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Particle capture, whereby suspended particles contact and adhere to a solid surface
(a ‘collector’), is important in a range of environmental processes including suspension
feeding by corals and ‘filtering’ by aquatic vegetation. Although aquatic particles are often
considered as perfect tracers when estimating capture efficiency, the particle density-ratio
(ρ+) -the ratio of the particle density to the fluid density- can significantly affect capture.
In this paper, we use a numerical analysis of particle trajectories to quantify the influence
of ρ+ on particle capture by circular collectors in a parameter space relevant to aquatic
systems. As it is generally believed that inertia augments the capture efficiency when the
Stokes number (St) of the particles exceeds a critical value, we first estimate the critical
Stokes number for aquatic-type particles and demonstrate its dependence on both ρ+

and the Reynolds number (Re). Second, we analyse how efficiently circular collectors
can capture neutrally-buoyant (ρ+ = 1), sediment-type (ρ+ = 2.6) and weakly-buoyant
(ρ+ = 0.9) aquatic particles. Our analysis shows that, for ρ+ > 1, inertia can either
augment or diminish capture efficiency, and inertial effects appear well before the critical
Stokes number is reached. The role of particle inertia is maximised at Stokes numbers
above the critical value and, for sediment-particles, can result in as much as a four-fold
increase in the rate of capture relative to perfect tracers of the same size. Similar but
opposite effects are observed for weakly-buoyant particles, where capture efficiency can
decrease by 60% relative to the capture of perfect tracers.

Key words: Authors should not enter keywords on the manuscript, as these must
be chosen by the author during the online submission process and will then be added
during the typesetting process (see http://journals.cambridge.org/data/relatedlink/jfm-
keywords.pdf for the full list)

1. Introduction

‘Particle capture’ is the process by which particles in suspension contact a solid struc-
ture (‘collector’) and adhere to its surface. This process is of great ecological importance
as it controls the feeding and the reproduction of many aquatic organisms (Shimeta & Ju-
mars 1991; Harvey et al. 1995; Wildish & Kristmanson 1997; Ackerman 2006), as well as
the ‘filtering’ of suspended particles by aquatic vegetation (Palmer et al. 2004). Particle
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Figure 1. Steady flow conceptualisation of the capture of finite-size particles influenced by
inertia (ρ+ > 1). Particles are considered to be captured if they contact the collector. As the
trajectories of particles influenced by inertia (indicated in black) do not coincide with the flow
streamlines (indicated in grey), the capture efficiency (ηρ+>1) differs from the perfect-tracer
value (ηPT ). The limiting streamlines -the outermost streamlines that allow capture and which
define ηPT for perfect tracers of the same size (Espinosa-Gayosso et al. 2012, 2013)- are indicated
with dotted lines. The Cartesian coordinate system (x, y, z) and the direction of the angular
measures α and θ, used for presenting our results, are also indicated.

trajectories, and therefore particle capture, can be affected by the particle density-ratio

ρ+ =
ρp
ρ
, (1.1)

where ρp is the particle density and ρ is the fluid density. Despite its relevance to ecological
function, particle-density effects have yet to be described in a parameter space relevant
to aquatic environments.

The process of particle capture is typically described for simplified geometries. Col-
lectors (such as vegetation stems or the capturing filaments of suspension feeders) are
modelled as cylinders, and particles (such as phytoplankton or suspended sediment) are
modelled as spheres (figure 1). After a particle contacts the collector surface, it needs
to be retained by an adhesive mechanism. Here, we consider perfect particle-collector
adhesion, and all particles are assumed to be captured when they contact the cylinder
surface. This is a reasonable assumption as the periphyton layer that grows over aquatic
vegetation surfaces (Borowitzka & Lethbridge 1989; Palmer et al. 2004) and the mucous
layer present on the collecting structures of suspension feeders (Shimeta & Koehl 1997)
facilitate retention.

Traditionally, three different mechanisms of particle capture have been identified to
occur on vertically-oriented collectors (Hinds 1982): (i) ‘direct interception’, where the
particle makes contact with the collector due to its finite size, (ii) ‘inertial impaction’,
where the density influences its trajectory and promotes contact with the collector (figure
1), and (iii) ‘diffusional deposition’, where particle-collector contact is driven by random
motions (such as Brownian motion). Following our previous work (Espinosa-Gayosso
et al. 2012, 2013), we study the capture of aquatic particles with diameters outside the
colloidal range (i.e. we deal with the capture of plankton, larvae, pollen or sediment with
diameters of 100µm or higher), a particle size range relevant to a variety of processes in
aquatic systems (Espinosa-Gayosso et al. 2012). In aquatic systems, diffusional deposi-
tion is important only for colloids and other micron-sized particles such as nanoplankton,
bacteria and viruses (Shimeta 1993), and is not considered here. For particles floating on
the free surface, the additional mechanism of ‘capillary interception’ has been identified
(Peruzzo et al. 2013); but as our work focuses on the capture of particles in suspension,
this mechanism is not considered here. We have recently obtained a complete description
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of the capture of perfect tracers (which are captured exclusively by the ‘direct intercep-
tion’ mechanism) covering a range of particle sizes and flow conditions relevant to aquatic
systems (Espinosa-Gayosso et al. 2012, 2013). In the present study, we extend this work
by considering the effects of the particle density-ratio on the capture of aquatic-type
particles.

