph of
J(n, k) whose vertices are all the k-subsets containing Y . Then

P∩ = {PY |Y is a (k − 1)-subset of X}

is a decomposition of J(n, k) with
(

n
k−1

)
divisors, each isomorphic to

Kn−k+1.

(2). For each (k + 1)-subset W of X, let QW be the complete subgraph
whose vertices are all the k-subsets contained in W . Then

P∪ = {QW |W is a (k + 1)-subset of X}

is a decomposition of J(n, k) with
(

n
k+1

)
divisors, each isomorphic to

Kk+1.

(3). For each {a, b} ⊆ X, let

M{a,b} =
{{
{a} ∪ Y, {b} ∪ Y }

}
| Y a (k − 1)-subset of X\{a, b}

}
.

Then
P	 = {M{a,b} | {a, b} ⊆ X}

is a decomposition of J(n, k) with
(

n
2

)
divisors, each of which is a match-

ing with
(

n−2
k−1

)
edges.

Given two sets A and B we denote the symmetric difference of A and B
by A	B.

Lemma 2.9. Let G 6 Sn such that Γ = J(n, k) is G-arc-transitive. Let A
and B be two adjacent vertices of Γ. Then (Γ,P∩), (Γ,P∪), (Γ,P	) are G-
transitive decompositions. Moreover, if GA∩B, GA∪B, or GA	B respectively
is maximal in G, then the decomposition is G-primitive.

Proof. Since P g
Y = PY g , Qg

W = QW g and M g
{a,b} = M{a,b}g , it follows that G

preserves P∩, P∪ and P	. Since G is arc-transitive, all three decompositions
are G-transitive. The divisor of P∩, P∪ or P	 containing {A, B} is PA∩B,
QA∪B or MA	B respectively. Hence the stabiliser of a divisor is GA∩B, GA∪B,
or GA	B respectively. The last assertion follows.

Another method for constructing transitive decompositions of J(n, k) is to
use Steiner systems with multiply transitive automorphism groups. A Steiner
system S(t, k, v) = (X,B) is a collection B of k-subsets (called blocks) of a
v-set X such that each t-subset is contained in a unique block.
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Construction 2.10. Let D = (X,B) be an S(k+1, l, n) Steiner system with
automorphism group G such that G is transitive on B. For each Y ∈ B, let
PY be the subgraph of J(n, k) whose vertices are the k-subsets of Y and let
P = {PY | Y ∈ B}.

Lemma 2.11. The pair (J(n, k),P) yielded by Construction 2.10 is a G-
transitive decomposition with divisors isomorphic to J(l, k). Moreover, the
decomposition is G-primitive if and only if the stabiliser of a block of D is
maximal in G.

Proof. Let {A, B} be an edge of J(n, k). Then A ∪ B has size k + 1 and
so is contained in a unique block Y of D, and hence {A, B} is contained
in a unique part PY of P . Thus (J(n, k),P) is a decomposition. Since G
is transitive on B the pair (J(n, k),P) is G-transitive. Moreover, each PY

consists of all k-subsets of the l-set Y and so is isomorphic to J(l, k). Since
the stabiliser in G of PY is GY , the last statement follows.

Construction 2.12. Let D = (X,B) be an S(k+1, l, n) Steiner system with
automorphism group G. Let i = l− k− 1 and suppose that G is i-transitive
on X. For each i-subset Y of X let

PY = {{A, B} | |A| = |B| = k, |A ∩B| = k − 1 and A ∪B ∪ Y ∈ B}.

Define
P = {PY | Y an i-subset of X}.

Lemma 2.13. The pair (J(n, k),P) yielded by Construction 2.12 is a G-
transitive decomposition with divisors isomorphic to mKk+1, where m is the
number of blocks of D containing an i-set. Moreover, the decomposition is
G-primitive if and only if the stabiliser of an i-set is maximal in G.

Proof. Let {A, B} be an edge of J(n, k). Then A ∪ B is contained in a
unique block W of D and the unique part of P containing {A, B} is PY

where Y = W\(A ∪ B). Each block containing Y contributes a copy of
J(k + 1, k) ∼= Kk+1 to PY , and since each (k + 1)-subset is in a unique block,
no two blocks containing Y share a vertex of PY . Hence the m copies of
Kk+1 in PY , are pairwise vertex-disjoint, that is PY

∼= mKk+1. Since G is i-
transitive, it follows that (J(n, k),P) is a G-transitive decomposition. Since
the stabiliser in G of PY is GY , the last statement follows.

Construction 2.14. Let D = (X,B) be an S(k +1, k +2, n) Steiner system
with automorphism group G such that G acts 3-transitively on X. For each
3-subset Y of X, let

PY =
{{

Z ∪ {u}, Z ∪ {v}
}
| |Z| = k − 1, Z ∪ Y ∈ B, u, v ∈ Y

}
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and let P = {PY | Y a 3-subset of X}.

Lemma 2.15. The pair (J(n, k),P) yielded by Construction 2.14 is a G-
transitive decomposition with divisors isomorphic to mK3, where m is the
number of blocks of D containing a given 3-set. Moreover, the decomposition
is G-primitive if and only if the stabiliser of a 3-subset is maximal in G.

Proof. Let {A, B} be an edge of J(n, k). Then A ∪ B is contained in a
unique block W of D and the unique part of P containing {A, B} is PY

where Y = W\(A ∩ B). Each block containing Y contributes a copy of K3

to PY , and since each (k + 1)-subset is in a unique block, no two blocks
containing Y share a vertex of PY . Hence the m copies of K3 in PY are
pairwise vertex-disjoint, that is, PY

∼= mK3. Since G is 3-transitive, it follows
that (J(n, k),P) is a G-transitive decomposition. Since the stabiliser in G of
PY is GY , the last statement follows.

Construction 2.16. Let D = (X,B) be an S(k +1, k +2, n) Steiner system
with k-transitive automorphism group G. For each k-subset Y of X let

PY =
{{
{u} ∪ Z, {v} ∪ Z

}
| Y ∪ {u, v} ∈ B, Z ⊂ Y, |Z| = k − 1

}
and let P = {PY | Y a k-subset of X}.

Lemma 2.17. The pair (J(n, k),P) yielded by Construction 2.16 is a G-
transitive decomposition with divisors isomorphic to mkK2, where m is the
number of blocks of D containing a given k-set. Moreover, the decomposition
is G-primitive if and only if the stabiliser of a k-subset is maximal in G.

Proof. Let {A, B} be an edge of J(n, k). Then A ∪ B is contained in a
unique block W of D and the unique part of P containing {A, B} is PY

where Y = W\(A	B). Each block containing Y contributes a copy of kK2

to PY , and since each (k + 1)-subset is in a unique block, no two blocks
containing Y share a vertex of PY . Hence the m copies of kK2 in PY , are
pairwise vertex-disjoint, that is PY

∼= mkK2. Since G is k-transitive, it
follows that (J(n, k),P) is a G-transitive decomposition. Since the stabiliser
in G of PY is GY , the last statement follows.

We end this section with a standard construction of arc-transitive graphs.
Let G be a group with corefree subgroup H and let g ∈ G such that

g2 ∈ H and g /∈ NG(H). Define the graph Γ = Cos(G, H, HgH) with vertex
set the set of right cosets of H in G and Hx adjacent to Hy if and only
if xy−1 ∈ HgH. Then G acts faithfully and arc-transitively on Γ by right
multiplication. We have the following lemma, see for example [16].
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Lemma 2.18. Let Γ be a G-arc-transitive graph with adjacent vertices v
and w. Let H = Gv, and let g ∈ G interchange v and w. Then Γ ∼=
Cos(G, H, HgH). The connected component of Γ containing v consists of the
set of all cosets of H contained in 〈H, g〉. In particular, Γ is connected if and
only if 〈H, g〉 = G.

3 Groups

In this section, we determine the groups G such that J(n, k) is G-vertex-
transitive and G-arc-transitive.

Theorem 3.1. [4, Theorem 9.1.2] For n > 2k, Aut(J(n, k)) = Sn with the
action induced from the action of Sn on X. For n = 2k ≥ 4, Aut(J(n, k)) =
Sn × S2 = 〈Sn, τ〉 where τ acts on V Γ by complementation in X.

Given a subset A of X we denote the complement of A in X by A. Also,
if |X| = n and |A| = k then Γ(A) denotes the set of neighbours of A in the
graph J(n, k), that is, vertices B such that {A, B} is an edge.

Lemma 3.2. [11, Proposition 3.2] Let Γ = J(n, k) and G 6 Sn. The graph
Γ is G-arc-transitive if and only if G is k-homogeneous on X and, for a
k-subset A, GA is transitive on A× A.

Proof. Note that G is arc-transitive if and only if G is vertex-transitive and
GA is transitive on Γ(A). Obviously, Γ is G-vertex-transitive if and only if
G is k-homogeneous on X. Moreover, GA is transitive on Γ(A) if and only if
GA is independently transitive on the set of (k − 1)-subsets of A and on A,
that is, if and only if GA is transitive on A× A.

Corollary 3.3. If G 6 Sn is (k + 1)-transitive, then Γ is G-arc-transitive.
If Γ is G-arc-transitive and G 6 Sn, then G is k- and (k + 1)-homogeneous.

Theorem 3.4. Let n ≥ 2k ≥ 4 and G 6 Sn. The graph Γ = J(n, k) is
G-arc-transitive if and only if G is (k + 1)-transitive on X or k = 3, n = 9,
and G = PΓL(2, 8).

Proof. If G is (k + 1)-transitive, then by Corollary 3.3, Γ is G-arc-transitive.
If k = 3 and G = PΓL(2, 8), then it is easy to check that G is arc-transitive.

Suppose now that Γ is G-arc-transitive. By Corollary 3.3, G is k- and
(k + 1)-homogeneous on X. If G is not (k + 1)-transitive, then, by [27, 30]
either 2k ≤ n ≤ 2k + 1, or 2 ≤ k ≤ 3 and G is one of a small number of
groups.
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Suppose first that k = 2. (This is an improvement on the proof of [11,
Proposition 3.3].) Since G is 3-homogeneous, it is transitive on X. For
A = {a, b}, Lemma 3.2 implies that GA is transitive on A × A. Therefore
using elements of GA we can map (a, c) onto (a, d) for any c, d ∈ A, and so
Ga,b is transitive on A. Similarly, Ga,c is transitive on {a, c} for any c ∈ {a, b}.
Hence Ga is transitive on {a} and so G is 3-transitive on X.

Next suppose that k = 3. If G is not 4-transitive then either n = 6, 7, or
by [27], G is one of PGL(2, 8), PΓL(2, 8) (with n = 9), or PΓL(2, 32) (with
n = 33). Let A = {a, b, c} and suppose that G 6= PΓL(2, 8).

Suppose first that G = PGL(2, 8). Then GA
∼= S3 and GA,a = C2. Hence

G does not satisfy the arc-transitivity condition given in Lemma 3.2. Next
suppose that G = PΓL(2, 32). Then |GA,a| = 10 and so again Lemma 3.2
implies that G is not arc-transitive.

If n = 6, the only 3-homogeneous and 4-homogeneous group which is
not 4-transitive is PGL(2, 5). However, this does not satisfy the condi-
tion in Lemma 3.2 for arc-transitivity. There are no 3-homogeneous and
4-homogeneous groups of degree 7 which are not 4-transitive.

Next suppose that k = 4. If G is not 5-transitive, then n = 8 or 9. Since
G is 4-homogeneous and 5-homogeneous, either G is 4-transitive, or G is one
of PGL(2, 8), PΓL(2, 8). However, these two groups are not arc-transitive as
the stabiliser of a 4-subset A also stabilises a point in A. The only 4-transitive
groups of degree n are An and Sn and they are also 5-transitive.

If k = 5 and G is not 6-transitive, then n = 10 or 11. Since G is
5-homogeneous it is 5-transitive and so G contains An. Thus G is also 6-
transitive. Finally, let k ≥ 6. Since G is k-homogeneous it is k-transitive.
The only k-transitive groups for k ≥ 6 are An and Sn, which are also (k +1)-
transitive.

We need a couple of results for the case n = 2k.

Theorem 3.5. Let Γ = J(2k, k) and suppose that G 6 Aut(Γ) = S2k × 〈τ〉
and Γ is G-arc-transitive. Then either G ∩ S2k is arc-transitive on Γ, or
k = 2, G = 〈A4, (1, 2)τ〉 and G ∩ S4 = A4 has two orbits on arcs.

Proof. Let Ĝ = G ∩ S2k. If Ĝ = G, we are done. Hence we can assume Ĝ
is an index 2 subgroup of G. The graph Γ is connected and is not bipartite,
as it contains 3-cycles. It follows that Ĝ cannot have two orbits on vertices
and so Ĝ is vertex-transitive.

Suppose that Ĝ is not arc-transitive, and hence has two orbits of equal
size on AΓ. Let (A, B) ∈ AΓ. Then Ĝ(A,B) 6 G(A,B) and |GA : G(A,B)| =

|Γ(A)| = k2 = 2|ĜA : Ĝ(A,B)| = |GA : Ĝ(A,B)|. Hence Ĝ(A,B) = G(A,B) and k
is even.
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Suppose first that k ≥ 6. Since Ĝ is transitive on V Γ, Ĝ is k-homogeneous
and therefore also k-transitive. Hence A2k 6 Ĝ, and so Ĝ is (k+1)-transitive.
It follows from Theorem 3.4 that Ĝ is transitive on AΓ, which is a contradici-
ton. Thus k = 2 or 4.

If k = 4, then Ĝ is k-homogeneous. The only 4-homogeneous groups
of degree 8 contain A8, and so are also 5-transitive. By Theorem 3.4, Ĝ is
transitive on AΓ in this case, and so k = 2.

Since Ĝ is transitive on V Γ and (n, k) = (4, 2) we have that 6 divides
|Ĝ|. Since Ĝ is 2-homogeneous it follows that A4 6 Ĝ. Moreover, S4 is
arc-transitive and so Ĝ = A4. There are two groups G 6 Sn × S2 such that
Ĝ = A4 and is of index 2 in G, namely 〈A4, τ〉 and 〈A4, (1, 2)τ〉. It is easy to
check that the second group is transitive on AΓ but not the first one.

We also have the following theorem about primitivity.

Theorem 3.6. Let Γ = J(2k, k) and G 6 Aut(Γ) = S2k × 〈τ〉 such that
both G and G ∩ S2k are arc-transitive. Suppose that (Γ,P) is a G-primitive
decomposition. Then (Γ,P) is also (G ∩ S2k)-primitive.

Proof. Let Ĝ = G ∩ S2k, let H be the stabiliser in G of a divisor and Ĥ =
H ∩ Ĝ = H ∩ S2k. We may suppose that G 6= Ĝ. Moreover, as Ĝ is arc-
transitive it acts transitively on P and so Ĝ 66 H. Since H is maximal in G
it follows that |H : Ĥ| = 2.

Suppose first that G = Ĝ×〈τ〉. Now H = 〈Ĥ, στ〉 for some σ ∈ Ĝ. Since
Ĥ C H we have στ (and hence σ) normalises Ĥ and Ĥ contains (στ)2 = σ2.
This implies that H 6 〈Ĥ, σ〉 × 〈τ〉 6 G. Since H is maximal in G, either
H = 〈Ĥ, σ〉 × 〈τ〉 or 〈Ĥ, σ〉 × 〈τ〉 = G. The first implies that σ ∈ Ĥ and
hence H = Ĥ × 〈τ〉. Thus Ĥ is maximal in Ĝ and so by Lemma 2.7, P
is Ĝ-primitive. On the other hand, the second implies Ĝ = 〈Ĥ, σ〉. Since
σ2 ∈ Ĥ, we have |P| = |Ĝ : 〈Ĥ| = 2 and so again Ĝ is primitive on P .

Suppose now that G = 〈Ĝ, στ〉 for some σ ∈ S2k\{1} and τ /∈ G. Then σ
normalises Ĝ and σ2 ∈ Ĝ. Also, as τ /∈ G, we have σ /∈ Ĝ and in particular
Ĝ 6= S2k. By Theorem 3.4 and the fact that n = 2k, the classification of
(k + 1)-transitive groups (see for example [6]) implies that Ĝ = A2k and
k ≥ 3. Let φ : S2k × 〈τ〉 → S2k be the projection of Aut(Γ) onto S2k. Then
φ|G is an isomorphism. Moreover, for an edge {A, B}, φ(GA,B) = Sk−1×Sk−1.
Since k ≥ 3, there is a transposition in φ(GA,B) and so by [33, Theorem 13.1]
and since φ(GA,B|) ⊆ φ(H), φ(H) is not primitive. It follows that φ(H) a
is maximal intransitive subgroup of S2k or a maximal imprimitive subgroup
of S2k preserving a partition into at most 3 parts. Thus by [29] and since
Ĥ = φ(H)∩A2k, it follows that Ĥ is a maximal subgroup of Ĝ = A2k. Hence
again Ĝ is primitive on P .
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4 Alternating and symmetric groups

We have already seen the Sn-transitive decompositions P∩,P∪ and P	. Since
n ≥ 2k it follows that Sn always acts primitively on P∩. Also, Sn acts prim-
itively on P∪ if and only if n 6= 2k + 2. When n = 2k + 2 then applying
Construction 2.1 to P∪, we obtain an Sn-primitive decomposition with divi-
sors isomorphic to 2Kk+1. Finally Sn acts primitively on P	 if and only if
(n, k) 6= (4, 2). We also have the following two examples.

