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 environmental DNA data using eDNAFlowAnalysing

ct Abstra

           oding of Environmental DNA (eDNA) when coupled with high throughput sequencing is Metabarc

ising the way biodiversity can be monitored across a wide range of applications. However, the revolution

             ber of tools deployed in downstream bioinformatic analyses often places a challenge in large num

           tion and maintenance of a workflow, and consequently limits the research reproducibility. configura

ore, scalability needs to be considered to handle the growing amount of data due to increase in Furtherm

 output and the scale of project.sequence

             describe eDNAFlow, a fully automated workflow that employs a number  of state-of-the-art Here, we

          ns  to process eDNA data  from raw sequences (single-end or  paired-end) to generation of applicatio

           nd non-curated zero-radius operational taxonomic units (ZOTUs) and their abundance tables. curated a

              line is based on Nextflow and Singularity which enable a scalable, portable and reproducible This pipe

 using software containers on a local computer, clouds and high-performance computing (HPC) workflowA
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clusters.  Finally,  we  present  an  in-house  Python  script  to  assign  taxonomy  to  ZOTUs  based  on  user 

thresholds for assigning Lowest Common Ancestor (LCA). specified 

nstrate the utility and efficiency of the pipeline using an example of a published coral diversity We demo

        ring study. Our results were congruent with the aforementioned study. The scalability of the biomonito

 also demonstrated through analysis of a large data set containing 154 samples.pipeline is

owledge, this is the first automated bioinformatic pipeline for eDNA analysis using two powerful To our kn

tflow and Singularity. This pipeline addresses two major challenges in the analysis of eDNA data; tools: Nex

 and reproducibility.scalability

s:  Key-word eDNA, metabarcoding, Nextflow, Singularity

ctionIntrodu

               in high throughput sequencing (HTS) technologies accompanied by a drop in their cost, has Advances

an unprecedented opportunity for complementing conventional methods of biomonitoring with provided 

ental DNA (eDNA) metabarcoding approaches (Rees, Maddison, Middleditch, Patmore, & Gough, environm

NA metabarcoding methods have successfully been applied in biomonitoring and assessing the 2014). eD

ty of various ecosystems (Bista et al., 2017; Chain, Brown, MacIsaac, & Cristescu, 2016; Dejean biodiversi

                 12; Stat et al., 2017; Valentini et al., 2016). Metabarcoding is a technology that allows rapid, et al., 20

      ous  identification of multiple  taxa from  bulk environmental samples  such as  soil  or  water simultane

 Miaud, Pompanon, & Taberlet, 2008; Taberlet, Coissac, Hajibabaei, & Rieseberg, 2012) without (Ficetola,

to capture or morphologically identify individual organisms. DNA traces left in the environment the need 

             sloughed skin, mucus, faeces etc (Taberlet, Bonin, Zinger, & Coissac, 2018) are extracted, through 

by PCR amplification and sequencing of target barcode regions (Ficetola et al., 2008). During PCR followed 

          ion, samples are labelled with individual index tags called multiplex identifier tags (MID-tags) amplificat

ws preparation of a multiplexed library where samples are sequenced in parallel (Sickel et al., which allo

ta generated from multiplexed libraries is processed using a bioinformatic pipeline to determine 2015). Da

c assignments related to biological samples.taxonomi

e numerous benefits of molecular techniques, such as being non-invasive, non-destructive and Despite th

tive, subsequent downstream bioinformatic analysis presents a variety of challenges (Deiner et cost effec

 Zinger et al., 2019). Multiple bioinformatics tools/resources have been developed and optimised al., 2017;

     with metabarcoding data analysis including; demultiplexing, quality filtering, chimera checking, to assist A
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            operational taxonomic unit (OTU) clustering and taxonomic assignment (Andrews, 2010; Bolyen et al., 

               llahan et al., 2016; Edgar, 2016; Rognes, Flouri, Nichols, Quince, & Mahé, 2016). Yet, the 2018; Ca

      e of such tools required for the analysis can be daunting to install and combine into different abundanc

              he workflow. In addition, updates and changes in dependencies can make tool maintenance steps of t

g over the long term and consequently could limit research reproducibility. The growing amount challengin

oduced by sequencing platforms has increased the demand for easily scalable workflows to take of data pr

       e of  powerful computing  resources including cloud  and HPC  cluster infrastructure (Porter  & advantag

    i, 2018; Taberlet, Coissac, Pompanon, Brochmann, & Willerslev, 2012; Zinger et al., 2019) and Hajibabae

t to address some of these bioinformatic challenges with a resulting pipeline; eDNAflow.we set ou

              e been a few efforts to develop metabarcoding analysis pipelines, such as FACEPAI, Anacapa There hav