For a cylindrical collector, the capture efficiency (η) can be defined as the ratio of the
number of particles captured (Nc) to the number of particles whose centres would have
passed through the space occupied by the collector were it not present in the flow (Na):

η =
Nc
Na

. (1.2)

Note that the definition of capture efficiency (1.2) allows efficiencies to be greater than
1 (see also Espinosa-Gayosso et al. (2012, 2013)); this occurs when particles with centres
outside the space defined by the collector diameter are intercepted due to their finite
size. The maximum possible capture efficiency is thus

ηmax = 1 + rp, (1.3)

where rp is the particle size ratio, defined as

rp =
Dp

D
≡ Rp

R
. (1.4)

Here, Dp and Rp are the particle diameter and radius, and D and R are the collector di-
ameter and radius, respectively. When only direct interception and inertial impaction are
considered, the capture efficiency of finite-size particles depends upon three parameters:

η = η(rp, ρ
+,Re), (1.5)

where Re is the Reynolds number of the collector,

Re =
ρU∞D
µ

. (1.6)

Here, U∞ is the uniform upstream fluid velocity and µ is the fluid viscosity.
The parameter typically chosen to represent the importance of particle inertia is the

Stokes number (St) (Friedlander 2000). The definition of St incorporates rp, ρ
+ and Re:

St =
ρpD

2
pU∞

9µD
=
ρ+r2pRe

9
. (1.7)

Inertial impaction is typically thought to become dominant once St exceeds a critical
value. The existence of a critical Stokes number for aerosols (Stc,ae) was first demon-
strated by Taylor (1940), who analysed aerosol particles (ρ+ � 1) of negligible size (i.e.
ideal ‘point’ particles with finite St) approaching an object along the stagnation stream-
line. The critical Stokes number defines the minimum necessary St for point particles
(initially with the same velocity as the fluid) to reach the stagnation point. For inviscid
flow and a cylindrical collector, Taylor (1940) found that aerosol particles reached the
collector in a finite time only if the Stokes number was above Stc,ae,inv = 1/8. For vis-
cous flow, it has been recognized that the critical Stokes number (Stc,ae,ν) varies with
Reynolds number (Langmuir 1948; Davies & Peetz 1956; Matsufuji & Hasegawa 1986;
Lesnic et al. 1994; Phillips & Kaye 1999) and accurate values for Re 6 1000 have not yet
been determined. There are no reported values of the critical Stokes number for particles
with ρ+ ∼ O(1), typical of aquatic systems.

There has been considerable analytical and experimental research into the effects of
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inertia on the capture of aerosols (see, e.g., Davies & Peetz (1956); Fuchs (1964); Fernan-
dez de la Mora & Rosner (1982); Fernandez de la Mora (1986); Wessel & Righi (1988);
Flagan & Seinfeld (1988); Friedlander (2000); Haugen & Kragset (2010)). However, such
studies are not applicable to aquatic systems as they are characterised by one or more
of the following conditions: (i) very high particle density ratios (ρ+ � 1), (ii) a focus
on a narrow range of flow conditions (usually inviscid or creeping flow fields, which can
be described analytically), (iii) neglect of the finite particle size (rp � 1), and/or (iv)
a focus on a range of St where inertial impaction is entirely dominant. In aquatic sys-
tems, the particles of interest have a density similar to that of water (ρ+ ∼ O(1) and
may even be positively-buoyant (ρ+ < 1)), the flow conditions cover a wide range of Re
(0 < Re . 1000), particle sizes can be of the order of the collector diameter (rp ∼ O(1)),
and St is in a range where particle-density effects may be highly variable. The effects
of the particle density-ratio on particle capture have yet to be described in a parameter
space relevant to aquatic systems.

As the particle density-ratio ρ+ ∼ O(1), the equations of motion for aquatic-type
particles cannot be simplified to the equations typically used for aerosols (Babiano et al.
2000) (see §2.2). Indeed, for negatively-buoyant particles (ρ+ > 1), the dynamics of
aquatic-type particles are very different to those of aerosols over a wide range of flow
conditions (Babiano et al. 2000; Haller & Sapsis 2008). For positively-buoyant particles
(ρ+ < 1), the differences are even more evident, as particles tend to drift towards the
centre of curvature of the fluid pathlines in a centripetal, instead of centrifugal, manner
(Maxey 1987). In this paper, we analyse how the particle density-ratio modifies both
the capture efficiency and the critical Stokes number in aquatic systems. We extend the
classical approach of Taylor (1940) to aquatic-type particles in inviscid and viscous flow to
determine the dependence of the critical Stokes number on ρ+ and Re. For completeness,
we also evaluate the critical Stokes number for aerosols when Re 6 1000. We use a
numerical scheme to evaluate the effects of ρ+ on the capture efficiency of aquatic-type
particles by calculating their Lagrangian trajectories in mean flow fields (with time and
axial averages obtained from direct numerical simulation (DNS)). Finally, we compare
the capture efficiencies to those when perfect tracers are considered (i.e. pure direct
interception, Espinosa-Gayosso et al. (2012, 2013)) and discuss the reasons behind the
differing behaviours.