Example 4.1. (1). Let G = S4, H = 〈(1, 2, 3, 4), (1, 3)〉 ∼= D8, A = {1, 2}
and B = {2, 3}. Then P = {A, B}H is the 4-cycle{{

{1, 2}, {2, 3}
}
,
{
{2, 3}, {3, 4}

}
,
{
{3, 4}, {1, 4}

}
,
{
{1, 4}, {1, 2}

}}
.

Since G{A,B} = 〈(1, 3)〉 we have G{A,B} < H < G and so by Lemma 2.4
((J(4, 2),P) is a G-primitive decomposition with P = {P g | g ∈ G}.

(2). Let G = S6 and H be the stabiliser in G of the partition
{
{1, 4}, {2, 3}, {5, 6}

}
of {1, . . . , 6}. Let A = {1, 2, 3} and B = {2, 3, 4}. Then P = {A, B}H

is the matching{{
{1, 2, 3}, {2, 3, 4}

}
,
{
{2, 5, 6}, {3, 5, 6}

}
,
{
{1, 4, 5}, {1, 4, 6}

}
,

{
{1, 5, 6}, {4, 5, 6}

}
,
{
{2, 3, 5}, {2, 3, 6}

}
,
{
{1, 4, 2}, {1, 4, 3}

}}
.

Since G{A,B} < H < G it follows from Lemma 2.4 that ((J(6, 3),P) is
a G-primitive decomposition with P = {P g | g ∈ G}.

We have now constructed all the Sn-primitive decompositions in Table 2.
It remains to prove that these are the only ones.

Theorem 4.2. If (J(n, k),P) is an Sn-primitive decomposition with n ≥ 2k
then P is given by one of the rows of Table 2.

Proof. Let Γ = J(n, k), X = {1, . . . , n}, and let A = {1, 2, . . . , k} and
B = {2, . . . , k + 1} be adjacent vertices of Γ. Then G{A,B} = Sym({1, k +
1})× Sym({2, . . . , k})× Sym({k + 2, . . . , n}). By Lemma 2.4, to find all G-
primitive decompositions of Γ, we need to determine all maximal subgroups
H of G which contain G{A,B}. Since G{A,B} contains a 2-cycle, [33, Theorem
13.1] implies that there are no proper primitive subgroups of G containing
G{A,B}. Hence H is either imprimitive or intransitive.
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Table 2: Sn-primitive decompositions of J(n, k)

P P GP (n, k)

P∩ Kn−k+1 (k − 1)-set stabiliser
P∪ Kk+1 (k + 1)-set stabiliser n 6= 2k + 2
P	

(
n−2
k−1

)
K2 2-set stabiliser (n, k) 6= (4, 2)

P∪ and Construction 2.1 2Kk+1 Sk+1 wr S2 n = 2k + 2
Example 4.1(1) C4 D8 (n, k) = (4, 2)
Example 4.1(2) 6K2 S2 wr S3 (n, k) = (6, 3)

Suppose first that H is intransitive. Then H is a maximal intransitive
subgroup and hence it has two orbits U,W on X and H = Sym(U)×Sym(W ).
Since G{A,B} 6 H, the only possibilities for these two orbits are:

{1, . . . , k + 1} {k + 2, . . . , n} n 6= 2k + 2
{1, k + 1} X\{1, k + 1} (n, k) 6= (4, 2)
{2, . . . , k} {1, k + 1, k + 2, . . . , n}

When H = Sym({1, . . . , k+1})×Sym({k+2, . . . , n}) = GA∪B, we obtain
the decomposition (Γ,P∪), while H = Sym({1, k+1})×Sym(X\{1, k+1}) =
GA	B yields the decomposition (Γ,P	). Finally, H = Sym({2, . . . , k}) ×
Sym({1, k + 1, k + 2, . . . , n}) = GA∩B gives us the decomposition (Γ,P∩).

If H is transitive but imprimitive, then the possible systems of imprimi-
tivity are:

{1, . . . , k + 1}, {k + 2, . . . , 2k + 2} when n = 2k + 2
{1, 4}, {2, 3}, {5, 6} when (n, k) = (6, 3)
{1, 3}, {2, 4} when (n, k) = (4, 2)

In the first case, P = {A, B}H is the union of two cliques each of size
k + 1, and has as vertices all k-subsets of {1, . . . , k + 1} and all k-subsets of
{k +2, . . . , 2k +2}, that is we get the decomposition obtained from applying
Construction 2.1 to P∪. The last two cases give us the two decompositions
from Example 4.1.

By Theorem 3.4, An is arc-transitive on J(n, k) if and only if n ≥ 5.
Moreover, all the Sn-primitive decompositions in Table 2 are An-primitive
decompositions. We have the following extra constructions.

Construction 4.3. (1). Let (n, k) = (5, 2), G = A5, A = {1, 2} and B =
{2, 3}. Then G{A,B} = 〈(1, 3)(4, 5)〉 and is contained in the maximal
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subgroup H = 〈(1, 2, 3, 4, 5), (1, 3)(4, 5)〉 ∼= D10 of G. Letting P =
{A, B}H and P = {P g | g ∈ G}, Lemma 2.4 implies that (J(5, 2),P)
is an A5-primitive decomposition. Since HA

∼= C2 it follows that the
divisors are cycles of length 5.

(2). Let (n, k) = (6, 3), G = A6, A = {1, 2, 3} and B = {2, 3, 4}. Then
G{A,B} = 〈(2, 3)(5, 6), (1, 4)(5, 6)〉 and is contained in the maximal
subgroup H = 〈(2, 3)(5, 6), (1, 4, 5)(2, 3, 6)〉 ∼= PSL(2, 5) of G. Let-
ting P = {A, B}H and P = {P g | g ∈ G}, Lemma 2.4 implies that
(J(6, 3),P) is an A6-primitive decomposition. Now P is a graph on 10
vertices with valency 3 and preserved by A5. Hence P is the Petersen
graph.

Lemma 4.4. Let P be the decomposition of J(6, 3) given by Construction
4.3(2). Then P is G-primitive if and only if G = A6 or 〈A6, (1, 2)τ〉 where
τ is the complementation map as in Theorem 3.1.

Proof. As in the construction, we take A = {1, 2, 3}, B = {2, 3, 4} and
P = {A, B}H for H = 〈(2, 3)(5, 6), (1, 4, 5)(2, 3, 6)〉 ∼= A5.

If G ≤ S6, by Theorem 3.4, G must be 4-transitive, so A6 ≤ G. We have
seen above that P is A6-primitive, however S6 does not preserve the partition
P of Construction 4.3(2), since the stabiliser of {A, B} in S6 contains a
transposition and does not preserve P . So assume G 6≤ S6. By Theorems
3.5 and 3.6, P is a (G∩S6)-primitive decomposition. Thus G∩S6 = A6 and
so G = G1 = 〈A6, τ〉 or G = G2 = 〈A6, (1, 2)τ〉. Thus |G| = 2|A6| and so
|GP : H| = 2. Then as G{A,B} 6 GP it follows that G{A,B} normalises H.
But (2, 5)(3, 6)τ ∈ (G1){A,B} and does not normalise H, so G 6= G1. Now
(G2){A,B} = 〈(1, 4)(2, 5)(3, 6)τ,H{A,B}〉, which does normalise H and so fixes
P . Thus 〈H, (1, 4)(2, 5)(3, 6)τ〉 = (G2)P

∼= S5 which is a maximal subgroup
of G2

∼= S6. Hence P is a G2-primitive decomposition.

We now show that Construction 4.3 yields the only An-primitive decom-
positions which are not Sn-primitive.

Theorem 4.5. Let (J(n, k),P) be an An-primitive decomposition such that
An is arc-transitive and n ≥ 2k. Then P is either an Sn-primitive decom-
position, or (n, k) = (5, 2) or (6, 3) and P is isomorphic to a decomposition
given by Construction 4.3.

Proof. Let Γ = J(n, k). Since An is arc-transitive it follows from Theorem
3.4 that n ≥ 5. Let X = {1, . . . , n}, A = {1, . . . , k} and B = {2, . . . , k + 1}.
Then

G{A,B} =
(
Sym({1, k + 1})× Sym({2, . . . , k})× Sym({k + 2, . . . , n})

)
∩An.
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We need to consider all maximal subgroups H such that G{A,B} < H < G.
For each such H, P = {A, B}H is the edge-set of a divisor of the G-primitive
decomposition.

Suppose first that H is intransitive on X. Then G{A,B} has the same
orbits on X as (Sn){A,B} and so H is the intersection with An of one of the
maximal intransitive subgroups which we considered in the Sn case. More-
over, we obtain the decompositions in rows 1–3 in Table 2, and so (Γ,P) is
Sn-primitive.

Next suppose that H is imprimitive on X. Since G{A,B} is primitive
on both A ∩ B and A ∪B, the only systems of imprimitivity preserved by
G{A,B} are those discussed in the Sn case. Thus H is the intersection with
An of one of the maximal imprimitive subgroups considered in the Sn case
and we obtain the decompositions in line 4 and 6 in Table 2. Thus (Γ,P) is
Sn-primitive.

Finally, suppose that H is primitive on X. If k− 1 ≥ 3 or n− k− 1 ≥ 3,
the edge stabiliser G{A,B}, and hence H, contains a 3-cycle. Hence by [33,
Theorem 13.3], H = An, contradicting H being a proper subgroup. Note
that if k ≥ 4 then k − 1 ≥ 3, and so (n, k) is one of (5, 2) or (6, 3).

If (n, k) = (5, 2) then G{A,B} = 〈(1, 3)(4, 5)〉 and H ∼= D10. Since A5 con-
tains 15 involutions, D10 contains 5 involutions and there are six subgroups
D10 in A5, it follows that there are 2 choices for H and these are

H1 = 〈(1, 2, 3, 4, 5), (1, 3)(4, 5)〉

H2 = 〈(1, 4, 5, 3, 2), (1, 3)(4, 5)〉.

Note that H2 = H
(1,3)
1 and (1, 3) ∈ (Sn){A,B} and so by Lemma 2.6 the two

decompositions obtained are isomorphic. Moreover, H1 is the stabiliser of
the divisor containing {A, B} in the decomposition yielded by Construction
4.3(1).

If (n, k) = (6, 3) then G{A,B} = 〈(2, 3)(5, 6), (1, 4)(5, 6)〉 and H ∼= PSL(2, 5).
A computation using Magma [3] showed that, there are two choices for H
containing G{A,B} and these are:

H1 = 〈(2, 3)(5, 6), (1, 4, 5)(2, 3, 6)〉

H2 = 〈(2, 3)(5, 6), (1, 4, 5)(3, 2, 6)〉.

Note that H2 = H
(2,3)
1 and (2, 3) ∈ (Sn){A,B} and so the two decomposi-

tions obtained are isomorphic. Moreover, H1 is the stabiliser of the divisor
containing {A, B} in the decomposition yielded by Construction 4.3(2).

We now look at the case where n = 2k and G is not a subgroup of Sn.
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Example 4.6. Let (n, k) = (4, 2) and G = 〈A4, (1, 2)τ〉. Let A = {1, 2} and
B = {2, 3}. Then G{A,B} = 〈(2, 4)τ〉.

(1). Let H1 = 〈(1, 2, 4), (1, 2)τ〉 and

P = {A, B}H1 =

{{
{1, 2}, {2, 3}

}
,
{
{2, 4}, {3, 4}

}
,
{
{1, 4}, {1, 3}

}}
.

Since G{A,B} 6 H1, it follows from Lemma 2.4 that (J(4, 2), PG) is a
G-primitive decomposition, with divisors isomorphic to 3K2.

(2). Let H2 = 〈(1, 2)(3, 4), (1, 3)(2, 4), (1, 3)τ〉 and P = {A, B}H2 ={{
{1, 2}, {2, 3}

}
,
{
{2, 3}, {3, 4}

}{
{3, 4}, {1, 4}

}
,
{
{1, 4}, {1, 2}

}}
.

Since G{A,B} 6 H1, it follows from Lemma 2.4 that (J(4, 2), PG) is
a G-primitive decomposition, with divisors isomorphic to C4. Notice
that this decomposition is the one of Construction ??(1) and so is also
S4-primitive.

Theorem 4.7. Let Γ = J(n, k) with n = 2k and let G 6 Aut(Γ) = Sn × S2

such that G is not contained in Sn. Further, suppose that (Γ,P) is a G-
primitive decomposition which is not (G ∩ Sn)-primitive. Then n = 4 and P
is isomorphic to a decomposition given by Example 4.6.

Proof. By Theorems 3.5 and 3.6, it follows that k = 2 and G = 〈A4, (1, 2)τ〉,
where τ is complementation in X. Let A = {1, 2} and B = {2, 3}. Then
G{A,B} = 〈(2, 4)τ〉. It is not hard to see that the only maximal subgroups of
G containing G{A,B} are the groups H1 and H2 from Construction 4.6, and
H3 = 〈(2, 3, 4), (2, 3)τ〉. The first two then give the two decompositions from
Construction 4.6. Note that (1, 3) stabilizes {A, B} and normalises G, and

H3 = H
(1,3)
1 . So by Lemma 2.6, this yields a decomposition isomorphic to

Construction 4.6(1).

5 The case k = 4

By Theorem 3.4, G 6 Sn is arc-transitive on J(n, k) if and only if G is
(k + 1)-transitive on the n-set X. Hence by the Classificaton of 2-transitive
groups, other than An or Sn, the only possibilities for (n, G) are (12, M12)
and (24, M24).

First we state the following well known lemmas.
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Lemma 5.1. Let (X,B) be the Witt design S(5, 6, 12). Then B contains 132
elements, called hexads. Each point of X is contained in 66 hexads, each
2-subset in 30 hexads, each 3-subset in 12 hexads, each 4-subset in 4 hexads,
and each 5-subset in a unique hexad.

Proof. The number of hexads is given in [10, p 31] and then the number of
hexads containing a given i-suset is calculated by counting i-subset–hexad
pairs in two different ways.

Lemma 5.2. [25, Lemma 2.11.7] Suppose that (X,B) is a Witt design S(5, 6, 12)
preserved by G = M12 and let h ∈ B be a hexad. Then Gh

∼= S6 and the
actions of Gh on h and X\h are the two inequivalent actions of S6 on six
points.

Since the stabiliser of a 3-set or a 2-set is maximal in G = M12, it follows
from Lemma 2.9 that P∩ and P	 are G-primitive decompositions. Moreover,
as G acts primitively on the point set X of the Witt design, Construction 2.12
yields a G-primitive decomposition of J(12, 4). We also obtain a G-primitive
decomposition from Construction 2.14 as G acts primitively on 3-subsets
and one from Construction 2.16 as G acts primitively on 4-subsets. The G-
transitive decomposition obtained from Construction 2.10 is not primitive as
the stabiliser of a hexad is contained in the stabiliser of a pair of complemen-
tary hexads. However, applying Construction 2.1 we obtain a G-primitive
decomposition with divisors isomorphic to 2J(6, 4).

Before giving several more constructions arising from the Witt design, we
need the following definition and Lemma.

Definition 5.3. A linked three in S(5, 6, 12) is a set of four triads (or 3-sets)
such that the union of any two is a hexad.

Lemma 5.4. Let A, B be two triads whose union is a hexad. Then there
exists a unique linked three containing both A and B.

Proof. By Lemma 5.1, there are exactly 12 hexads containing A. If such a
hexad contains at least two points of B, then it is A ∪ B. Let b ∈ B. Then
there are 4 hexads containing A and b, and so exactly 3 hexads meet A ∪B
in A ∪ {b}. Therefore there are 9 hexads meeting A ∪ B in a 4-set. Hence
only two hexads contain A and are disjoint from B. These yield two triads,
C and D, forming hexads with A. By Lemma 5.2, the stabiliser of A and B
is S3×S3 which acts transitively on the remaining 6 points. Hence C and D
must be disjoint. Since the complement of a hexad is a hexad, C and D must
form hexads with B too. It follows that {A, B, C,D} is the unique linked
three containing A and B.
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Construction 5.5. Let (X,B) be the Witt design S(5, 6, 12) and let G =
M12.

(1). Let T be a linked three as in Definition 5.3. Let

PT =
{{
{u}∪Y, {v}∪Y

}
| Y ∈ T, {u, v} contained in some triad of T\Y

}
and P = {PT | T is a linked three}. Then PT

∼= 12K3, with each
triad contributing 3K3. If {A, B} is an edge of J(12, 4) then A ∪ B
is contained in a unique hexad A ∪ B ∪ {x} for some x ∈ X, and by
Lemma 5.4, {A∩B, {x}∪(A	B)} is contained in a unique linked three
T . For this T , PT is the unique part of P containing {A, B}. Since
G acts transitively on the set of linked threes and the stabiliser of a
linked three is maximal, (J(12, 4),P) is a G-primitive decomposition.

(2). Let T be a linked three. A 4-set intersecting each triad of T in a
single point and such that its union with any triad is a hexad is called
special for T . For fixed triads T1, T2 of T ad points x1 ∈ T1, x2 ∈ T2,
these conditions imply that there is at most one special 4-set contining
{x1, x2} and existence of such a 4-set was confirmed by Magma [3].
Thus there are nine special 4-sets for T Let

PT =
{{
{u, x, y, z}, {v, x, y, z}

}
| {x, y, z, t} = special 4-set for T, {u, v, t} ∈ T

}
and P = {PT | T is a linked three}. Then PT

∼= 36K2, with each
special 4-set contributing 4K2. If {A, B} is an edge of J(12, 4) then
A∪B is contained in a unique hexad A∪B ∪{x} for some x ∈ X, and
there is a unique linked three T such that (A∩B)∪{x} is special for T
and {x} ∪ (A	B) is a triad of T true by magma but why?. Thus
PT is the only part of P containing {A, B}. Since G acts transitively on
the set of linked threes and the stabiliser of a linked three is maximal,
(J(12, 4),P) is a G-primitive decomposition.

Construction 5.6. Let G = M12 < S12 and let H = M11 be a 3-transitive
subgroup of G. Then H has an orbit of length 165 on 4-subsets and this orbit
forms a 3−(12, 4, 3) design. Let Σ be the subgraph of J(12, 4) induced on the
orbit of length 165. The graph Σ was studied in [13]. It has valency 8, is H-
arc-transitive and given an edge {A, B} we have H{A,B} ∼= S2×S3 = G{A,B}.
Thus Lemma 2.4 and the fact that H is maximal in G, imply that P = ΣG

is a G-primitive decomposition of J(12, 4).

We have now seen all the M12-primitive decompositions listed in Table 3.
It remains to prove that these are the only ones.
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Table 3: M12-primitive decompositions of J(12, 4)
P P GP

P∩ K9 M9 o S3

P	
(
10
3

)
K2 M10.2

Constructions 2.10 and 2.1 2J(6, 4) M10.2
Construction 2.12 66K5 M11

Construction 2.14 12K3 M9 o S3

Construction 2.16 16K2 M8 o S4

Construction 5.5(1) 12K3 M9 o S3

Construction 5.5(2) 36K2 M9 o S3

Construction 5.6 Σ M11

Proposition 5.7. If (J(12, 4),P) is an M12-primitive decomposition then P
is given by one of the rows of Table 3.

Proof. Let Γ = J(12, 4) and G = M12 acting on the point set X of the Witt-
design S(5, 6, 12). Take adjacent vertices A = {1, 2, 3, 4} and B = {2, 3, 4, 5}
and suppose that h = {1, 2, 3, 4, 5, 6} is the unique hexad containing A ∪ B.
Then G{A,B} = G{1,5},{2,3,4},{6} ∼= S2×S3, by Lemma 5.2. Since transpositions
in the action of Gh on h act as a product of three transpositions on X\h,
and 3-cycles on h act as a product of two 3-cycles on X\h it follows that
G1,5,6,{2,3,4} ∼= S3 acts regularly on X\h, and so G{A,B} acts transitively on
X\h.

Let H be a maximal subgroup of G such that G{A,B} 6 H < G. The
maximal subgroups of G are given in [10, p 33]. The orbit lengths of G{A,B}
imply that G{A,B} does not preserve a system of imprimitivity on X with
blocks of size 2 or 4 and so H 6∼= C2

4 o D12, A4 × S3, or C2 × S5. Moreover,
|H6| is even and so H 6∼= PSL(2, 11).

If H is intransitive then H is one of G{2,3,4,6}, G{2,3,4}, G{1,5,6}, G{1,5} or
G6. (Note that Gh is not maximal.) The first is the stabiliser of the divisor
containing {A, B} in the decomposition yielded by Construction 2.16. The
second gives P∩ while the third is the stabiliser of the divisor of the decompo-
sition yielded by Construction 2.14 containing {A, B}. If H = G{1,5} then we
obtain the decomposition P	 while if H = G6 we obtain the decomposition
yielded by Construction 2.12.

The only hexad pair fixed by G{A,B} is {h,X\h}. Now Gh is the stabiliser
of the divisor of the decomposition yielded by Construction 2.10 containing
G{A,B}. Such a divisor is isomorphic to J(6, 4) and so G{h,X\h} yields the
decomposition with divisors isomorphic to 2J(6, 4) obtained after applying
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Table 4: M24-primitive decompositions of J(24, 4)
P P GP

P∩ K21 PΓL(3, 4)
P	

(
22
3

)
K2 M22.2

Construction 2.10 J(8, 4) C4
2 o A8

Construction 2.12 21K5 PΓL(3, 4)

Construction 2.1.
A calculation using Magma [3] shows that there is only one transitive

subgroup of G isomorphic to M11 which contains G{A,B} and this yields Con-
struction 5.6.

This leaves us to consider the case where H is the stabiliser of a linked
three. If T is a linked three preserved by G{A,B} then {1, 5, 6} is a triad of T
and either {2, 3, 4} is also a triad or 2, 3, and 4 lie in distinct triads. Since
a linked three is uniquely determined by any two of its triads (Lemma 5.4),
there is a unique linked three T containing {1, 5, 6} and {2, 3, 4}. Then GT

is the stabiliser of the divisor of the decomposition yielded by Construction
5.5(1) containing {A, B}. If 2, 3 and 4 are in distinct blocks, a calculation
using Magma [3] shows that there is a unique H containing G{A,B} and we
obtain the decomposition in Construction 5.5(2).

We need the following well known lemma to deal with the case where
G = M24.

Lemma 5.8. [25, Lemma 2.10.1] Let (X,B) be the Witt design S(5, 8, 24).
Then B contains 759 elements, called octads. Each point of X is contained
in 253 octads, each 2-subset in 77 octads, each 3-subset in 21 octads, each
4-subset in 5 octads, and each 5-subset in a unique octad. Moreover, the
stabiliser of an octad in M24 is C4

2 o A8 where C4
2 acts trivially on the octad

and transitively on its complement.

Proof. Then number of octads comes from [25, Lemma 2.10.1] and then the
numbers of octads containing a given i-subset follows from basic counting.
The statement about the stabiliser of an octad also comes from[25, Lemma
2.10.1].

Since the stabilisers of a 3-set, of a 2-set, and of an octad are maximal in
G, applying Constructions 2.8, 2.10 and 2.12, we get the list of M24-primitive
decompositions in Table 4.
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Proposition 5.9. If (J(24, 4),P) is an M24-primitive decomposition then P
is given by one of the rows in Table 4.

Proof. Let Γ = J(24, 4) and G = M24 acting on the point-set X of the Witt-
design S(5, 8, 24). Take adjacent vertices A = {1, 2, 3, 4} and B = {2, 3, 4, 5}
and suppose that ∆ = {1, 2, 3, 4, 5, 6, 7, 8} is the unique octad containing
A∪B. Then looking at the stabiliser of an octad given in Lemma 5.8, we see
that G{A,B} = G{1,5},{2,3,4},{6,7,8} = C4

2 o ((S2 × S2
3) ∩A8) with orbits in ∆ of

length 2, 3, 3. Since G{A,B} contains the pointwise stabiliser of the octad ∆,
which by Lemma 5.8 acts regularly X \∆, it follows that G{A,B} is transitive
on X \∆.

Let H be a maximal subgroup of G such that G{A,B} 6 H < G. The
maximal subgroups of G are given in [10, p 96], and comparing orders we
see that H 6∼= PSL(2, 7) or PSL(2, 23). Since G{A,B} has an orbit of length
16 and an orbit of length 3 in X, it cannot fix a pair of dodecads. Similarly,
if H fixed a trio of disjoint octads, one of the three octads would be ∆ and
G{A,B} would interchange the other 2. However, all index 2 subgroups of
G{A,B} are transitive on X \ ∆ (a Magma calculation [3]) and so H does
not fix a trio of disjoint octads. Suppose next that H fixes a sextet, that
is, 6 sets of size 4 such that the union of any two is an octad. Then the
G{A,B}-orbit X \∆ is the union of four of these sets. However, the remaining
G{A,B}-oorbit lengths are incompatible with H fixing a partition of {1, . . . , 8}
into two sets of size 4. Thus the list of maximal subgroups of G in [10, p 96]
implies that H is intransitive on X, and so H = G{1,5}, G{2,3,4}, G{6,7,8}, or
G{1,2,3,4,5,6,7,8}. By Lemma 2.9, the first gives the decomposition P	 while the
second gives P∩. The third is the stabiliser of the divisor of the decomposition
yielded by Construction 2.12 containing {A, B} while the fourth yields the
decomposition obtained from Construction 2.10.

6 The case k = 3

By Theorem 3.4, G 6 Sn is arc-transitive on J(n, 3) if and only if G is
4-transitive or G = PΓL(2, 8) and n = 9. Thus other than An or Sn the
only possibilites for (n, G) are (11, M11), (12, M12), (23, M23), (24, M24) and
(9, PΓL(2, 8)).

Since the stabiliser of a 2-subset is maximal in M24, it follows that P∩
and P	 are M24-primitive decompositions with divisors K22 and

(
22
2

)
K2 re-

spectively. We also have a construction involving sextets.

Construction 6.1. Let S be a sextet, that is, a set of six 4-subsets such
that the union of any two is an octad, and define PS = {{A, B} | A∪B ∈ S}
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and P = {PS | S a sextet}. Then PS
∼= 6J(4, 3) ∼= 6K4 with one copy of K4

for each 4-set in S. Let {A, B} be an edge of J(24, 3). By [25, Lemma 2.3.3],
A ∪ B is a member of a unique sextet S and so PS is the only part of P
containing {A, B}. Since G acts primitively on the set of sextets, it follows
that (J(24, 3),P) is an M24-primitive decomposition.

Proposition 6.2. If (J(24, 3),P) is an M24-primitive decompositions then
either P = P	 or P∩, or P arises from Construction 6.1.

Proof. Let Γ = J(24, 3) and G = M24 acting on the point set X of the Witt-
design S(5, 8, 24). Let A = {1, 2, 3} and B = {2, 3, 4} be adjacent vertices in
Γ. Then G{A,B} = G{1,4},{2,3} which is the stabiliser in Aut(M22) of a 2-subset
and so by [10, p 39], G{A,B} ∼= 25 o S5. Since G is 5-transitive on X, G{A,B}
is transitive on X\{1, 2, 3, 4}.

Let H be a maximal subgroup of G such that G{A,B} 6 H < G. The
maximal subgroups of G can be found in [10]. Comparing orders we see that
H 6∼= PSL(2, 7), PSL(2, 23), or the stabiliser of a trio of distinct octads. Now
G{A,B} contains G1,2,3,4 which is transitive on the remaining 20 points. Thus
G1,2,3,4 does not fix a pair of dodecads and so neither does H. Hence by the
list of maximal subgroups of G in [10, p 96], either H is intransitive, or fixes
a sextet. If H is intransitive, then H = G{1,4} or G{2,3}. By Lemma 2.9, the
first gives P	 while the second gives P∩.

Suppose then that H fixes a sextet. The orbit lengths of G{A,B} imply that
{1, 2, 3, 4} is one of the blocks of the sextet. By [25, Lemma 2.3.3], {1, 2, 3, 4}
is contained in a unique sextet S. Thus H = GS and is the stabiliser in G of
the divisor of the decomposition obtained from Construction 6.1 containing
{A, B}.

Before dealing with G = M23 we need the following well known result
which follows from Lemma 5.8.

Lemma 6.3. Let (X,B) be the Witt design S(4, 7, 23). Then B contains
253 elements, called heptads. Each point of X is contained in 77 heptads,
each 2-subset in 21 heptads, each 3-subset in 5 heptads, and each 4-subset
in a unique heptad. Moreover, the stabiliser of a heptad is C4

2 o A7 with
the pointwise stabiliser of the heptad being C4

2 which acts regularly on the 16
points not in the heptad.

Proof. Since (X,B) is derived from the set of all blocks of the Witt design
S(5, 8, 24) containing a given point, this follows from Lemma 5.8.

Using the Witt design S(4, 7, 23) and the fact that the stabiliser of a 2-
set is maximal in M23 we get the M23-primitive decompositions in Table 5.
These are in fact all such decompositions.

22



Table 5: M23-primitive decompositions of J(23, 3)
P P GP

P∩ K21 PΣL(3, 4)
P	

(
21
2

)
K2 PΣL(3, 4)

Construction 2.10 J(7, 3) C4
2 o A7

Construction 2.12 5K4 C4
2 o (C3 × A5) o C2

Proposition 6.4. If (J(23, 3),P) is an M23-primitive decomposition then P
is as in one of the lines of Table 5.

Proof. Let Γ = J(23, 3) and G = M23 acting on the point-set X of the Witt-
design S(4, 7, 23). Take adjacent vertices A = {1, 2, 3} and B = {2, 3, 4}. By
Lemma 6.3, {1, 2, 3, 4} is contained in a unique heptad, h = {1, 2, 3, 4, 5, 6, 7}
say, and so G{A,B} fixes h. Since the stabiliser of a heptad is isomorphic to
C4

2 o A7 (Lemma 6.3), it follows that G{A,B} has order 192 and has orbits
{1, 4}, {2, 3}, {5, 6, 7} and X\h.

Let H be a maximal subgroup of G such that G{A,B} 6 H < G. The
maximal subgroups of G can be found in [10]. By comparing orders, H 6∼=
C23oC11 and so H is intransitive. Thus H = G{1,4}, G{2,3}, G{5,6,7} or Gh. By
Lemma 2.9, the first two give the decompositions P	 and P∩ respectively.
Also G{5,6,7} is the stabiliser of the divisor of the decomposition obtained
from Construction 2.12 containing {A, B} while Gh is the stabiliser of the
divisor of the decomposition yielded by Construction 2.10.

Since 4-set stabilisers and 2-set stabilisers are maximal in M12, it follows
from Lemma 2.9 that P∪, P∩ and P	 are M12-primitive decompositions with
divisors isomorphic to K4, K10 and

(
10
2

)
K2 respectively. We also have the

following construction.

Construction 6.5. Let (X,B) be the Witt design S(5, 6, 12). Let F be a
linked four, that is a set of three mutually disjoint tetrads (sets of size 4)
admitting a refinement into six duads (called duads of F ) such that the union
of any three duads coming from any two tetrads is a hexad. Ref??? Let

PF =
{{
{x, u, v}, {y, u, v}

}
| {x, y, u, v} ∈ F, {u, v}, {x, y} are duads of F

}
and let P = {PF | F a linked four}. Then PF

∼= 6K2 with one copy of
2K2 for each tetrad in F . Let {A, B} be an edge of J(12, 3). It turns out
(Magma calculation [3]) there is exactly one linked four F having A∪B as a
tetrad and A∩B as a duad of F , and so PF is the only part of P containing
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{A, B}. Since G acts primitively on the set of linked fours, it follows that
(J(12, 3),P) is an M12-primitive decomposition.

Proposition 6.6. If (J(12, 3),P) is an M12-primitive decomposition then
P = P∪,P∩ or P	 or P is obtained from Construction 6.5.

Proof. Let Γ = J(12, 3) and G = M12 acting on the point set X of the Witt-
design S(5, 6, 12). Take adjacent vertices A = {1, 2, 3} and B = {2, 3, 4}.
The stabiliser in G of a 4-set is M8 o S4 such that the pointwise stabiliser
M8 of the 4-set acts regularly on the 8 remaining points. Hence G{A,B} =
G{1,4},{2,3} = M8 o (S2 × S2) which has order 32 and is transitive on the 8
points of X\{1, 2, 3, 4}.

Let H be a maximal subgroup of G such that G{A,B} 6 H < G. The
maximal subgroups of G are given in [10], and comparing orders we see that
H 6∼= M11, PSL(2, 11), M9 oS3, C2×S5 and A4×S3. Moreover, since G{A,B}
has orbits of size 2,2 and 8 in X it does not stabilise a hexad pair. If H
is intransitive then H = G{1,2,3,4}, G{1,4} or G{2,3}. These yield P∪, P	 and
P∩ respectively. Thus by [10, p 33] we are left to consider the case where
H ∼= 42 o D12. A Magma [3] calculation shows that there is a unique such
H containing G{A,B} and we obtain the decomposition from Construction
6.5.

Before dealing with G = M11 we need the following couple of lemmas,
the first of which is well known.

Lemma 6.7. Let (X,B) be the Witt design S(4, 5, 11). Then B contains
66 elements, called pentads. Each point of X is contained in 30 pentads,
each 2-subset in 12 pentads, each 3-subset in 4 pentads, and each 4-subset
in a unique pentad. Moreover, the stabiliser of a pentad is isomorphic to
S5, which acts in its natural action on the pentad and as PGL(2, 5) on the
complementary hexad.

Proof. Since (X,B) can be derived from the set of blocks of the Witt design
S(5, 6, 12) containing a given point, the first part follows from Lemma 5.1.
By [10, p 18], the stabiliser of a pentad is S5 and has two orbits on X.