2. Basic equations of motion and numerical methods

2.1. Equations of fluid motion

The governing equations are the continuity and Navier-Stokes equations for incompress-
ible flow. Here they are non-dimensionalized with the uniform free-stream velocity U∞
as the velocity scale, and the radius of the collector R as the length scale:

∇ · u = 0 (2.1)

and
∂u

∂t
+ (∇u)u = −∇p+

2

Re
∇2u, (2.2)

where u is the non-dimensional fluid velocity vector, p is the non-dimensional pressure,
t is the non-dimensional time and Re is the Reynolds number based on the diameter of
the collector, as defined in (1.6).

Most results are presented in a non-dimensional cylindrical coordinate system (r, θ, z)
with the z-axis coincident with the axis of the collector and θ is measured anti-clockwise
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(figure 1). When relevant, results are presented in a non-dimensional Cartesian coordinate
system (x, y, z) with the origin and the z-axis coincident with the cylindrical system.

2.2. Equations of particle motion

As in existing studies of particle capture influenced by inertia (Davies & Peetz 1956;
Friedlander 2000; Haugen & Kragset 2010), we do not consider either particle motion,
fluid motion or variation in collector geometry in the vertical direction, hence allowing
a two-dimensional representation of this process. We also neglect the influence of the
particles on the fluid motion, but we do consider the influence of the fluid flow on parti-
cle motion. Particle-particle interaction effects are neglected, as particle concentrations
in aquatic systems are typically low. Our methodology also assumes that forces on the
particles, such as lift induced by shear, ‘short-range’ (such as van der Waals or electrical
double-layer) forces, and hydrodynamic repulsion to contact, may be neglected to leading
order. These assumptions have been tested in our previous work, where excellent agree-
ment (within 6%, on average) was obtained between existing experimental data and our
capture efficiency estimates within the ranges 1 . Re . 500 and 0.01 . rp . 1.5 (the
reader is referred to figure 6 in Espinosa-Gayosso et al. (2012) and figure 7 in Espinosa-
Gayosso et al. (2013)).

The Lagrangian equations for each particle (Maxey & Riley 1983; Auton et al. 1988;
Babiano et al. 2000) can thus be written in non-dimensional form as:

dxcp
dt

= vcp (2.3)

dvcp
dt

= −fns
St

(vcp − ucp) +
1

ρ+
Ducp
Dt

− 1

2ρ+

(
dvcp
dt
− Ducp

Dt

)
(2.4)

where xcp is the non-dimensional position vector of the centre of the particle, vcp is the
non-dimensional velocity of the particle and ucp = u (x = xcp(t), t) is the fluid velocity at
the position of the particle at any instant (consistent with the assumption that particles
do not disturb the fluid); (vcp − ucp) therefore represents the velocity of the particle
relative to the fluid. The three terms on the right of (2.4) describe the horizontal forces
acting on the particle: the quasi-steady drag, the fluid acceleration and the added mass
effect, respectively. We neglect the additional forces due to Faxén corrections and Basset-
Boussinesq history, as our flow conditions (see §2.3) are not highly variable in space or
time and their contribution to the particle dynamics becomes of second order (Maxey
1987). The quasi-steady drag term accounts for non-creeping flow conditions by the use
of a ‘non-Stokesian correction factor’ (Brandon & Aggarwal 2001):

fns = 1 +
1

6
Re2/3

p , (2.5)

where Rep is the Reynolds number of the particle, based on the particle diameter and on
the velocity of the particle relative to the fluid. The derivative Ducp/Dt is taken along
the path of a fluid element,

Ducp
Dt

=
∂ucp
∂t

+ (∇ucp)ucp, (2.6)

while the derivative ducp/dt is taken along the trajectory of the particle,

ducp
dt

=
∂ucp
∂t

+ (∇ucp)vcp. (2.7)
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Therefore,

Ducp
Dt

=
ducp
dt
− (∇ucp)(vcp − ucp). (2.8)

The particle momentum equation (2.4) can then be rewritten as

dvcp
dt

= −
(

2ρ+

2ρ+ + 1

)
fns
St

(vcp − ucp) +
3

2ρ+ + 1

Ducp
Dt

. (2.9)

For aerosols (ρ+ � 1), (2.9) can be further simplified to

dvcp
dt

= −fns
St

(vcp − ucp). (2.10)

However, for aquatic systems with ρ+ ∼ O(1), all the terms in (2.9) must be retained.
Following Babiano et al. (2000), we substitute (2.8) into (2.9) and rewrite it in terms of
the velocity of the particle relative to the fluid

d

dt
(vcp − ucp) = −

(
2ρ+

2ρ+ + 1

)
fns
St

(vcp−ucp)−
3

2ρ+ + 1
(∇ucp)(vcp−ucp)−

2 (ρ+ − 1)

2ρ+ + 1

ducp
dt

.

(2.11)
This form of the momentum equation shows that neutrally-buoyant particles (ρ+ = 1)
and perfect tracers are not necessarily synonymous. For ρ+ = 1, the last term on the
right hand side of (2.11) disappears, but particles behave as perfect tracers only if the
second term (the one containing the fluid velocity gradient) can also be neglected. In
that case, after some initial difference between the particle and the fluid velocities, the
relative particle velocity would decay exponentially with time (Babiano et al. 2000) and
particles would follow fluid paths exactly. But when either the fluid velocity gradient is
large (as in zones close to stagnation points, Babiano et al. (2000)) or when the particles
are not perfectly neutrally-buoyant, the two last terms on the RHS of (2.11) cannot be
neglected, and particle dynamics differ from both those of perfect tracers and those of
aerosols (2.10).

2.3. Mean fully-developed flow conditions

To estimate particle trajectories, mean fully-developed flow fields were first generated
through two- and three-dimensional DNS, solving (2.1) and (2.2) using the open-source
Navier-Stokes solver code OpenFOAM R©† v2.1.x, as described in Espinosa-Gayosso et al.
(2012, 2013). The regimes of uniform flow past a cylinder are well documented (Zdravkovich
1997). For Re . 5 the flow is steady and no recirculation bubble exists on the lee side.
A steady recirculation bubble (formed by two symmetric recirculation vortices) exists on
the lee side for 5 . Re . 47. Above this value of Re, the flow is unsteady and oscillatory
conditions are forced by the growth and shedding of lee side vortices. Oscillatory flow
conditions induced by vortex shedding are not exclusive to the wake region, and are ob-
served upstream of the cylinder (Espinosa-Gayosso et al. 2013). When Re > 180, the flow
in the wake becomes three-dimensional and 3D numerical solutions are needed to obtain
accurate flow fields close to the leading face (Espinosa-Gayosso et al. 2013). Calculation
of particle capture estimates in unsteady flow fields is very computationally expensive.
Therefore, in the range of unsteady flow conditions, DNS flow fields were first axially-
and time-averaged into mean flow fields before particle trajectories were calculated. For
Re > 180, at least 50 oscillation cycles of fully-developed flow were used for the temporal

† OpenFOAMR© is a registered trade mark of OpenCFD Limited, the producer of OpenFOAM
software.



Density-ratio effects on the capture of suspended particles in aquatic systems 7

averaging, as the flow is no longer perfectly time-periodic when three-dimensional vortex
shedding is present (Henderson 1997).

2.4. Numerical methods for estimating particle trajectories

Capture efficiencies and critical Stokes numbers were estimated with a Lagrangian ap-
proach by ‘seeding’ particles into the mean fully-developed flow solutions described in
§2.3. Both the mean fluid velocity and mean velocity gradient fields were imported into
MATLAB R©† release 2013b, and the particle trajectories calculated within the frame-
work of this numerical tool. This methodology was previously tested (Espinosa-Gayosso
et al. 2013), and it was found that estimates of capture using mean flow fields differed
by less than 1% from estimates using the full unsteady flow field. Although the use of
these mean flow fields does not precisely describe capture on the lee face of the collector,
experimental (Palmer et al. 2004) and numerical (Haugen & Kragset 2010) observations
show that this is not a significant component of the total capture (less than 5%).

For the particle capture estimates, ‘clouds’ of particles of finite size were seeded into the
computational domain upstream of the cylinder with an initial velocity equal to that of
the local fluid at the particles’ initial positions (i.e. vcp(t = 0) = ucp). For critical Stokes
number estimates, a single ‘point’ particle was seeded onto the stagnation streamline for
each St tested, and the St was incremented by 0.0001 until a particle was able to reach the
stagnation point. In the seeding zone, the fluid velocity was always within 0.01% of the
uniform flow condition, i.e. (u, v, w) ≈ (U∞, 0, 0). Particle trajectories were obtained by
integrating (2.3) and (2.11) using an algorithm based on the explicit Runge-Kutta (4,5)
pair formula of Dormand & Prince (1980). The fluid velocity and the velocity gradient
at the centre of the particles (ucp and ∇ucp) were obtained with a linear piecewise
spatial interpolation of the mean DNS fields, which generates continuous fields at any
position in the domain. The time-step was always small enough to satisfy an absolute
error tolerance of 1×10−6. Particles were deemed to be captured when they touched the
collector (i.e. when their centre came within one particle radius of the collector surface).
Capture efficiency was estimated using (1.2) after all the non-captured particles had
exited the domain.

3. The critical Stokes number

While the critical Stokes number is believed to indicate when inertia starts to affect the
capture of small particles (Phillips & Kaye 1999), inertial effects on particle trajectories
have been observed even when St is well below the critical value due to the compressibility
of the particle phase (Robinson 1956; Michael 1968; Fernandez de la Mora & Rosner 1982;
Fernandez de la Mora 1986). Strictly speaking, the critical Stokes number defines the
minimum necessary St for ideal ‘point’ particles (initially with the same velocity as the
fluid) to reach the collector when moving along the stagnation streamline. Taylor (1940)
estimated the critical Stokes number for aerosol particles in inviscid flow (Stc,ae,inv). In
this section, we extend Taylor’s analysis of aerosols to viscous flow at Re 6 1000 and to
aquatic-type particles with ρ+ ∼ O(1). We also evaluate the usage of the critical Stokes
number in particle capture estimates.