Lemma 6.8. Let (X,B) be the Witt design S(4, 5, 11) and G = M11. Let
A = {1, 2, 3}, B = {2, 3, 4} and suppose that p = {1, 2, 3, 4, 5} is the unique
pentad containing A∪B. Then G{A,B} ∼= C2

2 and on X\p has an orbit {a, b}
of length 2 and an orbit of length 4. Moreover, {1, 4, 5, a, b}, {2, 3, 5, a, b}
and X\{1, 2, 3, 4, a, b} are pentads.
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Proof. By Lemma 6.7, Gp induces S5 on p, and since G{A,B} 6 Gp it follows
that G{A,B} = G{2,3},{1,4} ∼= C2

2 and fixes the point 5. By [10], each involution
of G fixes precisely three points of X. Two of the involutions of G{A,B} fix
three points of p and so are fixed point free on X\p. The third involution
fixes the point 5 and fixes two points a, b of X\p. It follows that G{A,B} has
an orbit of length two (namely, {a, b}) and an orbit of length 4 on X\p.

Any four points lie in a unique pentad and by Lemma 6.7, any 3-subset
is contained in 4 pentads. Hence X\p is divided into three sets of size two
by the three pentads containing {1, 4, 5} other than {1, 2, 3, 4, 5}. Similarly,
X\p is partitioned by the three pentads containing {2, 3, 5}. Since G{A,B}
fixes {1, 4, 5} and {2, 3, 5}, it preserves both partitions and {a, b} must be a
block of both. Hence {1, 4, 5, a, b} and {2, 3, 5, a, b} are pentads. Moreover,
since X\({a, b} ∪ p) is an orbit of length 4 of G{A,B} and is contained in a
unique pentad, the fifth point of this pentad must also be fixed by G{A,B}
and hence is 5. Thus X\{1, 2, 3, 4, a, b} is a pentad.

Since the stabiliser of a 2-set is maximal in M11, it follows from Lemma
2.9 that P∩ and P	 are M11-primitive decompositions. We also obtain M11-
primitive decompositions from Constructions 2.10, 2.12, 2.14 and 2.16 by
using the Witt design S(4, 5, 11), since the stabilisers of a block, of a point
and of a 3-subset are maximal subgroups of M11.

Construction 6.9. Let (X,B) be the Witt design S(4, 5, 11) and G = M11.
Let A = {1, 2, 3} and B = {2, 3, 4} be adjacent vertices of J(11, 3) and let
{a, b} be the orbit of length 2 of G{A,B} on X\{1, 2, 3, 4, 5} given by Lemma
6.8.

(1). For each 3-subset Y of X let

PY =
{{
{x, u, v}, {y, u, v}

}
| {x, y} ∪ Y, {u, v} ∪ Y ∈ B

}
and let P = {PY | Y a 3-subset}. By Lemma 6.7, Y is contained in 4
pentads, and so 12K2. Let Y = {5, a, b}. By Lemma 6.8, {A, B} ∈ PY

and G{A,B} 6 GY = GPY
, which is a maximal subgroup of G. Hence

by Lemma 2.4, (J(11, 3),P) is an M11-primitive decomposition

(2). Since G is 4-transitive on X, Lemma 6.8 implies that the stabiliser in
G of two 2-subsets of X fixes a third. For each 2-subset Y let

PY =
{{
{x, u, v}, {y, u, v}

}
| u, v, x, y ∈ X\Y,GY,{x,y} = GY,{u,v}

}
and let P = {PY | Y a 2-subset}. Then each PY

∼=
(
9
2

)
K2. Moreover,

by Lemma 6.8 any edge of J(11, 3) is contained in a unique part of P
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({A, B} ∈ P{a,b}) and so (J(11, 3),P) is an M11-primitive decomposi-
tion.

(3). For each Y ∈ B let

PY =
{{
{x, u, v}, {y, u, v}

}
| x, y ∈ Y, {u, v} ∪ (Y \{x, y}) ∈ B

}
and let P = {PY | Y ∈ B}. By Lemma 6.7, each 3-subset of Y is
contained in three more pentads and so each part of P is isomorphic
to 3

(
5
2

)
K2 = 30K2. By Lemma 6.8, {A, B} ∈ PY for Y = {1, 4, 5, a, b}.

Moreover, G{A,B} fixes Y and so G{A,B} < GY = GPY
. Thus Lemma

2.4 and the fact that G acts primitively on B, imply that (J(11, 3),P)
is a G-primitive decomposition.

(4). For each Y ∈ B let

PY =
{{
{x, u, v}, {y, u, v}

}
| u, v ∈ Y, {x, y} ∪ (Y \{u, v}) ∈ B

}
and let P = {PY | Y ∈ B}. By Lemma 6.7, each 3-subset of Y is
contained in three more pentads and so each part of P is isomorphic
to 3

(
5
2

)
K2 = 30K2. By Lemma 6.8, {A, B} ∈ PY for Y = {2, 3, 5, a, b}

and G{A,B} < GY = GPY
. Thus Lemma 2.4 and the fact that G acts

primitively on B, imply that (J(11, 3),P) is a G-primitive decomposi-
tion.

Construction 6.10. Let H = PSL(2, 11) < M11 = G. Then H has an orbit
of length 55 on 3-subsets and this orbit forms a 2 − (11, 3, 3) design known
as the Petersen design. The remaining 3-subsets form an orbit of length 110
and a 2− (11, 3, 6) design [5].

(1). Let Π be the subgraph of J(11, 3) induced on the orbit of length 55.
The graph Π was studied in [13] and is H-arc-transitive of valency 6.
Given an edge {A, B} of Π we have H{A,B} = C2

2 = G{A,B}. Thus
letting P = {Πg | g ∈ G}, it follows by Lemma 2.4 that (J(11, 3),P) is
a G-primitive decomposition.

(2). Let ∆ be the subgraph of J(11, 3) induced on the orbit of length 110.
Then ∆ has valency 15 and given a vertex A, HA

∼= S3 has orbits of
length 3, 6 and 6 on the neighbours of A. Let B be a neighbour of A
in the orbit of length 3 and let P = {A, B}H . Let g ∈ H which in-
terchanges A and B. Then by Lemma 2.18, P ∼= Cos(H, HA, HAgHA).
Moreover, 〈HA, g〉 ∼= A5 and so P has 11 connected components, each
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Table 6: M11-primitive decompositions of J(11, 3)
P P GP

P∩ K9 M9 o C2

P	
(
9
2

)
K2 M9 o C2

Construction 2.10 J(5, 3) ∼= J(5, 2) S5

Construction 2.12 30K4 M10

Construction 2.14 4K3 M8 o S3

Construction 2.16 12K2 M8 o S3

Construction 6.9(1) 12K2 M8 o S3

Construction 6.9(2)
(
9
2

)
K2 M9 o C2

Construction 6.9(3) 30K2 S5

Construction 6.9(4) 30K2 S5

Construction 6.10(1) Π PSL(2, 11)
Construction 6.10(2) 11 Petersen graphs PSL(2, 11)
Construction 6.11 2 Petersen graphs S5

with 10 vertices and isomorphic to the Petersen graph. Since |H{A,B}| =
4 = |G{A,B}|, it follows from Lemma 2.4 that (J(11, 3),P) is a G-
primitive decomposition with P = PG.

Construction 6.11. Let A = {1, 2, 3} and B = {2, 3, 4}. By Lemma 6.8,
Y = X\{1, 2, 3, 4, a, b} is a pentad fixed by G{A,B}. Let H = GY and
P = {A, B}H . Then by Lemma 6.7, H induces S5 on Y and PGL(2, 5) on
{1, 2, 3, 4, a, b}. Thus HA

∼= S3 and is a maximal subgroup of A5
∼= PSL(2, 5).

Moreover, g ∈ H{A,B} which interchanges A and B induces even permuta-
tions on Y and so for such a g we have 〈HA, g〉 = A5. By Lemma 2.18,
P ∼= Cos(H, HA, HAhHA). Since |H : HA| = 20 and 〈HA, g〉 ∼= A5, it fol-
lows that P has two disconnected components with 10 vertices each. Since
|HA : GA,B| = 3 it follows that P is a copy of two Petersen graphs. Let
P = PG. Then as G{A,B} < H, it follows from Lemma 2.4 that (J(11, 3),P)
is a G-primitive decomposition.

Proposition 6.12. If (J(11, 3),P) is an M11-primitive symmetric decompo-
sition then P is given by Table 6.

Proof. Let Γ = J(11, 3) and G = M11 < Sym(X), and consider X as the
point set of the Witt-design S(4, 5, 11) with automorphism group G. Let
A = {1, 2, 3} and B = {2, 3, 4} be adjacent vertices. Suppose that p =
{1, 2, 3, 4, 5} is the unique pentad of the Witt design containing {1, 2, 3, 4}
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and let H be a maximal subgroup of G containing G{A,B} = G{2,3},{1,4}. The
maximal subgroups of G are given in [10, p 18].

If H is the stabiliser of a point then H = G5 and so we obtain the
decomposition yielded by Construction 2.12. Next suppose that H is the
stabiliser of a duad. Then H is one of G{2,3}, G{1,4} or G{a,b} where {a, b}
is the orbit of length two of G{A,B} on {6, 7, . . . , 11}. The first gives P∩ the
second gives P	. Finally, if H = G{a,b} then H is the stabiliser of the divisor
of the decomposition obtained from Construction 6.9(2) containing {A, B}.

Next suppose that H is the stabiliser of a triad. Then H stabilises
{1, 4, 5}, {2, 3, 5} or {5, a, b}. If H = G{1,4,5} then H is the stabiliser of
the divisor of the decomposition from Construction 2.14 containing {A, B}.
Also H = G{2,3,5} is the stabiliser of the divisor of the decomposition yielded
by Construction 2.16 containing {A, B}. Finally, H = G{5,a,b} is the sta-
biliser of the divisor of the decomposition obtained from Construction 6.9(1)
containing {A, B}.

Next suppose that H is the stabiliser of a pentad. Since G{A,B} has only
one orbit of odd length, it follows that 5 is in the pentad. Combining 5
with two orbits of G{A,B} of length two we get that G{A,B} fixes the pentads
{1, 2, 3, 4, 5}, {1, 4, 5, a, b}, {2, 3, 5, a, b} and X\{1, 2, 3, 4, a, b} (by Lemma
6.8, these 5-sets are actually pentads). Thus there are four choices for H. If
H = G{1,2,3,4,5} then we obtain the decomposition from Construction 2.10.
If H = G{1,4,5,a,b}, then H is the stabiliser of the divisor of the decomposi-
tion from Construction 6.9(3) containing {A, B} while H = G{2,3,5,a,b} is the
stabiliser of the divisor of the decomposition yielded by Construction 6.9(4).
Finally, if H = GX\{1,2,3,4,a,b} then H is the stabiliser of the divisor of the
decomposition produced by Construction 6.11 containing {A, B}.

We are left to consider H ∼= PSL(2, 11). By a calculation using Magma
[3], there are two such H containing G{A,B}. These give us the two decom-
positions in Construction 6.10.

We now give constructions for PΓL(2, 8)-primitive decompositions of J(9, 3).

Construction 6.13. Let G = PΓL(2, 8) and X = GF(8) ∪ {∞}, where
GF(8) is defined by the relation i3 = i + 1.

(1). By Theorem 3.4, T = PSL(2, 8) is not arc-transitive on J(9, 3) and so
as T C G and has index three, T has three equal sized orbits on edges.
Thus the partition P = {P1, P2, P3} given by these three orbits is a
G-primitive decomposition. Since T is vertex-transitive, this is in fact
a homogeneous factorisation and appears in [11].
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(2). Let x ∈ X. Then Gx = AΓL(1, 8) and preserves the structure of an
affine space AG(3, 2) (with plane-set B) on X\{x}. Let

Px =
{
{A, B} | A ∪B ∈ B

}
and P = {Px | x ∈ X}. Then since each 3-subset lies in a unique
plane, Px

∼= 14K4. Moreover, Gx acts transitively on the set B of affine
planes and for Y ∈ B we have Gx,Y induces A4 on Y . Thus Gx acts
transitively on the set of edges in Px and so given {A, B} ∈ Px we have
|Gx,{A,B}| = 2 = |G{A,B}|. Thus G{A,B} 6 H and so by Lemma 2.4,
P = PG

x is a G-primitive decomposition of J(9, 3).

(3). Let A = {∞, 0, 1} and B = {∞, 0, i}. Then G{A,B} = 〈g〉 ∼= C2 where
xg = ix−1 and has orbits {0,∞}, {1, i}, {i2, i6}, {i3, i5} and {i4}. Thus
G{A,B} 6 G{i2,i6} = H (H has order 42) and so by Lemma 2.4, letting
P = {A, B}H and P = PG we obtain a G-primitive decomposition of
J(9, 3). Now HA = 〈h〉 where xh = x + 1, which has order two and so
P has 21 vertices and valency 2. Moreover, 〈HA, g〉 = D14 and so by
Lemma 2.18, P has three connected components. Thus P ∼= 3C7.

(4). Let A = {∞, 0, 1} and B = {∞, 0, i}. Then G{A,B} 6 G{i3,i5} = H
and so by Lemma 2.4, letting P = {A, B}H and P = PG we obtain
a G-primitive decomposition of J(9, 3). Then HA = 〈h〉 where xh =
(x4 + 1)−1, which has order three. Thus P has 14 vertices and valency
3. Since g and h do not commute, 〈HA, g〉 = H and so P is a connected
graph. Moreover, P is H-arc-transitive and so by [32, p167], P is the
Heawood graph.

Construction 6.14. Let K = GF(64), with ξ a primitive element of K,
and let F = {0} ∪ {(ξ9)l|l = 0, 1, . . . , 6} ∼= GF(8). One can consider the
projective line X on which G acts as the elements of K modulo F . Then
H = 〈ξ̂, σ, τ〉 ∼= D18 o C3 where ξ̂ : x → ξx (mod F ), σ : x → x8 = x−1

(mod F ), and τ : x → x4 (mod F ).

(1). Let A = {1, ξ, ξ2} and B = {ξ, ξ2, ξ3}. Then {A, B} is an edge of J(9, 3)
whose ends are interchanged by ξ̂6σ ∈ H. Thus letting P = {A, B}H

and P = PG, Lemma 2.4 implies that (J(9, 3),P) is a G-primitive
decomposition. Now HA = 〈ξ̂7σ〉 and so P has 27 vertices. Moreover,

HA,B = 1 and so P has valency 2. Since 〈ξ̂6σ, x̂i
7
σ〉 = D18 it follows

from Lemma 2.18 that P has 3 connected components and so P ∼= 3C9.

(2). Let A = {1, ξ, ξ3} and B = {1, ξ, ξ7}. Then {A, B} is an edge of J(9, 3)

whose ends are interchanged by x̂i
8
σ ∈ H. Thus letting P = {A, B}H
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Table 7: PΓL(2, 8)-primitive decompositions of J(9, 3)
P P GP

P∩ K7 D14 o C3

P	
(
7
2

)
K2 D14 o C3

Construction 6.13(1) PSL(2, 8)
Construction 6.13(2) 14K4 AΓL(1, 8)
Construction 6.13(3) 3C7 D14 o C3

Construction 6.13(4) Heawood graph D14 o C3

Construction 6.14(1) 3C9 D18 o C3

Construction 6.14(2) 27K2 D18 o C3

Construction 6.14(3) 27K2 D18 o C3

Construction 6.14(4) 27K2 D18 o C3

and P = PG, Lemma 2.4 implies that (J(9, 3),P) is a G-primitive
decomposition. Now | HA |= 1 and so P is a matching of 27 edges.

(3). Let A = {1, ξ, ξ3} and B = {ξ, ξ3, ξ4}. Then {A, B} is an edge of J(9, 3)

whose ends are interchanged by x̂i
5
σ ∈ H. Thus letting P = {A, B}H

and P = PG, Lemma 2.4 implies that (J(9, 3),P) is a G-primitive
decomposition. Now | HA |= 1 and so P is a matching of 27 edges.

(4). Let A = {1, ξ, ξ3} and B = {1, ξ2, ξ3}. Then {A, B} is an edge of J(9, 3)

whose ends are interchanged by x̂i
6
σ ∈ H. Thus letting P = {A, B}H

and P = PG, Lemma 2.4 implies that (J(9, 3),P) is a G-primitive
decomposition. Now | HA |= 1 and so P is a matching of 27 edges.

Proposition 6.15. If (J(9, 3),P) is a PΓL(2, 8)-primitive decomposition
then P is as in Table 7.

Proof. Let G = PΓL(2, 8) act on {∞} ∪GF(8) and suppose that GF(8) has
primitive element i such that i3 = i+1. Let A = {∞, 0, 1} and B = {∞, 0, i}
be adjacent vertices in Γ = J(9, 3). Then G{A,B} = G{∞,0},{1,i} = 〈g〉 ∼= C2,
where xg = ix−1, which fixes the point i4 and has 4 orbits of size 2. Let H
be a maximal subgroup of G containing G{A,B}. The maximal subgroups of
G are given in [10, p 6].

If H = PGL(2, 8) then we obtain the decomposition in Construction
6.13(1) while if H is a point stabiliser then H = Gi4 and we obtain Con-
struction 6.13(2).
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Suppose now that H ∼= D14 o C3 is the stabiliser of a 2-subset. Then
H = G{∞,0}, H = G{1,i}, H = G{i2,i6}, or H = G{i3,i5}. In the first case
we get the decomposition P∩, while the second yields P	. The third case
gives Construction 6.13(3) and the fourth gives the partition in Construction
6.13(4).