† MATLABR© is a registered trade mark of The MathWorks Inc., Natick, Massachusetts,
U.S.A.
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3.1. The critical Stokes number for aerosols in inviscid flow

The non-dimensional velocity field of inviscid flow past a circular cylinder in cylindrical
coordinates is

(ur, uθ) =

(
cos θ

(
1− 1

r2

)
,− sin θ

(
1 +

1

r2

))
(3.1)

(White 2008). Along the stagnation streamline (θ = π), the fluid moves in the negative
radial direction only, i.e.,

(ur, uθ)θ=π =

(
−
(

1− 1

r2

)
, 0

)
, (3.2)

and zero velocity is reached at the stagnation point (i.e. at the leading edge of the
cylinder, (r, θ) = (1, π)). The trajectory of an ideal ‘point’ aerosol particle (rp = 0 but
with finite St) approaching the collector along this stagnation streamline is obtained
by substituting (2.3) and (3.2) into the momentum equation for aerosol particles (2.10)
(note that, for point particles, fns = 1). The momentum equation can then be rewritten
as

St
d2rcp
dt2

+
drcp
dt

+

(
1− 1

rcp2

)
= 0, (3.3)

where rcp denotes the radial position of the point particle. As this equation has no analyti-
cal solution, Taylor (1940) further simplified (3.3) by approximating its non-homogeneous
term as a linear function of distance from the stagnation point, resulting in the simplified
equation of motion

St
d2rcp
dt2

+
drcp
dt

+ 2 (rcp − 1) = 0. (3.4)

The general solution of (3.4) is

rcp(t) =


e−

t
2St

(
A e

t
√

1−8St
2St +B e−

t
√

1−8St
2St

)
+ 1 for St < 1/8

e−4t
(
Â+ B̂t

)
+ 1 for St = 1/8

e−
t

2St

(
Ã cos t

√
8St−1
2St + B̃ sin t

√
8St−1
2St

)
+ 1 for St > 1/8

(3.5)

(Phillips & Kaye 1999), where the A’s and B’s are integration constants that depend
on the initial position and initial velocity. The characteristic equation for the associated
homogeneous equation of (3.4) is

Stm2 +m+ 2 = 0, (3.6)

and the changes in behaviour of the solution (3.5) depend on the values of the roots of
(3.6). The characteristic discriminant

∆ = 1− 8St, (3.7)

determines the values of the characteristic roots. The value of St for which ∆ = 0
(i.e. the critical Stokes number for aerosols in inviscid flow, Stc,ae,inv = 1/8) defines a
transition in the behaviour of the solutions. Particles with St 6 Stc,ae,inv have ∆ > 0
(i.e. real and negative characteristic roots) and never reach the stagnation point (r = 1)
because rcp(t) > 1 at all times. Only those particles with St > Stc,ae,inv have ∆ < 0 (i.e.
imaginary characteristic roots) and reach the stagnation point (i.e. rcp(t) 6 1 at some
finite time) due to the oscillatory nature of the solution.

Numerical estimates of the critical Stokes number were obtained here by solving both
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Figure 2. The critical Stokes number for aquatic-type particles in inviscid flow (Stc,inv) in-
creases towards a finite value as ρ+ → 1, and towards the aerosol value (Stc,ae,inv) as ρ+ →∞.
However, Stc,inv does not exist for ρ+ 6 1 (as indicated by the circles and the truncated lines.).
The dashed-dotted line (-.-) is for Stc,inv, the critical Stokes number obtained from the analysis
of the linearised theory (3.11). The continuous line (—) is for Stnum,exactc,inv , the critical Stokes

number obtained from the numerical solution of the exact momentum equation (3.8).

the linearised equation (3.4) and the exact equation (3.3), using the methodology ex-
plained in §2.4 but for analytical velocity fields. From the numerical solution of the
linearised momentum equation (3.4) we obtained a critical Stokes number for aerosols
in inviscid flow of Stnumc,ae,inv = 0.1251, in near-perfect agreement with linear inviscid the-
ory. The numerical solution of the exact momentum equation (3.3) shows that the exact
critical Stokes number is slightly higher, Stnum,exactc,ae,inv = 0.1260.

3.2. The critical Stokes number for aquatic-type particles in inviscid flow

When the added mass and the fluid force terms are retained in the particle momentum
equation (2.11), the critical Stokes number differs from that of aerosols. The trajectory
of a ‘point’ particle (rp = 0 but with finite St and ρ+ ∼ O(1)) approaching the collector
along the stagnation streamline is defined by substituting (2.3), (2.7) and (3.2) into
(2.11), which can then be rewritten as(

2ρ+ + 1

2ρ+

)
St
d2rcp
dt2

+
drcp
dt

+

(
1− 3St

ρ+r3cp

)(
1− 1

rcp2

)
= 0. (3.8)

(note that this equation simplifies to (3.3) for ρ+ � 1.) Following the approach by Taylor
(1940), we approximate the non-homogeneous term as a linear function of distance from
the stagnation point. The simplified equation of motion is(

2ρ+ + 1

2ρ+

)
St
d2rcp
dt2

+
drcp
dt

+ 2

(
1− 3St

ρ+

)
(rcp − 1) = 0, (3.9)

with characteristic discriminant

∆ = 1− 8St

(
2ρ+ + 1

2ρ+

)(
1− 3St

ρ+

)
. (3.10)
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Particles with St values for which ∆ becomes negative will reach the stagnation point.
The condition ∆ = 0 defines the quadratic equation