Let H = 〈ξ̂, σ, τ〉 ∼= D18 o C3 as given in Construction 6.14. Instead of
finding all conjugates of H containing G{A,B}, we (equivalently) find all edge
orbits {C, D}H such that H contains G{C,D}. Note that for such an edge
C and D lie in the same H-orbit on vertices. One sees easily that H has
three orbits on vertices of J(9, 3), of sizes 3 ({1, ξ3, ξ6}〈x̂i〉), 27 ({1, ξ, ξ2}〈x̂i〉∪
{1, ξ2, ξ4}〈x̂i〉∪{1, ξ4, ξ8}〈x̂i〉), and 54 (all the other vertices). The orbit of size
3 contains no edges. In the orbit of size 27, if we fix the vertex C = {1, ξ, ξ2},
we find two vertices D, namely {1, ξ, ξ8} and {ξ, ξ2, ξ3}, such that the unique
involution switching C and D is in H. Moreover, these two vertices are
interchanged by HC . Hence this vertex orbit yields one orbit of edges whose
stabilisers are contained in H and we get the decomposition in Construction
6.14(1).

In the orbit of size 54, if we fix the vertex C = {1, ξ, ξ3}, we find three
vertices D, namely {1, ξ, ξ7}, {ξ, ξ3, ξ4} and {1, ξ2, ξ3}, such that the unique
involution switching C and D is in H. Since H acts regularly on this orbit,
each choice of D gives a different H-orbit on edges and we get the three
decompositions of Constructions 6.14(2,3,4).

7 The case k = 2

By Theorem 3.4, G 6 Sn is arc-transitive on J(n, 2) if and only if G is 3-
transitive. Thus other than An or Sn the possibilites for (n, G) are (11, M11),
(12, M11), (12, M12), (22, M22), (22, Aut(M22)), (23, M23), (24, M24), (2d, AGL(d, 2))
for d > 2 , (16, C4

2 o A7) and (q + 1, G) where G is a 3-transitive subgroup
of PΓL(2, q) with q ≥ 4. We treat all but the last case in this section.

Proposition 7.1. If (J(11, 2),P) is an M11-primitive decomposition then P
is P∩, P∪, or P	.

Proof. Let G = M11 act on the point set X of the Witt design S(4, 5, 11), and
let A = {1, 2}, B = {2, 3} be adjacent vertices. Then G{A,B} = G2,{1,3} and
since G is strictly 4-transitive it follows that |G{A,B}| = 16 and has one orbit
on the 8 remaining points. Let H be a maximal subgroup of G containing
G{A,B}. Comparing orders and the maximal subgroups of G given in [10, p
18] we see that H 6∼= PSL(2, 11) or S5. It follows that H stabilises either a
point, a pair or a 3-subset. In the first case H = G2 and so P = P∩. In the

31



second case, H = G{1,3} and we obtain the decomposition P	, while in the
last case H = G{1,2,3} and so we get the decomposition P∪.

Since the stabilisers of a point and a 2-subset are maximal in M11 it fol-
lows from Lemma 2.9 that P∩ and P	 are M11-primitive decompositions of
J(12, 2). In order to give more constructions for M11-primitive decomposi-
tions of J(12, 2), we will need the following lemma.

Lemma 7.2. Let G = M11 act 3-transitively on the point set X of the Witt
design S(5, 6, 12). As seen in Construction 5.6, G has an orbit of length 165
on 4-subsets, forming a 3− (12, 4, 3) design with block set D. In this design,
each 3-set S determines uniquely another 3-set SD, namely the set of fourth
points of the 3 blocks of D containing S. We have (SD)D = S and S ∪ SD
is a hexad of S(5, 6, 12). Moreover if {S, SD, U, V } is the unique linked three
containing S and SD as triads (see Lemma 5.4), then UD = V .

Proof. For any 3-set S, the set SD is obviously well defined by the properties
of the 3− (12, 4, 3) design. Now, an element of G stabilising S must also sta-
bilise SD. Therefore GS 6 GSD . Since SD is also a 3-set and G is 3-transitive,
we must have |GS| = |GSD |. Therefore GS = GSD . By a computation using
Magma [3] we find that GS

∼= S3 × S3 has orbits of lengths 3, 3 and 6 on
X. Hence (SD)D = S.

Let u, v be two points of SD. Then S ∪ {u, v} is contained in a unique
hexad h. Since GS preserves the set of hexads containing S, and acts tran-
sitively on the 3 points of SD and on the 6 points of X\(S ∪ SD), it follows
that the sixth point of h must also lie in SD. Hence S ∪ SD is a hexad. Let
T = {S, SD, U, V } be the unique linked three containing S and SD as triads
(Lemma 5.4). Since GS preserves T and is transitive on U ∪ V , it follows
that GS has an index 2 subgroup GS,U with orbits S, SD, U and V . Since the
orbits of GS,U are a refinement of the orbits of GU , UD must be one of these
orbits of size 3. Since UD cannot be S nor SD, it follows that UD = V .

Construction 7.3. Let G = M11 act 3-transitively on the point set X of
the Witt design S(5, 6, 12). We use the notation of Lemma 7.2.

(1). Let Y ∈ D. Let

PY =
{{
{u, x}, {x, v}

}
| {x, u, v}D = Y \{x}

}
and P = {PY | Y ∈ D}. Then PY

∼= 4K2. Let {{u, x}, {x, v}} be an
edge of J(12, 2). Then it is in a unique PY , with Y = {x} ∪ {x, u, v}D.
Since GY is maximal in G, it follows that (J(12, 2),P) is a G-primitive
decomposition.
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Table 8: M11-primitive decompositions of J(12, 2)
P P GP

P∩ K11 PSL(2, 11)
P	 10K2 S5

Construction 7.3(1) 4K2 M8 o S3

Construction 7.3(2) 4K3 M9 o C2

(2). Let T be a D-linked three, that is, a linked three for the S(5, 6, 12)
such that, for any X ∈ T , XD is a triad of T . Let

PT =
{{
{u, x}, {x, v}

}
| {x, u, v} ∈ T

}
and P = {PT | T is a D-linked three}. Then PT

∼= 4K3, with each
triad contributing K3. Let {{u, x}, {x, v}} be an edge of J(12, 2). Then
{u, v, x} and {u, v, x}D must be triads of T . By Lemma 7.2, the unique
linked three containing these two triads is a D-linked three. It follows
that there is exactly one D-linked three T such that PT contains a given
edge. Since the stabiliser in G of a D-linked three is maximal in G, it
follows that (J(12, 2),P) is a G-primitive decomposition.

Thus we have the M11-primitive decompositions listed in Table 8.

Proposition 7.4. If (J(12, 2),P) is an M11-primitive decomposition then P
is given by Table 8.

Proof. Let G = M11 act transitively on the point set X of the Witt design
S(5, 6, 12) and let D be the block set of the 3 − (12, 4, 3) design described
in Construction 5.6 (see above). Take adjacent vertices A = {1, 2} and
B = {2, 3}. Then G{A,B} = G2,{1,3} ∼= D12 which has an orbit of length 3
(namely, {1, 2, 3}D) and an orbit of length 6 on the remaining 9 points of X.
Let H be a maximal subgroup of G containing G{A,B}. Since M10 contains
no elements of order 6, it follows that H 6∼= M10. If H is a point stabiliser,
then H = G2 and we get the decomposition P∩. If H is a pair stabiliser
then H = G{1,3}, and we get the decomposition P	. If H ∼= M8 o S3 then
H is the stabiliser of a block in D. There is a unique such block, namely the
union of {2} with {1, 2, 3}D. Hence H is the stabiliser of the divisor of the
decomposition obtained from Construction 7.3(1) containing {A, B}.

Now let H ∼= M9 o S3. Then H is a D-linked three stabiliser, namely the
only one containing {1, 2, 3} as a triad (see the construction). Hence H is
the stabiliser of the divisor of the decomposition obtained from Construction
7.3(2) containing {A, B}.
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Proposition 7.5. If (J(12, 2),P) is an M12-primitive decomposition, then
P is P∪, P∩ or P	.

Proof. Let G = M12 act on the point set X of the Witt-design S(5, 6, 12) and
take adjacent vertices A = {1, 2} and B = {2, 3}. Then G{A,B} = G2,{1,3}
which has order 144 and is 2-transitive on the 9 remaining points since G is
5-transitive on X. Let H be a maximal subgroup of G containing G{A,B}.
The maximal subgroups of G are given in [10], and comparing orders we see
that H 6∼= PSL(2, 11), 2×S5, 42 : D12, M8.S4 or A4×S3. Since G{A,B} fixes a
point but not a hexad it follows that H is not the stabiliser of a hexad pair,
and since G{A,B} is 2-transitive on X\{1, 2, 3} we also have that H is not the
stabiliser of a linked three. In the action of M11 on 12 points, PSL(2, 11) is
the stabiliser of a point. Since 144 does not divide |PSL(2, 11)| and G{A,B}
fixes the point 2, it follows that H is not a transitive copy of M11. Thus
H = G2, G{1,3} or G{1,2,3}. In the first case we get the decomposition P∩, the
second case yields P	 while the third gives P∪.

Before dealing with G = M22 we need the following well known result
which follows from Lemma 6.3.

Lemma 7.6. Let (X,B) be the Witt design S(3, 6, 22). Then B contains 77
elements, called hexads. Each point of X is contained in 21 hexads, each
2-subset in 5 hexads, and each 3-subset in a unique hexad. Moreover, the
stabiliser of a hexad is C4

2 o A6 with the pointwise stabiliser of the hexad
being C4

2 which acts regularly on the 16 points not in the hexad.

Proof. Since (X,B) can be derived from the set of blocks of the Witt design
S(4, 5, 23) containing a given point, this follows from Lemma 6.3.

Proposition 7.7. If (J(22, 2),P) is an M22-primitive decompositions then
P = P∩ or P	, or P is obtained from Construction 2.10 and has divisors
isomorphic to J(6, 2).

Proof. Let G = M22 act on the point-set X of the Witt design S(3, 6, 22)
and take adjacent vertices A = {1, 2} and B = {2, 3}. Moreover, suppose
that h = {1, 2, 3, 4, 5, 6} is the unique hexad of the Witt design containing
{1, 2, 3}. By Lemma 7.6, Gh = C4

2 o A6, where C4
2 acts trivially on h and

transitively on X\h. It follows that G{A,B} = G2,{1,3},{4,5,6} had order 96 and
acts transitively on X\h.

Let H be a maximal subgroup of G containing G{A,B}. Comparing orders
and the maximal subgroups of G given in [10] we see that H 6∼= PSL(2, 11),
A7 or M10. Since G{A,B} does not stabilise an octad, it follows that H is
either G2, G{1,3} or Gh. The first gives the decomposition P∩, while the
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second yields P	. Finally Gh is the stabiliser of the part of the decompo-
sition obtained from Construction 2.10 containing {A, B} and has divisors
isomorphic to J(6, 2).

Proposition 7.8. All Aut(M22)-primitive decompositions of J(22, 2) are
M22-primitive decompositions.

Proof. By [10], a maximal subgroup of Aut(M22) is either M22 or arises from
a maximal subgroup of M22. Since M22 is arc-transitive it does not give
a decomposition. In all other cases, Lemma 2.7 implies that we get M22-
primitive decompositions.

Proposition 7.9. If (J(23, 2),P) is an M23-primitive decomposition then P
is P∩, P	 or P∪.

Proof. Let G = M23 act on the point-set X of the Witt design S(4, 7, 23) and
take adjacent vertices A = {1, 2} and B = {2, 3}. Then G{A,B} = G2,{1,3} ∼=
24 o S5 (see [10, p 71]) and since G is 4-transitive, G{A,B} is transitive on
X\{1, 2, 3}. Let H be a maximal subgroup of G containing G{A,B}. Since
|G{A,B}| does not divide 23.11, it follows from [10] that H is intransitive.
Hence H is G2, G{1,3} or G{1,2,3}. These give us the decompositions P∩, P	
and P∪ respectively.

Proposition 7.10. If (J(24, 2),P) is an M24-primitive symmetric decompo-
sitions then P is P∩, P	 or P∪.

Proof. Let G = M24 acting on the point-set X of the Witt design S(5, 8, 24)
and take adjacent vertices A = {1, 2} and B = {2, 3}. Then G{A,B} =
G2,{1,3} ∼= PΣL(3, 4) (see [10, p 96]). Note that G{A,B} is transitive on
X\{1, 2, 3} since G is 5-transitive on X. Let H be a maximal subgroup of G
containing G{A,B}. Looking at the maximal subgroups of G in [10], it follows
that H is either G2, G{1,3} or G{1,2,3}. Thus we obtain the decompositions
P∩, P	 and P∪ respectively.

Since the stabiliser of a point is maximal in G = AGL(d, 2), Lemma 2.9
implies that P∩ is a G-primitive decomposition. The set of affine planes in
the affine space AGL(d, 2) yields an S(3, 4, 2d) Steiner system with each point

contained in (2d−1)(2d−1−1)
3

planes. However, G is not primitive on planes as
it preserves parallelness. It also acts imprimitively on 2-subsets as 2-subsets
correspond to lines and again G preserves parallelness. Thus we obtain the
G-primitive decompositions in Table 9. Note that for Construction 2.16, the
divisors are indexed by lines of the affine plane and are 2d−2K2. Each pair
Y1, Y2 of parallel lines yields a C4 in the J(4, 2) induced on Y1 ∪ Y2. As a
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Table 9: AGL(d, 2)-primitive decompositions of J(2d, 2)

P P GP

P∩ K2d−1 GL(d, 2)
Constructions 2.10 and 2.1 2d−2J(4, 2) ∼= 2d−2K2,2,2 Cd

2 o GL(d, 2)〈v,w〉

Construction 2.12 (2d−1)(2d−1−1)
3

K3 GL(d, 2)
Construction 2.16 and 2.1 2d−2(2d−1 − 1)C4 Cd

2 o GL(d, 2)〈v+w〉

parallel class of lines contains 2d−1 lines, we have 2d−1(2d−1−1)
2

pairs of parallel
lines in the imprimitivity class. Applying Construction 2.1 does in fact yield
line 4 of Table 9.

Before showing that these are the only primitive decompositions we need
a lemma.

Lemma 7.11. Let G = N o G0 where N ∼= Cd
p for some prime p and G0

acts irreducibly on N . Suppose that H is a maximal subgroup of G. Then
either H is a complement of N , or M = N o H0 for some maximal subgroup
H0 of H.

Proof. Since H normalises N we have H 6 NH 6 G. Thus as H is maximal,
either NH = H or NH = G. The first case implies that N 6 H and so
H = N o H0 for some maximal subgroup H0 of G0. Suppose now that
NH = G. Then H/(H ∩ N) ∼= G0, and so for each g ∈ G0, there exists
n ∈ N such that ng ∈ H. Since N is abelian, it follows that H induces G0

in its action on N by conjugation. Since G0 acts irreducibly on N and H
normalises H ∩ N , it follows that H ∩ N = 1 or N . However, H ∩ N = N
implies that H = G which is not the case. Hence H ∩ N = 1 and H ∼= G0,
that is H is a complement of N .

Proposition 7.12. If (J(2d, 2),P) for d ≥ 3 is an AGL(d, 2)-primitive de-
composition then P is given by Table 9.

Proof. We can identify X with a d-dimensional vector space V over GF(2).
Let G = AGL(d, 2). Then letting v and w be linearly independent vectors
in V we let A = {0, v} and B = {0, w}. Thus G{A,B} = GL(d, 2){v,w} which
is an index 3 subgroup of GL(d, 2)〈v,w〉 and contains a Sylow 2-subgroup of
GL(d, 2). Moreover, G{A,B} fixes the vector v + w and is transitive on all
vectors not in 〈v, w〉.
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Let H be a maximal subgroup of G containing G{A,B}. By Lemma 7.11,
either H is a complement of N = soc(G) or H = N o H0 for some maximal
subgroup H0 of GL(d, 2).

Suppose we are in the second case. Since G{A,B} contains a Sylow 2-
subgroup of GL(d, 2) it follows that H0 is a parabolic subgroup and hence is
a subspace stabiliser. The only proper, nontrivial subspaces fixed by G{A,B}
are 〈v + w〉 and 〈v, w〉. If H0 = GL(d, 2)〈v,w〉 then H is the stabiliser of
the class of planes parallel to 〈v, w〉 and so H is the stabiliser of the divisor
containing {A, B} of the decomposition in Row 2 of Table 9. Similarly, if
H0 = GL(d, 2)〈v+w〉 then H is the stabiliser of the class of lines parallel
to 〈v + w〉 and so is the stabiliser of the divisor containing {A, B} of the
decomposition in Row 4 of Table 9.

If d ≥ 4 then there is a unique class of complements of N , while if d = 3
then there are two classes. Hence either H is the stabiliser of a vector or d = 3
and H is transitive. In thes second case H = PSL(2, 7) acting transitively
on V . However, a Sylow 2-subgroup of H is then regular on V , and hence H
cannot contain G{A,B} ∼= D8 (fixing the point 0). Thus H is the stabiliser of
a vector and so H = G0 or Gv+w. The first case yields the decomposition P∩,
while the second is the stabiliser of the divisor of the decomposition obtained
from Construction 2.12 containing {A, B}.

Proposition 7.13. If (J(16, 2),P) is a C4
2 o A7-primitive decompositions

then P is given by one of the rows of Table 9 (with different groups).

Proof. We can identify X with a 4-dimensional vector space V over GF(2).
Then letting v and w be linearly independent vectors in V we let A = {0, v}
and B = {0, w}. Thus G{A,B} = (A7){v,w} ∼= S4 which is an index 3 subgroup
of (A7)〈v,w〉. Moreover, G{A,B} fixes the vector v + w and is transitive on all
vectors not in 〈v, w〉. Since G{A,B} fixes a nonzero vector it is contained in a
subgroup PSL(2, 7) of A7 and hence by [10, p 10], the elements of order 3 in
G{A,B} are from the conjugacy class 3B, that is, in the representation of A7

on 7 points they are products of two 3-cycles.
Let H be a maximal subgroup of G containing G{A,B}. Then by Lemma

7.11, H is either a complement of C4
2 or C4

2 o H0 where H0 is a maximal
subgroup of A7.

Suppose that H is a complement. By [], there is only one class of com-
plements and so H is a point stabiliser, that is, H = G0 or H = Gv+w. In
the first case we obtain the decomposition P∩, while the second subgroup is
the stabiliser of the divisor of the decomposition obtained from Construction
2.12 containing {A, B}.

Now suppose H = C4
2 o H0. By [10, p 10] there are 5 conjugacy classes

of possibilities for H0. By [10, p 10] the elements of order 3 in a maximal S5
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subgroup are from the conjugacy class 3A, instead of 3B and so H0 6∼= S5.
If H0

∼= A6 then A6
∼= PSp(4, 2)′ and contains two conjugacy classes of S4

subgroups. One is the stabliser of a vector and has orbit lengths 1, 6 and 8 on
nonzero vectors and the other is the stabiliser of a totally isotropic 2-space
with orbit sizes 3 and 12. Hence none of them stabilises the pair {v, w} and
so H0 6∼= A6. Thus H0 is the stabiliser of a subspace. Since G{A,B} does not
fix a 3-space, H cannot be the stabiliser of a 3-space. If H0 is the stabiliser
of a plane then H is the stabiliser of a parallel class of planes and so we get
the decomposition in Row 2 of Table 9. Similarly, if H0 is the stabiliser of a
1-space, then it fixes 〈v +w〉 and we obtain the decomposition in Row 4.

7.1 G 6 PΓL(2, q)

In this section we determine all G-primitive decompositions of J(q + 1, 2)
where G is a 3-transitive subgroup of PΓL(2, q) for q = pf ≥ 4 with p a prime.
The group PGL(2, q) is the group of all fractional linear transformations

ta,b,c,d : z 7→ az + b

cz + d
, ad− bc 6= 0

of the projective line X = {∞} ∪ GF(q) with the conventions 1/0 = ∞
and (a∞ + b)/(c∞ + d) = a/c. Note that ta,b,c,d = ta′,b′,c′,d′ if and only if
(a, b, c, d) = λ(a′, b′, c′, d′) for some λ 6= 0. The group PSL(2, q) is then the
set of all ta,b,c,d such that ad − bc is a square in GF(q). The Frobenius map
φ : z 7→ zp also acts on X and φ−1ta,b,c,dφ = tap,bp,cp,dp . Then PΓL(2, q) =
〈PGL(2, q), φ〉. Another interesting family of subgroups of PΓL(2, q) occurs
when p is odd and f is even. In this case we can define for each divisor
s of f/2, the group M(s, q) = 〈PSL(2, q), φstξ,0,0,1〉, where ξ is a primitive
element of GF(q). Each g ∈ PGL(2, q) \ PSL(2, q) can be written as tξ,0,0,1h
for some h ∈ PSL(2, q), and so φsg ∈ M(s, q). It was shown in [17, Theorem
2.1] that G is a 3-transitive subgroup of PΓL(2, q) if and only if either G
contains PGL(2, q), or G = M(s, q) for some s.

We begin with the following construction.

Construction 7.14. [11] Let X = {∞} ∪ GF(q) be the projective line,
H = PSL(2, q) and q ≡ 1 (mod 4). Then H is has two equal sized orbits on
edges, namely P� = {{∞, 0}, {∞, 1}}H , and P 6� = {{∞, 0}, {∞, t}}H , with
t not a square in GF(q). Thus the partition P = {P�, P6�} is a G-primitive
decomposition of J(q + 1, 2) for any 3-transitive subgroup G of PΓL(2, q).
The divisors are complementary spanning graphs Θ of valency q − 1.

Proposition 7.15. Let G be a 3-transitive subgroup of PΓL(2, q) and let P
be a G-primitive decomposition of J(q+1, 2) such that PSL(2, q) fixes a part.
Then q ≡ 1 (mod 4) and P is obtained from Construction 7.14.
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Proof. The graph J(q+1, 2) contains q(q2−1)
2

edges. If q is even, then |PSL(2, q)| =
q(q2−1) and an edge stabiliser has order 2, so PSL(2, q) is transitive on edges.

Thus q is odd and so |PSL(2, q)| = q(q2−1)
2

. Whenever (q − 1)/2 is odd, the
stabiliser in PSL(2, q) of a point of X has odd order. Since the stabiliser
of the edge {{x, y}, {x, z}} fixes x and interchanges y and z, it follows that
no nontrivial element of PSL(2, q) fixes an edge and so PSL(2, q) is edge-
transitive. Hence (q− 1)/2 is even and PSL(2, q) has two equal length orbits
on edges, giving the G-primitive decomposition of Construction 7.14 for any
3-transitive subgroup G of PΓL(2, q).

To classify all G-primitive decompositions with G a 3-transitive subgroup
of PΓL(2, q) we require knowledge of the maximal subgroups of all such G.
First we note the following theorem.

Theorem 7.16. [18, Corollary 1.2] Let PGL(2, q) 6 G 6 PΓL(2, q) and
suppose that H is a maximal subgroup of G not containing PSL(2, q). Then
H ∩ PGL(2, q) is maximal in PGL(2, q).

Theorem 7.16 and Lemma 2.7 imply that we only need to find all PGL(2, q)-
primitive and all M(s, q)-primitive decompositions. We now state all maxi-
mal subgroups of these two groups. The first is well known and follows from
Dickson’s classification [14] of subgroups of PSL(2, q), see for example [18].

Theorem 7.17. Let G = PGL(2, q) with q ≥ 4 a power of the prime p.
Then the maximal subgroups of G are:

(1). [q] o Cq−1.

(2). D2(q−1), q 6= 5.

(3). D2(q+1).

(4). S4 if q = p ≡ ±3 (mod 8).

(5). PGL(2, q0) where q = qr
0 with q0 6= 2 and r an odd prime if q odd, and

any prime if q0 even.

(6). PSL(2, q), q odd.

Theorem 7.18. [18, Theorem 1.5] Let G = M(s, q) with q = pf ≥ 3 for p
odd and f even, and s a divisor of f/2. Then the maximal subgroups of G
which do not contain PSL(2, q) are:

(1). stabiliser of a point of the projective line,
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(2). NG(Dq−1),

(3). NG(Dq+1),

(4). NG(PSL(2, q0)) where q = qr
0 with r an odd prime.

We require the following knowledge about the stabiliser of an edge.

Lemma 7.19. Let e = {{∞, 0}, {∞, 1}}. Then

(1). PGL(2, q)e = 〈t−1,1,0,1〉,

(2). PΓL(2, q)e = 〈t−1,1,0,1, φ〉 which has order 2f , and

(3). M(s, q)e = 〈t−1,1,0,1, φ
2s〉.

Proof. Since PGL(2, q) is sharply 3-transitive, PGL(2, q)e = 〈g〉 where g
fixes ∞ and interchanges 0 and 1. Thus PGL(2, q)e is as in the lemma.
Since φ fixes e vertex-wise the second claim follows. By [17, Corollary 2.2],
M(s, q)∞,0,1 = 〈φ2s〉 and since q is an even power of a prime we have q ≡
1 (mod 4). Thus t−1,1,0,1 ∈ PSL(2, q) and so M(s, q)e is as given by the
lemma.

Instead of finding all maximal subgroups H containing the stabiliser of a
fixed edge {A, B} we solve the equivalent problem of choosing a representa-
tive H from each conjugacy class of maximal subgroups and finding all edges
whose edge stabiliser is contained in H. See Remark 2.5.

Construction 7.20. Let X = {∞} ∪ GF(q) be the projective line with q
odd and let H = PΓL(2, q)∞ = AΓL(1, q). Let e = {{0, 1}, {0,−1}}. The
stabiliser in PΓL(2, q) of e is 〈φ, t−1,0,0,1〉, which is contained in H. Moreover
H is a maximal subgroup of PΓL(2, q). Thus by Lemma 2.4, letting

P = eH =
{{
{i, i + j}, {i, i− j}

}
| i, j ∈ GF(q), i 6= j

}
and P = PPΓL(2,q), we obtain a PΓL(2, q)-primitive decomposition of J(q +
1, 2). The divisors have valency 2 and hence are a union of cycles. Since
GF(q) has characteristic p it follows that each cycle has length p and so the

divisors are isomorphic to q(q−1)
2p

Cp. For any 3-transitive group G with socle

PSL(2, q), H ∩G is maximal in G and so P is G-primitive by Lemma 2.7.

Lemma 7.21. Let (J(q + 1, 2),P) be a G-primitive decomposition with G a
3-transitive subgroup of PΓL(2, q) such that, for P ∈ P, GP is the stabiliser
of a point of the projective line. Then either P = P∩ with divisors Kq or q
is a power of an odd prime p and P is obtained by Construction 7.20.
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Proof. Let P ∈ P and Γ = J(q+1, 2). Then without loss of generality we may
suppose that H = GP is the stabiliser of the point ∞ of X = {∞} ∪GF(q).
We recall that G either contains PGL(2, q) or is M(s, q) for some s. Thus
H acts 2-transitively on GF(q) and so the orbits of H on V Γ are O1 =
{{∞, x} | x ∈ GF(q)} and O2 = {{x, y} | x, y ∈ GF(q)}. If {A, B} ∈ P
then H contains the stabiliser in G of {A, B} and so either {A, B} ⊆ O1 or
{A, B} ⊆ O2. Note that P = {A, B}H .

Since H is 2-transitive on GF(q) it follows that H acts transitively on the
set of arcs between vertices of O1 and so H contains the stabiliser in G of
every edge between vertices of O1. Thus if {A, B} ⊆ O1 then

{A, B}H =
{{
{∞, x}, {∞, y}

}
| x, y ∈ GF(q)

}
∼= Kq.

Hence P = P∩.
Suppose now that {A, B} ⊆ O2. We may suppose that A = {0, 1} and

B = {0, b} for some b ∈ GF(q)\{0, 1}. Let g = t0,b,1−b,b ∈ PGL(2, q). Then g
maps ∞ → 0 → 1 → b and so G{A,B} = Gg

{{∞,0},{∞,1}} (this is obvious if G

contains PGL(2, q) and follows from the fact that M(s, q) C PGL(2, q) for
G = M(s, q)). By Lemma 7.19, tg−1,1,0,1 ∈ G{A,B} 6 H = G∞, and since g
does not fix ∞ and the only fixed points of t−1,1,0,1 are ∞ and 2−1 (only if q
is odd), it follows that q is odd and g : 2−1 →∞. This implies that b = −1.
Notice that φg is also in H, and so G{{0,1},{0,−1}} 6 H in all cases, by Lemma
7.19. Hence P is the decomposition of Construction 7.20.

7.1.1 Dq−1 subgroups

Construction 7.22. Let X = {∞} ∪ GF(q) be the projective line where
q = pf for some odd prime p and let ξ be a primitive element of GF(q).
Then PΓL(2, q){0,∞} = 〈tξ,0,0,1, t0,1,1,0, φ〉 ∼= D2(q−1) o Cf .

(1). Let H = PΓL(2, q){0,∞} and e = {{0, 1}, {0,−1}}. Then t−1,0,0,1 ∈ H
interchanges the two vertices of e while φ fixes each of the vertices of e.
Hence H contains the stabiliser in PΓL(2, q) of e and H is a maximal
subgroup of PΓL(2, q) for q 6= 5. Thus by Lemma 2.4, letting

P = eH =
{{
{x, y}, {x,−y}

}
| x ∈ {0,∞}, y ∈ GF(q)\{0}

}
and P = PPΓL(2,q), we obtain a PΓL(2, q)-primitive decomposition of
J(q+1, 2). The divisors are isomorphic to (q−1)K2 since the stabiliser
of the vertex {0, 1} in H is 〈φ〉, which fixes {0,−1}. For any 3-transitive
subgroup G of PΓL(2, q), we have H ∩G is maximal in G and so P is
a G-primitive decomposition by Lemma 2.7.
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(2). Let i < q−1
2

and l be an integer such that φl fixes the set {ξi, ξ−i}.
Let G = 〈PGL(2, q), φl〉 and H = G{∞,0} = 〈tξ,0,0,1, t0,1,1,0, φ

l〉. The
automorphism of PGL(2, q) switching the vertices of the edge e =
{{1, ξi}, {1, ξ−i}} is t0,1,1,0, while either φl or t0,1,1,0φ

l fixes both ver-
tices of e. Hence Ge < H and H is a maximal subgroup of G for q 6= 5.
Hence by Lemma 2.4, letting

P = eH =
{{
{x, ξix}, {x, ξ−ix}

}
| x ∈ GF(q)\{0}

}
and P = PG, we obtain a G-primitive decomposition of J(q + 1, 2).
The divisors have valency 2 and hence are a union of cycles. These
cycles have length the order of ξi, which is q−1

(q−1,i)
. Thus each divisor is

isomorphic to (q − 1, i)C q−1
(q−1,i)

. In fact for any 3-transitive subgroup G

of G, H ∩G is maximal in G and so P is a G-primitive decomposition.

Lemma 7.23. Let (J(q+1, 2),P) be a G-primitive decomposition with PGL(2, q) 6
G 6 PΓL(2, q), such that for P ∈ P we have GP = NG(D2(q−1)). Then ei-
ther P = P	, or q is odd and P is obtained by Construction 7.22(1), or P
is obtained by Construction 7.22(2).

Proof. Let P ∈ P . Since GP∩PGL(2, q) is a maximal subgroup of PGL(2, q),
by Lemma 2.7, P is a PGL(2, q)-primitive decomposition. Thus we may
suppose that G = PGL(2, q) and H = GP = 〈tξ,0,0,1, t0,1,1,0〉 ∼= D2(q−1). The
orbits of H on vertices are {{0,∞}},

O0 = {{x, y} | x ∈ {0,∞}, y ∈ GF(q)\{0}}

and
Oi = {{x, ξix} | x ∈ GF(q)\{0}}

for each i ≤ q−1
2

. Note that |O0| = 2(q−1). When q is even there are q/2−1

orbits Oi, each having length q − 1. When q is odd there are q−3
2

of length

q − 1 and one, O q−1
2

, of length q−1
2

.

If {A, B} ∈ P then H contains the stabiliser in G of {A, B} and so {A, B}
is contained in one of the orbits of H on vertices. Note that P = {A, B}H .

Suppose first that {A, B} ⊆ O0. Without loss, let A = {0, 1}. Then
the neighbours of A in O0 are {∞, 1} and {0, y} such that y ∈ GF(q)\{0}.
The only ones which can be interchanged with A by an element of H are
{∞, 1}, by t0,1,1,0 and {0,−1}, by t−1,0,0,1, when q is odd. Thus the only
edges between vertices of O0 whose stabiliser in G is contained in H are
those in the orbits {A, {∞, 1}}H and {A, {0,−1}}H . The first gives the
matching {{{0, y}, {∞, y}} | y ∈ GF(q)\{0}} and hence the decomposition
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P	 while the second gives the matching {{{x, y}, {x,−y}} | x ∈ {0,∞}, y ∈
GF(q)\{0}} and hence Construction 7.22(1). Both matchings have q − 1
edges and the second only occurs for q odd. Note also that both orbits are
preserved by PΓL(2, q){0,∞} and so both decompositions are also PΓL(2, q)-
decompositions.

Note that when q is odd the orbit O q−1
2

contains no edges. Thus suppose

next that {A, B} ⊆ Oi for i < q−1
2

. Without loss of generality, let A =
{1, ξi}. Then the neighbours of A in Oi are {1, ξ−i} and {ξi, ξ2i} and these are
interchanged by HA = 〈t0,ξi,1,0〉 ∼= C2. Hence H acts transitively on the set of
edges between vertices of Oi. Moreover, 〈t0,1,1,0〉 is the stabiliser H of the edge
{{1, ξi}, {1, ξ−i}} and so H contains the stabiliser in G of an edge between
two vertices of Oi. Thus P is obtained by Construction 7.22(2). Moreover,
an overgroup G = 〈PGL(2, q), φl〉 of PGL(2, q) in PΓL(2, q) preserves P if
and only if G{0,∞} = 〈H, φl〉 fixes Oi. Since φl fixes 1, it follows that φl

fixes Oi if and only if φl fixes {ξi, ξ−1} and so G is as stated in Construction
7.22(2).