12
(
2ρ+ + 1

)
St2c,inv − 4ρ+

(
2ρ+ + 1

)
Stc,inv + ρ+

2
= 0, (3.11)

whose smaller root determines the critical Stokes number in inviscid flow. This critical
value (Stc,inv) varies with ρ+ exceeding the aerosol critical value when 1 < ρ+ . 1.5,
and tends to the aerosol value (Stc,ae,inv) from below as ρ+ increases (figure 2). When
ρ+ = 1 the only root of (3.11) is 1/6, but particles do not reach the stagnation point for
this value of the Stokes number (indicated by a circle in figure 2). Indeed, when ρ+ 6 1,
the characteristic discriminant (3.10) is never negative and the solution of (3.9) never
changes form. Therefore, ideal ‘point’ particles with a density equal to or less than that
of the surrounding fluid will never reach the stagnation point (when starting with the
same velocity as the fluid) and the critical Stokes number does not exist for ρ+ 6 1. The
numerical solution of the exact momentum equation (3.8) shows that the exact values of
the critical Stokes number are indeed slightly higher than the values obtained from the
linearised theory.

3.3. The critical Stokes number for aquatic-type particles in viscous flow

When a viscous flow is considered, the critical Stokes number (Stc,ν) differs from the
inviscid value (Stc,inv) due to differences in the radial velocity profile close to the stagna-
tion point. Conservation of mass (2.1), together with the no-slip condition at the cylinder
surface, imply that the radial velocity and its gradient in the radial direction are both
zero at the collector surface, i.e.

ur = 0 and
∂ur
∂r

= 0 at r = 1. (3.12)

The fluid velocities close to the collector are thus more gradually varying than for inviscid
flow (figure 3); hence, the drag force acting on the particles moving along the stagnation
streamline is lower, in turn requiring additional mass (higher St) in order for particles to
acquire enough momentum to reach the collector (Davies & Peetz 1956; Phillips & Kaye
1999). By considering two regions in the flow field: (i) a viscous boundary-layer region
close to the stagnation point and (ii) an inviscid flow region in the far field, Phillips
& Kaye (1999) were able to estimate the critical Stokes number for aerosol particles in
viscous flow (Stc,ae,ν) for Re > 1000. Here, we estimate Stc,ν values in a range relevant
to aquatic ecosystems (i.e. Re 6 1000 and ρ+ ∼ O(1)), using the numerical methodology
explained in §2.4.

Equation (2.11) was solved for ideal ‘point’ particles (rp = 0 but with finite St and
ρ+) transported along the mean stagnation streamlines obtained from DNS for a range
of Reynolds numbers and particle density ratios. For the mean flow conditions, (2.7) was
used to simplify the last term in (2.11). For aerosols (ρ+ � 1), the critical Stokes number
increases as Re decreases and, at low Re, exceeds the inviscid value by up to two orders
of magnitude (figure 4). Even at Re = 1000 the value of Stc,ν for aerosols is more than
double that of Stc,ae,inv (in agreement with Phillips & Kaye (1999)). For aquatic-type
particles with a density-ratio similar to that of suspended sediment (ρ+ = 2.6) there is
only a small increase of the critical Stokes number relative to aerosols, except when Re
is less than 0.3, for which the increase is significant. Finally, for near-neutrally-buoyant
particles (ρ+ = 1.1) the critical Stokes number is clearly greater than the aerosol value
(by more than 50% for all Re). ‘Point’ particles with ρ+ 6 1 do not reach the stagnation
point for any St and Re.
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4. Density-ratio effects on capture efficiency of aquatic-type particles

Here, we focus on the capture efficiency of finite-size aquatic-type particles (ρ+ ∼ O(1))
over ranges of Re and St (or rp) typical of aquatic systems. Lagrangian trajectories in
mean flow fields (with time and axial averages obtained from direct numerical simulation
(DNS), see §2.3) were calculated using (2.11) for particles with three density ratios:
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Figure 5. Capture efficiency diagram for neutrally-buoyant particles of finite size (ηρ+=1) as a
function of the collector Reynolds number (Re). Each line corresponds to a particular value of
the particle size ratio (rp). (Values of rp are labelled on the right; unlabelled lines have values
of rp at an equal interval between adjacent labelled values.) Differences from capture efficiency
estimates of perfect tracers (Espinosa-Gayosso et al. 2012, 2013) are negligible.

(i) neutrally-buoyant particles (ρ+ = 1), (ii) sediment-type particles (ρ+ = 2.6) and
(iii) weakly-buoyant particles (ρ+ = 0.9). Capture efficiencies were estimated using the
procedure described in §2.4 and the results were compared to the capture efficiencies of
perfect tracers, i.e. when direct interception is the only capture mechanism (Espinosa-
Gayosso et al. 2012, 2013).

4.1. Neutrally-buoyant particles (ρ+ = 1)

When particles are neutrally buoyant, their behaviour is very close to that of perfect
tracers but, as discussed in §2.2, deviations from fluid pathlines can appear in zones with
large fluid velocity gradients (Babiano et al. 2000). Nevertheless, for the Re tested here,
neutrally-buoyant particles almost perfectly follow the mean streamlines and, as a con-
sequence, the difference in particle capture efficiency for neutrally-buoyant particles and
perfect tracers is less than 0.1% for Re 6 1000 and rp 6 0.5. That is, neutrally-buoyant
particles effectively behave as perfect tracers and only direct interception (Espinosa-
Gayosso et al. 2012, 2013) needs to be considered when evaluating their capture.