Construction 7.24. Let G = M(s, q) and ξ be a primitive element of GF(q)
with q = pf for some odd prime p and even integer f . Let i be an integer
and assume that either

• s = f/2 and (ξi)〈φ
s〉 has length 2 and does not contain ξ−i, or

• s = f/4 and (ξi)〈φ
s〉 has length 4 and does contain ξ−i.

Let H = G{0,∞} = 〈PSL(2, q){0,∞}, φ
stξ,0,0,1〉 and note that PSL(2, q){0,∞} =

〈tξ2,0,0,1, t0,1,1,0〉.

(1). Suppose that i is even and let e = {{1, ξi}, {1, ξ−i}} and P = eH . Then

P =
{{
{x2, x2ξi}, {x2, x2ξ−i}

}
| x ∈ GF(q) \ {0}

}
∪

{{
{y, yξips}, {y, yξ−ips}

}
| y =6 �

}
Then P has valency 2 (as the two neighbours of {1, ξi} are {1, ξ−i} and
{ξi, ξ2i}) and so is a union of cycles. Each cycle has length the order
of ξi and so P ∼= (q − 1, i)C q−1

(q−1,i)
.

Now |{1, ξi}H | = q − 1 and by Lemma 7.19, |Ge| = f/s. Since |H| =
(q−1)f/s it follows that |He| = f/s and so He = Ge. Hence by Lemma
2.4 and the fact that H is maximal in G, letting P = PG we get that
P is a G-primitive decomposition.
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(2). Suppose now that i is odd and let e = {{1, ξi}, {1, ξ−i}} and P = eH .
Then

P =
{{
{x2, x2ξi}, {x2, x2ξ−i}

}
| x ∈ GF(q)\{0}

}
∪

{{
y, yξips}, {y, yξ−ips}

}
| y =6 �

}
Then |P | = q − 1 and so |He| = f/s = |Ge|, by Lemma 7.19. The only
neighbour of {1, ξi} in P is {1, ξ−i} and so P = (q− 1)K2. By Lemma
2.4 and the fact that H is maximal in G, letting P = PG we get that
P is a G-primitive decomposition.

Lemma 7.25. Let (J(q + 1, 2),P) be a G-primitive decomposition with G =
M(s, q) for some s such that for P ∈ P, GP = NG(Dq−1). Then either
P = P	, or P is obtained by Construction 7.22(1), Construction 7.22(2) or
Construction 7.24.

Proof. A subgroup NG(Dq−1) of G is a pair-stabiliser in G. Without loss
of generality we may suppose that H = G{0,∞} = 〈PSL(2, q){0,∞}, φ

stξ,0,0,1〉.
Note that q ≡ 1 (mod 4) and so PSL(2, q){0,∞} = 〈tξ2,0,0,1, t0,1,1,0〉. Since G
is 3-transitive it follows that

O0 = {{x, y} | x ∈ {0,∞}, y ∈ GF(q)\{0}}

is an H-orbit on vertices and as in the proof of Lemma 7.23, if {A, B} ⊂ O0

is an edge whose stabiliser in G is contained in H we obtain either P = P	
or P is obtained by Construction 7.22(1).

Now suppose {A, B} 6⊂ O0. Since H is transitive on GF(q))\{0}, we can
assume that A = {1, ξi} where 1 ≤ i ≤ q−2. We need to find the neighbours
B of A such that G{A,B} 6 H. Let g ∈ PGL(2, q) map {{∞, 0}, {∞, 1}} onto
{A, B}. Then G{A,B} = 〈t−1,1,0,1, φ

2s〉g by Lemma 7.19. Hence t−1,1,0,1 and

φ2s must stabilise {0,∞}g−1
. Note that ∞g 6= ∞ (since ∞ /∈ A) and ∞g 6= 0

(since O /∈ A).

Suppose B = {1, t}. Then we can take g = ta,ξi,a,1 where a = ξi−t
t−1

, and

then {0,∞}g−1
= {− ξi

a
,− 1

a
}. Recall that t−1,1,0,1 stabilises this set. Now

t−1,1,0,1 fixes only the points ∞, 2−1, and if {0,∞}g−1
= {∞, 2−1} we would

have ∞g ∈ {0,∞} which is not the case. Hence t−1,1,0,1 interchanges − ξi

a

and − 1
a
, and we have − ξi

a
= 1 + 1

a
, that is a = −1 − ξi = ξi−t

t−1
, and so

t = ξ−i. If B = {ξi, u}, similar calculations show that u = ξ2i. In both cases,

we find that {0,∞}g−1
= { ξi

1+ξi ,
1

1+ξi}. Moreover we have {A, {1, ξ−i}}g′ =

{A, {ξ, ξ2i}} for g′ = tξi,0,0,1. If i is even, g′ ∈ H and so both edges yield the
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same decomposition. If i is odd, we have that g′ normalises G (obviously), but
also H (easy to compute), and so by Lemma 2.6 both edges yield isomorphic
decompositions. Therefore it is enough to consider the edge e = {A, {1, ξ−i}}.

In order to have Ge 6 H, we also need { ξi

1+ξi ,
1

1+ξi}φ2s
= { ξi

1+ξi ,
1

1+ξi},

or equivalently we must have either ξip2s

1+ξip2s = ξi

1+ξi and 1

1+ξip2s = 1
1+ξi , or

ξip2s

1+ξip2s = 1
1+ξi and 1

1+ξip2s = ξi

1+ξi . In the first case ξip2s
= ξi, in the second

case ξip2s
= ξ−i. That means O = (ξi)〈φ

s〉 has length 1,2 or 4.
If O has length 1, or O has length 2 and (ξi)φs

= ξ−i, then eH yields Con-
struction 7.22(2). If O has length 2 and (ξi)φs 6= ξ−i, or O has length 4 and
ξip2s

= ξ−i, then eH yields Construction 7.24(1) if i is even and Construction
7.24(2) if i is odd.

7.2 Dq+1 subgroups

Before dealing with the case where H∩PSL(2, q) = Dq+1 we need a new model
for the group action. Let K = GF(q2) for q = pf with primitive element ξ
and let F = {0} ∪ {(ξq+1)l | l = 0, 1, . . . , q − 2} ∼= GF(q). Then K is a 2-
dimensional vector space over F . The element ξ acts on K by multiplication
and induces an F -linear map. Moreover, the field automorphism ϕ of K of
order 2f mapping each element of K to its pth power is F -semilinear, that is,
ϕ preserves addition and for each x ∈ K, λ ∈ F , we have (λx)ϕ = λpxϕ. Then
ΓL(2, q) = 〈GL(2, q), ϕ〉. Note that ϕf is an F -linear map so ϕf ∈ GL(2, q).

We can identify the projective line X on which PGL(2, q) acts with
the elements of K modulo F , that is, X = {ξiF | i = 0, 1, . . . , q}. Then
PΓL(2, q) = 〈PGL(2, q), ϕ〉. Multiplication by ξ induces the map ξ̂ of order
q+1 and 〈ξ̂〉 is normalised by ϕ. Moreover, for each i, (ξiF )ϕf

= ξiqF = ξ−iF
and so ϕf inverts ξ̂. Hence 〈ξ̂, ϕf〉 ∼= D2(q+1).

Construction 7.26. Let X be the projective line modelled as above. Let
1 ≤ i < q+1

2
and e = {{1F, ξiF}, {1F, ξ−iF}} and let s be a positive in-

teger dividing f such that 〈ϕs〉 has {ξiF, ξ−iF} as an orbit on X. Let
G = 〈PGL(2, q), ϕs〉 and H = 〈ξ̂, ϕs〉 ∼= Cq+1 o C2f/s. Now 〈ϕs〉 fixes e
and has order 2f/s, which by Lemma 7.19 is the order of Ge. Hence Ge < H
and H is a maximal subgroup of G. Thus by Lemma 2.4, letting

P = eH =
{{
{xF, xξiF}, {xF, xξ−iF}

}
| x ∈ GF(q)\{0}

}
and P = PG, we obtain a G-primitive decomposition of J(q + 1, 2). The
divisors have valency 2 and hence are unions of cycles. These cycles have
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length the order of ξiF , which is q+1
(q+1,i)

. Thus each divisor is isomorphic to

(q + 1, i)C q+1
(q+1,i)

.

Lemma 7.27. Let (J(q+1, 2),P) be a G-primitive decomposition with PGL(2, q) 6
G 6 PΓL(2, q) such that, for P ∈ P, GP = NG(D2(q+1)). Then P is obtained
by Construction 7.26.

Proof. Since PΓL(2, q) = 〈PGL(2, q), ϕ〉 and ϕf ∈ PGL(2, q) we have G =
〈PGL(2, q), ϕs〉 for some s dividing f . Let L = 〈ξ̂, ϕf〉 ∼= D2(q+1). Then

NG(L) = 〈ξ̂, ϕs〉 ∼= Cq+1 o C2f/s and we may assume that H = GP =
NG(L). Let e ∈ P . Since H is transitive on X we may also assume that
e = {{1F, ξiF}, {1F, ξjF}} for some integers i and j. Since H1F = 〈ϕs〉 and
by Lemma 7.19, |Ge| = 2f/s, it follows that Ge 6 H if and only if 〈ϕs〉 has
{ξiF, ξjF} as an orbit on X. Since ϕf ∈ 〈ϕs〉 and maps ξiF to ξ−iF it follows
that j = −i. Since ξ−iF = ξq+1−iF we may assume that 1 ≤ i ≤ (q + 1)/2.
Moreover, if i = (q + 1)/2 then q is odd and ξ−(q+1)/2F = ξ(q+1)/2F . Thus
we may further assume that 1 ≤ i < (q + 1)/2. Hence P is as yielded by
Construction 7.26.

Next we need the following lemma about the normaliser in M(s, q) of a
subgroup Dq+1 in PSL(2, q).

Lemma 7.28. Suppose q = pf where f is even and p is an odd prime. Let
L = 〈ξ̂, ϕf〉 ∩ PSL(2, q) and G = M(s, q) for some divisor s of f/2. Then

(1). L = 〈ξ̂2, ϕf〉 ∼= Dq+1.

(2). If p ≡ 1 (mod 4) or s is even then NG(L) = 〈ξ̂2, ϕsξ̂〉, and is transitive
on the projective line.

(3). If p ≡ 3 (mod 4) and s is odd then NG(L) = 〈ξ̂2, ϕs〉, and has two
equal sized orbits on the projective line.

Proof. Now {1, ξ(q+1)/2} is a basis for K over F and we define φ : K → K
such that, for all λ1, λ2 ∈ F , (λ1 + λ2ξ

(q+1)/2)φ = λp
1 + λp

2ξ
(q+1)/2. Then

ΓL(2, q) = 〈GL(2, q), φ〉. Now ϕ = φg for some g ∈ GL(2, q). Since ϕ and
φ fix 1, so does g. Moreover, φ fixes ξ(q+1)/2 while (ξ(q+1)/2)ϕ = ξp(q+1)/2 =

ξ
(p−1)(q+1)

2 ξ
q+1
2 . Note that ξ

(p−1)(q+1)
2 ∈ F and so ξ(q+1)/2 is an eigenvector for

g. Thus with respect to the basis {1, ξ(q+1)/2}, the element g is represented
by the matrix (

1 0

0 ξ
(p−1)(q+1)

2

)
.
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Furthermore, ϕf is represented by the matrix(
1 0
0 −1

)
.

Recall that an element of GL(2, q) induces an element of PSL(2, q) if and
only if its determinant is a GF(q)-square. Since q ≡ 1 (mod 4) it follows

that ϕf ∈ PSL(2, q). Observe that 〈ξ̂2〉 ∼= C(q+1)/2 and since ϕf inverts ξ̂

it also inverts ξ̂2. Hence L is as in part 1 of the lemma. Moreover, L has
two orbits on the projective line X, these being {1F, ξ2F, . . . , ξq−1F} and
{ξF, ξ3F, . . . , ξqF}.

Now ϕ = φg and g ∈ PSL(2, q) if and only if p ≡ 1 (mod 4). Recall that
G = M(s, q) = 〈PSL(2, q), φst〉 for any t ∈ PGL(2, q) \ PSL(2, q). Suppose
first that p ≡ 1 (mod 4). Then ϕ = φg with g ∈ PSL(2, q) and so G =
〈PSL(2, q), ϕsξ̂〉. When p ≡ 3 (mod 4) we have ϕ = φg with g ∈ PGL(2, q) \
PSL(2, q). Thus for odd s we have G = 〈PSL(2, q), ϕs〉 while for even s we

have G = 〈PSL(2, q), ϕsξ̂〉. Now (ϕf )ϕsξ̂ = (ϕf )ξ̂ = ϕf ξ̂−ps+1 ∈ L. Hence for
p ≡ 1 (mod 4) or s even we have NG(L) = 〈ξ̂2, ϕsξ̂〉. Since ϕsξ̂ interchanges
the two L-orbits on X, NG(L) is transitive on X and so we have proved
part 2. For p ≡ 3 (mod 4) and s odd we have NG(L) = 〈ξ̂2, ϕs〉. Since
ϕs fixes each L-orbit it follows that NG(L) has two orbits and the proof is
complete.

Construction 7.29. Let q = pf where p is odd and f even and let G =
M(s, q) for some divisor s of f/2. Suppose that either p ≡ 1 (mod 4) or s is
even. Let 1 ≤ i < (q+1)/2 such that 〈ϕ2s〉 has {ξiF, ξ−iF} as an orbit on X.
Let H = 〈ξ̂2, ϕsξ̂〉 and e = {{1F, ξiF}, {1F, ξ−iF}}. Now 〈ϕ2s〉 fixes e, lies
in G, and has order f/s. Since this is the same order as Ge (Lemma 7.19) it
follows that Ge < H. Hence by Lemma 2.4, letting P = eH and P = PG we
obtain a G-primitive decomposition.

(1). Suppose first that i is even. Then H{1F,ξiF} = 〈ϕf ξ̂i, ϕ4s〉 whose orbit
containing {1F, ξ−iF} is {{1F, ξ−iF}, {ξiF, ξ2iF}}. Thus P has va-
lency 2 and so is a union of cycles of length the order of ξ̂i, that is,
P ∼= (q + 1, i)C q+1

(q+1,i)
.

(2). Suppose now that i is odd. An element of H mapping 1F to ξiF is
of the form h = ϕstξ̂i with t odd. Since 〈ϕ2s〉 has {ξiF, ξ−iF} as an
orbit on X, we have that h maps ξiF onto ξi(1+ps)F or onto ξi(1−ps)F ,
according as t ≡ 1 or 3 (mod 4) respectively. Hence, for h to map ξiF
onto 1F , we need q+1 to divide i(1+ps) or i(1−ps) respectively. Since
p2s − 1 divides pf − 1 = q − 1, it follows that gcd(q + 1, ps + 1) = 2
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and gcd(q + 1, ps − 1) = 2, and so q+1
2

must divide i in all cases, a
contradiction. Hence H{1F,ξiF} = H1F,ξiF = 〈ϕ4s〉, which also fixes
ξ−iF . Thus P is a matching with q + 1 edges.

Construction 7.30. Let p ≡ 3 (mod 4) and let G = M(s, q) for q = pf and
s an odd divisor of f/2. Let 1 ≤ i < (q+1)/2 such that 〈ϕ2s〉 has {ξiF, ξ−iF}
as an orbit on X. Let H = 〈ξ̂2, ϕs〉 and e = {{1F, ξiF}, {1F, ξ−iF}}. Now
〈ϕ2s〉 fixes e, lies in G and has order f/s. Since this is the same order as Ge

(Lemma 7.19) it follows that Ge < H and so by Lemma 2.4, letting P = eH

and P = PG, we obtain a G-primitive decomposition.

(1). Suppose first that i is even. Then H{1F,ξiF} = 〈ϕf ξ̂i, ϕ4s〉 and the H-
orbit containing {1F, ξ−iF} has length 2. Thus P is a union of cycles
of length the order of ξ̂i, so P ∼= (q + 1, i)C q+1

(q+1,i)
.

(2). If i is odd then 1F and ξiF lie in different H-orbits and so H{1F,ξiF} =
H1F,ξiF = 〈ϕ4s〉 which also fixes ξ−iF . Thus P is a matching with q +1
edges.

Construction 7.31. Let p ≡ 3 (mod 4) and let G = M(s, q) for q = pf

and s an odd divisor of f/2. Let 1 ≤ i < q+1
2

such that 〈ξ̂−1ϕ2sξ̂〉 has

{ξi+1F, ξ−i+1F} as an orbit on X. Let H = 〈ξ̂2, ϕs〉 and e = {{ξF, ξi+1F}, {ξF, ξ−i+1F}}.
Now 〈ξ̂−1ϕ2sξ̂〉 6 H, fixes e, and has the same order as Ge. Thus Ge < H
and so by Lemma 2.4, letting P = eH and P = PG, we obtain a G-primitive
decomposition.

(1). Suppose first that i is odd. Then ξF and ξi+1F lie in different H-orbits.
Hence H{ξF,ξi+1F} = HξF,ξi+1F = 〈ξ̂−1ϕ4sξ̂〉 which also fixes ξ−i+1F and
so P is a matching with q + 1 edges.

(2). If i is even then ϕf ξ̂i+2 ∈ H interchanges ξF and ξi+1F , and so
H{ξF,ξi+1F} = 〈ξ̂−1ϕ4sξ̂, ϕf ξ̂i+2〉, whose orbit containing {ξF, ξ−i+1F}
has size 2. Hence P is a union of cycles of length the order of ξ̂i. Thus
P = (q + 1, i)C q+1

(q+1,i)
.

Lemma 7.32. Let P be an M(s, q)-primitive decomposition of J(q+1, 2) with
divisor stabiliser NM(s,q)(Dq+1). Then P can be obtained from Construction
7.29, 7.30 or 7.31.

Proof. Let G = M(s, q) and suppose first that q = pf where p ≡ 1 (mod 4)
or s is even. We may assume that H = 〈ξ̂2, ϕsξ̂〉 by Lemma 7.28. Let
e ∈ P ∈ P. By Lemma 7.28 again, H is transitive on X and so we can
assume that e = {{1F, ξiF}, {1F, ξjF}} for some i and j. Now H1F = 〈ϕ2s〉,
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which has order f/s. By Lemma 7.19, this is the same order as Ge. Hence
Ge < H if and only if H1F = Ge, which holds if and only if {ξiF, ξjF} is an
orbit of 〈ϕ2s〉. Since ϕf ∈ 〈ϕ2s〉 and maps ξiF to ξ−iF it follows that j = −i
and we may assume as before that 1 ≤ i < (q + 1)/2. Thus P comes from
Construction 7.29.

Suppose now that p ≡ 3 (mod 4) and s is odd. Then by Lemma 7.28,
we may assume that H = 〈ξ̂2, ϕs〉. Let e ∈ P ∈ P . By Lemma 7.28, H
has 2 orbits on X and so we may assume that e = {{1F, ξiF}, {1F, ξjF}}
or {{ξF, ξi+1F}, {ξF, ξj+1F}}. Suppose that e is the first edge. Now H1F =
〈ϕs〉 which has order 2f/s while Ge has order f/s by Lemma 7.19. Since
H1F has a unique subgroup of order f/s it follows that Ge < H if and only
if Ge = 〈ϕ2s〉, that is, if and only if 〈ϕ2s〉 has {ξiF, ξjF} as an orbit on X.
Since ϕf ∈ 〈ϕ2s〉 we have j = −i and may assume 1 ≤ i < (q + 1)/2. It
follows that P is as constructed in Construction 7.30. If on the other hand
e = {{ξF, ξi+1F}, {ξF, ξj+1F}}, then HξF = 〈x̂i

−1
ϕsξ̂〉 which has order 2f/s.

Its only index two subgroup is 〈ξ̂−1ϕ2sξ̂〉 and so by order arguments again this
must have {ξi+1F, ξj+1F} as an orbit. Since ξ̂−1ϕf ξ̂ ∈ 〈ξ̂−1ϕ2sξ̂〉 and maps
ξi+1F to ξ−i+1F it follows that j = −i. Once again we have 1 ≤ i < q+1

2
.

Hence P is as given by Construction 7.31.

7.2.1 S4-subgroups

First we have the following lemma on the orbit lengths of an S4 subgroup of
PGL(2, q) which we have adapted from [8].

Lemma 7.33. [8, Lemma 10] Let q = p ≡ ±3 (mod 8), q > 3, G =
PGL(2, q) acting on the projective line X, and H a subgroup of G isomorphic
to S4. Then H has the following orbits of length less than 24 on X.

(1). If q ≡ 5 (mod 24), then H has one orbit of length 6.

(2). If q ≡ 11 (mod 24), then H has one orbit of length 12.

(3). If q ≡ 13 (mod 24), then H has one orbit of length 6 and one of length
8.

(4). If q ≡ 19 (mod 24), then H has one orbit of length 8 and one of length
12.

Construction 7.34. Let X = {∞} ∪GF(q) be the projective line.

(1). Let q ≡ ±3 (mod 8) be a prime (q > 3) and H = S4. Let P =
{{{x, y1}, {x, y2}}H with (|xH |, |y1|H) = (6, 8), (6, 24), (12, 8) or (12, 24),
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and there exists in Hx an element switching y1 and y2. Let P =
PPGL(2,q). Then by Lemma 2.4, (J(q+1, 2),P) is a PGL(2, q)-primitive
decomposition. Since |{x, y1}|H = 24, the stabiliser in H of {x, y1} is
trivial. Hence the divisors are isomorphic to 12K2.

(2). Let q ≡ 5 (mod 8) be a prime and H = S4. Let P = {{x, y1}, {x, y2}}H

where x, y1, y2 all lie in an H-orbit of length 6 and there exists in Hx an
element switching y1 and y2. By Lemma 7.33, there is a unique orbit
of O6 of length 6. The group H acts imprimitively on O6 with blocks
of size 2, and Hx

∼= C4 contains an element interchanging y1, y2 if and
only if {y1, y2} is a block not containing x. Moreover, P ∼= 3C4. Let
P = PPGL(2,q). Then by Lemma 2.4 (J(q + 1, 2),P), is a PGL(2, q)-
primitive decomposition.

(3). Let q ≡ 3 (mod 8) be a prime and H = S4. Let P = {{x, y1}, {x, y2}}H

where x, y1, y2 all lie in an H-orbit of length 12 and and there exists
in Hx an element switching y1 and y2. By Lemma 7.33, there is a
unique orbit O12 of length 12. We can see this action as S4 acting
on ordered pairs, denoted by [a, b]. Then for x = [1, 2] ∈ O12, Hx

is the transposition (3, 4) in S4. It fixes one remaining point of O12,
namely [2, 1] and interchanges the 5 pairs {[2, 3], [2, 4]}, {[3, 1], [4, 1]},
{[1, 3], [1, 4]}, {[3, 2], [4, 2]}, and {[3, 4], [4, 3]}. If we take {y1, y2} as in
the first two cases, then the stabiliser in H of {x, y1} is trivial and so we
get a matching 12K2 in each case. In the last three cases, the stabiliser
in H of {x, y1} has order 2, and we get unions of cycles. It is easy to
see that in the third and fourth case, we get 4C3, while in the last case
we get 3C4. Let P = PPGL(2,q). Then by Lemma 2.4, (J(q + 1, 2),P) is
a PGL(2, q)-primitive decomposition.

Lemma 7.35. Let (J(q + 1, 2),P) be a G-primitive decomposition with G =
PGL(2, q) for q = p ≡ ±3 (mod 8) with q ≥ 5 and given P ∈ P we have
GP

∼= S4. Then P is obtained by Construction 7.34(1) (2) or (3).

Proof. Let P ∈ P and H = GP
∼= S4. If {x, y} ⊆ X with x and y in

different H-orbits of length 24 then |{x, y}H | = 24 and that orbit contains
no edges of J(q + 1, 2). Thus if x and y come from different H-orbits O1

and O2 respectively, we may assume by Lemma 7.33, that |O1| < |O2| and so
{x, y}H has length lcm(|O1|, |O2|) and contains edges. Moreover, H contains
the stabiliser in G of such an edge {{x, y1}, {x, y2}} if and only if Hx contains
an element interchanging y1 and y2. If x is in an orbit of size 8 then |Hx| = 3
and so no such element exists, and if x is in an orbit of size 24 then |Hx| = 1
and so no such element exists. Thus the possibilities for (|O1|, |O2|) are (6, 8),
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(6, 24), (8, 12) or (12, 24). In the first two cases x must be in the orbit of
length 6 and in the last two cases x must be in the orbit of length 12. Thus
we get the decomposition of Construction 7.34(1).

Suppose now e = {{x, y1}, {x, y2}} is an edge such that x, y1, y2} lie in
the same H-orbit Oi. Then H contains Ge if and only if Hx interchanges y1

and Y2. Thus |Hx| is even and so |Oi| 6= 8, 24. If q ≡ 5 (mod 8) and Oi is
the unique orbit of size 6 then we obtain the decomposition in Construction
7.34(2). If q ≡ 3 (mod 8) and Oi is the unique orbit of size 12 then we obtain
the decompositions in Construction 7.34(3).

7.2.2 Subfield subgroups

Suppose now that q = qr
0. Then S = {∞} ∪ GF(q0) is a subset of the

projective line X = {∞}∪GF(q) which is an orbit of the subgroup PΓL(2, q0)
of PΓL(2, q). Notice that φ fixes the set S. Moreover, by [9, I, Example
3.23], if B = SPGL(2,q) then (X,B) is a S(3, q0 + 1, q + 1) Steiner system.
Since φ fixes S and PΓL(2, q) = 〈PGL(2, q), φ〉 it follows that B = SPΓL(2,q).
Thus by Lemma 2.11, we can construct a PΓL(2, q)-transitive decomposition
of J(q + 1, 2) with divisors isomorphic to J(q0 + 1, 2). The stabiliser of a
divisor is PΓL(2, q0). Moreover, this decomposition is G-transitive for any
3-transitive subgroup G of PΓL(2, q). For further constructions we need the
orbits of PGL(2, q0) on GF(q) \GF(q0).

Lemma 7.36. [8, Lemma 14] Let q = qr
0 for some prime r and let H =

{ta,b,c,d | a, b, c, d ∈ GF(q0), ad−bc 6= 0}. If r is odd then H acts semiregularly
on GF(q)\GF(q0), while if r = 2 then H has a unique orbit of length q0(q0−1)
on GF(q) \GF(q0).

Construction 7.37. Let X = {∞} ∪ GF(q) be the projective line. Let
q = qr

0 for some prime r, with q0 6= 2 and r is odd if q is odd. Let
e = {{∞, w1}, {∞, w2}} such that w1, w2 ∈ GF(q) \ GF(q0) but w1 + w2 ∈
GF(q0). Let l be a positive integer such that φl fixes {w1, w2}. Then let
G = 〈PGL(2, q), φl〉 and H = 〈PGL(2, q0), φ

l〉. Let P = eH and P = PG.
Then by Lemma 7.19, Ge = 〈t−1,w1+w2,0,1, φ

l〉 which is in H. Therefore by
Lemma 2.4, (J(q + 1, 2),P) is a G-primitive decomposition. The stabiliser
H{∞,w1} fixes ∞ and w1 as they are in different H-orbits. We claim that
PGL(2, q0)∞,w1 = 1. Indeed, an element in that subgroup must be of the
form ta,b,0,1 with a, b ∈ GF(q0), whose only fixed point is b

1−a
∈ GF(q0) if it is

not the identity. Hence there is a unique element of PGL(2, q0)∞ interchang-
ing w1 and w2, this being t−1,w1+w2,0,1. Then as φl fixes {w1, w2} and ∞, it

follows that H∞,w1 fixes w2. Hence P is isomorphic to
q0(q2

0−1)

2
K2.
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Lemma 7.38. Let (J(q + 1, 2),P) be a G-primitive decomposition with G
containing PGL(2, q) such that for P ∈ P, GP

∼= NG(PGL(2, q0)) where
q = qr

0 for some prime r, with q0 6= 2, and r is odd if q is odd. Then P is
obtained by Construction 2.10 or 7.37.

Proof. By Theorem 7.16, P is also a PGL(2, q)-primitive decomposition so
we may suppose that G = PGL(2, q) and H = GP = {ta,b,c,d | a, b, c, d ∈
GF(q0), ad−bc 6= 0}. We have already seen that H has the orbit {∞}∪GF(q0)
of length q0 + 1 on X. Moreover, by Lemma 7.36, when r is odd, H has
qr−3
0 + qr−5

0 + · · · + q2
0 + 1 other orbits, all of length q0(q

2
0 − 1), while when

r = 2 there is a unique other orbit, of length q0(q0 − 1).
Suppose that H contains the stabiliser in G of the edge e = {{v, w1}, {v, w2}}.

Then Hv contains the unique nontrivial element interchanging w1 and w2 (see
Lemma 7.19). Now v must lie in the unique orbit of length q0 + 1. For, if r
is odd and v lies in an orbit of length q0(q

2
0 − 1) then Hv = 1, while if r = 2

and v lies in the orbit of length q0(q0 − 1) then |Hv| = q0 + 1 which is odd.
Without loss of generality we may suppose that v = ∞.

Now Ge = 〈t−1,w1+w2,0,1〉, so Ge 6 H if and only if w1 + w2 ∈ GF(q0). If
w1 and w2 lie in the orbit of length q0 + 1, that is, are in GF(q0) then we
obtain the decomposition from Construction 2.10, which is in fact preserved
by PΓL(2, q). If w1 /∈ GF(q0) and w2 = a − w1 for a ∈ GF(q0), then we get
the decomposition obtained from Construction 7.37. If φl fixes {w1, w2} then
it fixes e. Moreover, φl normalises H and so fixes P = eH . Hence P is also
preserved by 〈PGL(2, q), φl〉.

Construction 7.39. Let G = M(s, q) and let X = {∞}∪GF(q) be the pro-
jective line. Let q = qr

0 for some odd prime r and let H = 〈PSL(2, q0), φ
stµ,0,0,1〉

where µ is a primitive element of GF(q0). Assume gcd( q−1
q0−1

, p2s−1) 6= 1, w1+

w2, (w2 − w1)
p2s−1 ∈ GF(q0), w1, w2 /∈ GF(q0). Let e = {{∞, w1}, {∞, w2}},

P = eH and P = PG. Then by Lemma 2.4, (J(q + 1, 2),P) is a G-primitive
decomposition (see below). The stabiliser H{∞,w1} fixes ∞ and w1 as they
are in different H-orbits. What are the divisors?

Lemma 7.40. Let (J(q + 1, 2),P) be a G-primitive decomposition with G =
M(s, q) and for P ∈ P we have that GP = NG(PSL(2, q0)) where q = qr

0 for
some odd prime r. Then P is obtained by Construction 2.10 or 7.39.

Proof. First note that for a primitive element µ of GF(q0) we have tµ,0,0,1 ∈
PGL(2, q) \ PSL(2, q) and so φstµ,0,0,1 ∈ G. Such an element normalises
PSL(2, q0) = {ta,b,c,d | a, b, c, d ∈ GF(q0), ad − bc = �} and so we can let
H = GP = 〈PSL(2, q0), φ

stµ,0,0,1〉. Let X = {∞} ∪ GF(q). Then one orbit
of H on X is {∞} ∪ GF(q0). Since H is maximal in G, H is exactly the
stabiliser in G of {∞} ∪GF(q0).
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Suppose that H contains Ge for some edge e = {{v, w1}, {v, w2}}. Then
by Lemma 7.19, H contains an element of PSL(2, q), and hence of PSL(2, q0),
which fixes v and interchanges w1 and w2. Since, by Lemma 7.36, PSL(2, q0)
acts semiregularly on GF(q)\GF(q0), it follows that v ∈ {∞}∪GF(q0). With-
out loss we may suppose that v = ∞. By Lemma 7.19, Ge = 〈t−1,w1+w2,0,1, (φ

2s)g〉
with g = tw2−w1,w1,0,1. This means that

t1,−w1,0,w2−w1φ
2stw2−w1,w1,0,1 = φ2st

1,−wp2s

1 ,0,(w2−w1)p2s tw2−w1,w1,0,1

= φ2st
w2−w1,−(w2−w1)wp2s

1 +w1(w2−w1)p2s
,0,(w2−w1)p2s

= φ2st
1,w1(w2−w1)p2s−1−wp2s

1 ,0,(w2−w1)p2s−1
∈ H.

Since φ2s ∈ H, it follows that

t
1,w1(w2−w1)p2s−1−wp2s

1 ,0,(w2−w1)p2s−1
∈ PSL(2, q0),

and so (w2 − w1)
p2s−1 ∈ GF(q0) and w1(w2 − w1)

p2s−1 − wp2s

1 ∈ GF(q0).
Let w1 + w2 = a ∈ GF(q0) and w2 − w1 = u with up2s−1 = b ∈ GF(q0).

Then w1(w2 − w1)
p2s−1 − wp2s

1 = a−u
2

b − ap2s−up2s

2p2s = ab−ap2s

2
∈ GF(q0) (we

used the fact that 2p2s
= 2 since 2 ∈ GF(p)). We just proved that if w1 +

w2, (w2 − w1)
p2s−1 ∈ GF(q0) then Ge 6 H for e = {{∞, w1}, {∞, w2}}. This

is of course satisfied if w1, w2 ∈ GF(q0), and then we get Construction 2.10,
as G is transitive on B.

Now assume w1, w2 /∈ GF(q0). Then we must have w2 − w1 /∈ GF(q0).

We know that elements of GF(q0) are the powers of µ = ξ
q−1
q0−1 where ξ is a

primitive element of GF(q). Therefore up2s−1 ∈ GF(q0) with u /∈ GF(q0) has
solutions if and only if gcd( q−1

q0−1
, p2s − 1) = d 6= 1, in which case u is a power

of ξ
q−1

d(q0−1) . Thus we obtain Construction 7.39.
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