The capture efficiency diagram (figure 5) summarizes our results for ρ+ = 1. This
diagram covers particle sizes and Reynolds numbers in ranges relevant to aquatic systems
and can be used for direct estimates of capture efficiency for given Re and rp.
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Figure 6. Capture efficiencies for sediment-type particles (ρ+ = 2.6) as a function of St for
(a) Re = 1; (b) Re = 10; (c) Re = 100; and (d) Re = 1000. The capture efficiency (ηρ+=2.6)
is compared to that for perfect tracers of the same size (ηPT ) and to the maximum possible
capture efficiency (ηmax) (1.3). The first St value with an increase of 10% relative to ηPT is
indicated with a P (positive difference), and that with a decrease of 10% is indicated with an
N (negative difference). The top axis indicates the corresponding particle size ratio (rp).

4.2. Sediment-type particles (ρ+ = 2.6)

Particles influenced by inertia do not follow fluid pathlines exactly (streamlines in steady
flow), as shown in figure 1. The capture efficiency for particles influenced by inertia thus
differs from the perfect-tracer value for the same rp and Re. As expected, while increasing
St for a given Re, inertial impaction of sediment-type particles promotes an increase in
capture efficiency (ηρ+=2.6) relative to perfect-tracer capture efficiency (η

PT
) (figure 6);

the vertical lines labelled as P in this figure show the St value at which the capture
efficiency first increases by 10% above the perfect-tracer value. This increase in capture
efficiency occurs well before the critical Stokes number (Stc,ν , see §3.3) is reached and,
at the critical Stokes value, the increase in capture efficiency is considerably larger (15%
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Figure 7. Graphical depiction of the centrifugal drift inducing a reduction in capture efficiency
for sediment-type particles with weak inertial influence (ρ+ = 2.6, Re = 1000, rp = 0.02,
St = 0.11) relative to perfect tracers of the same size. (a): A particle with weak inertial influence
(shown in black) released on the limiting streamline for perfect tracers of the same size (shown
as a dotted curve) is able to escape capture (as indicated by its trajectory), thereby decreasing
the capture efficiency relative to ηPT . A perfect tracer of the same size (shown in grey) would
be captured at the maximum angle of capture (αc,PT ). (b): Distance from the centre of the
particles in (a) to the collector surface (r̂ = rcp − 1) as a function of the angle measured from
the leading edge of the collector (α). The distance between the collector and the particle with
weak inertial influence (continuous black line) is always larger than its radius (indicated with a
horizontal dashed line) and capture never occurs. The distance from the collector to the perfect
tracer (dotted line) is defined by the limiting streamline and meets the capture criteria at αc,PT .

for Re = 1 to 60% for Re = 1000). Above the critical Stokes number, the increase in
capture efficiency reaches a maximum. For example, for Re = 1000 (figure 6d), capture
efficiency is 400% greater than the value for perfect tracers at St ≈ 1. The critical Stokes
number should not be considered as the starting point of inertial influence, but as an
indicator of the region of inertial impaction dominance.

Inertia can also diminish capture efficiency under certain conditions (Fernandez de la
Mora 1986). In our tests for ρ+ = 2.6 and Re & 100, inertia reduces the capture effi-
ciency relative to perfect tracers (at low St) before an increase occurs (at higher St).
This reduction in capture efficiency is lower than 10% for Re = 100, but for Re = 1000,
the reduction is as large as 40%; the vertical line labelled as N in figure 6(d) shows the
St at which the capture efficiency first decreases by 10% relative to the perfect-tracer
value. This reduction in capture efficiency occurs as particles drift away from the collec-
tor due to centrifugal acceleration (Fernandez de la Mora 1986). The effect is illustrated
in figure 7(a), which displays the trajectory of a particle, with weak inertial influence
(St = 0.11 and rp = 0.02), released on the outer-most streamline that allows capture of
perfect tracers of this size (the limiting streamline for pure direct interception defined by
Espinosa-Gayosso et al. (2012, 2013)). A perfect tracer would follow the limiting stream-
line exactly and reach the collector at the maximum angle of capture on the leading
face of the collector (αc,PT ) for perfect tracers of that size, but a particle influenced
by inertia deviates from that trajectory. At first, close to the leading edge of the col-
lector, the particle with weak inertial influence leaves the curving streamline, drifting
centrifugally towards the collector. However, at the point of minimum distance from the
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Figure 8. Capture efficiency of sediment-type particles (ηρ+=2.6). (Nomenclature as in figure
5.) The region in which inertia augments capture efficiency by more than 10% relative to the
capture of perfect tracers (for the same Re and rp) is shown in blue, and the region by which
inertia diminishes capture efficiency by more than 10% is shown in red. The broken line indicates
the particle size ratio (rp) that corresponds to the critical Stokes number (Stν) at a given Re
(see also §3.3).

collector, the particle has not yet been captured. Beyond this point, the particle drifts
centrifugally away from the collector, allowing it to escape (figure 7b). The net result is
fewer particles reaching the collector, and a lower capture efficiency relative to that of
perfect tracers. The reduction in capture efficiency appears well before any critical Stokes
number estimated in §3 (figure 6d).

These results are summarized in the capture efficiency diagram (figure 8). The region
in which inertia augments capture by more than 10% relative to capture efficiency of
perfect tracers (of the same Re and rp) is shown in blue, and the region of more than
10% reduction is shown in red. In the region of increased capture, the lines for specific
rp are clearly steeper than for the neutrally-buoyant (perfect tracer) case (figure 5),
indicating a more rapid increase in capture efficiency with Reynolds number. A decrease
in capture efficiency due to inertia occurs at large Re and for small rp, as particles need to
be small enough to not be intercepted before they reach the point of minimum distance
from the collector (at which they start drifting away) (figure 7). Note that, for a given Re,
the regions of inertial augmentation or reduction occur for particles significantly smaller
than the particle size corresponding to the critical Stokes number (Stν) estimated in
§3.3.
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for weakly-buoyant particles (ρ+ = 0.9, Re = 1000, rp = 0.07, St = 0.76) relative to perfect
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Figure 10. Capture efficiencies for weakly-buoyant particles (ηρ+=0.9) as a function of St for
(a) Re = 100 and (b) Re = 1000. (Nomenclature as in figure 6.)

4.3. Weakly-buoyant particles (ρ+ = 0.9)

The difference in capture efficiency of buoyant particles (ρ+ < 1) relative to that of perfect
tracers, is due to the importance of the added mass and fluid acceleration terms in (2.4)
which promote centripetal deviations of particle trajectories from fluid pathlines (Maxey
1987). Thus, when in a region of curved fluid pathlines (streamlines in steady flow), it is
the drift towards the centre of curvature that modifies the capture efficiency relative to
that of perfect tracers (figure 9); this is opposite to the ‘inertial impaction’ induced by
the centrifugal drifting of particles denser than the fluid. In direct contrast to negatively-
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Figure 11. Capture efficiency of weakly-buoyant particles (ηρ+=0.9). (Nomenclature as in figure
5.) The region in which the centripetal drift of weakly-buoyant particles augments capture
efficiency by more than 10% relative to the capture of perfect tracers (for the same Re and rp)
is shown in blue, and the region of a more than 10% decrease relative to the capture of perfect
tracers is shown in red.

buoyant particles, the deviation of weakly-buoyant particles from fluid pathlines induces
an increase in capture efficiency at lower St and a more substantial decrease at higher
St; appreciable differences in capture efficiency are limited to Re > 100 (figure 10). The
differences relative to capture efficiency of perfect tracers increase with the Reynolds
number, and for Re = 1000, capture efficiency reaches a maximum reduction of 60%.

The capture efficiency diagram for weakly-buoyant particles (ρ+ = 0.9) is shown in
figure 11. Again, the zones of increase and decrease of capture efficiency, relative to that
of perfect tracers, are coloured in blue and red, respectively. In contrast to negatively-
buoyant particles, an increase occurs for small particles with a decrease for larger par-
ticles. At large Re, particles in the range 0.05 6 rp 6 0.1 have a very similar value of
capture efficiency, causing the curves to appear very close to each other. This can also
be appreciated in the plot of capture efficiency as a function of St for Re = 1000 (figure
10b), where ηρ+=0.9 has a plateau in the mentioned range of particle sizes.

5. Conclusions

For aquatic-type particles, we have used a Lagrangian analysis to estimate the influ-
ence of the particle density-ratio on capture. We have shown that, for neutrally-buoyant
particles, the velocity gradients for Re 6 1000 are not strong enough to induce significant
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deviations from a perfect-tracer trajectory, and their only mechanism of capture is direct
interception.

When the particle density-ratio is similar to that of sediment in water, inertia induces
centrifugal deviations of particle trajectories from fluid pathlines and the effects are two-
fold: (i) inertia augments the capture efficiency relative to that of perfect-tracers when
the Stokes number is sufficiently large, and (ii) counter-intuitively, inertia can reduce
capture efficiency for particles with weak inertial influence, i.e., at lower St.

When particles are buoyant, the added mass and fluid acceleration terms induce a
centripetal drift in particle trajectories. The centripetal drift can either augment or di-
minish particle capture relative to perfect-tracer capture but, unlike negatively-buoyant
particles, an increase occurs for smaller particles with a decrease for larger particles, i.e.,
higher St.

For the first time, an analysis of the critical Stokes number for non-aerosol particles
(aquatic-type particles) in viscous (Stc,ν) and inviscid flow (Stc,inv) has been described.
The critical Stokes number increases as the particle density approaches that of the sur-
rounding fluid. When ρ+ 6 1, ideal ‘point’ particles never reach the stagnation point and
the critical Stokes number does not exist. We also present, for the first time, the critical
Stokes number for aerosols in viscous flow conditions (Stc,ae,ν) for 0.01 6 Re 6 1000; in
this range, Stc,ae,ν increases considerably with decreasing Re.

Through the analysis of capture of dense aquatic-type particles of finite size (ρ+ = 2.6),
we have shown that inertial effects are indeed significant at values of St much lower than
Stc,ν . The critical Stokes number should not be considered as the starting point of inertial
influence, but as an indicator of the region of inertial impaction dominance. The influence
of particle inertia on capture is maximised when St > Stc,ν and can result in as much as
a four-fold increase in capture efficiency in aquatic systems.
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