 (Curd et al., 2019; Dufresne, Lejzerowicz, Perret-Gentil, Pawlowski, & Cordier, 2019; Wahlberg, and SLIM

CEPAI (Fast And Consistent Environmental DNA Processing AND Identification), an open source 2019). FA

              vides a pipeline for analysis of paired-end sequences (Wahlberg, 2019), but the script is script pro

               t on a number of bioinformatic tools that must be installed manually, and does not perform dependen

    exing and/or post clustering curation. The Anacapa toolkit combines various software and can demultipl

           ference libraries and generate custom reference databases, infer Amplicon Sequence Variants create re

               d assign taxonomy (Curd et al., 2019). Similar to FACEPAI, Anacapa also does not offer (ASVs) an

             exing and post clustering curation steps, and can only accept paired-end sequences. SLIM, a demultipl

          d application was developed for user-friendly execution of eDNA metabarcoding analysis web-base

                 Graphic User Interact (GUI) (Dufresne et al., 2019). Even though both of the latter workflow through a

    es  make  use of  containers,  which are  all-encompassing and  ready-to-run  software package approach

 hat  are  easily  reproduced,  deployed,  and  version-controlled,  their  pipelines  still  come  with bundles t

s that can impede efficiency.drawback

                 e main challenges for many of the existing metabarcoding pipelines is scalability – it is often One of th

al  to  apply  them  on  large  datasets.  Within  the  Anacapa  toolkit,  deployment  is  possible  on impractic

             omputing platforms, but adjusting parameters for each module to optimise use of computing various c

 is not demonstrated, such as for an HPC cluster. While SLIM incorporates containers for each resources

                hey rely on the Docker container engine for building images, which is not permitted on HPC module, t

urthermore, although a graphical user interface provides a favourable solution for non-experts, clusters. F

   puting  knowledge  such  as  the installation  of  Docker  and  use  of  the  command  line  is still some com

or running scripts to launch the webserver. required fA
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Finally, none of the three workflows above support task execution caching which allows tasks which are 

              d successfully to be omitted and cached results to be deployed for downstream processes. A complete

 of these pipelines’ characteristics is provided in Table 1.summary

            fits, relevance and increasing need of employing workflow engines in bioinformatic pipelines The bene

n raised in recent years (Perkel, 2019). Nextflow is a state-of-the-art workflow creation tool that have bee

    y  enables workload  scalability  (Di  Tommaso et  al.,  2017). This  is  achieved  within the  same seamlessl

          through  its unified parallelism design, and cross-platform functionality by providing simple platform 

 to a variety of schedulers and orchestrators, allowing workflow portability from local resources, interfaces

               orkstations, cloud services and HPC clusters (Di Tommaso et al., 2017). Nextflow also ensures to site w

bility by enabling container build on both HPC and non-HPC compute infrastructure through the reproduci

n of Singularity, which is a container engine that has been developed purposefully to facilitate integratio

yment  (Kurtzer, Sochat, & Bauer, 2017). Nextflow also provides checkpoint-restart capabilities HPC deplo

 execution from the last successful step.  to resume

thus use the aforementioned contemporary technologies, Nextflow and Singularity, to develop Here, we 

, a reproducible and easily scalable bioinformatic workflow for analysing eDNA metabarcoding eDNAFlow

able of using both single-end and paired-end sequence data. We use two marine environmental data, cap

               ies as models to test the pipeline and demonstrate the scalability and the reproducibility of DNA stud

 results. taxonomy

ow descriptionWorkfl

flow is a suite of applications and methods for defining zero-radius operational taxonomic units This work

Edgar, 2016). It performs the following tasks: Quality checking of raw single-end or paired-end (ZOTUs) (

           s using FastQC (Andrews, 2010), quality filtering (merge if paired-end) using AdapterRemoval sequence

        , Lindgreen,  & Orlando,  2016), followed by  another round  of FastQC quality  checking, then (Schubert

exing with OBITools (Boyer et al., 2016) and removal of sequences smaller than a user specified demultipl

 length. The indexing method used in the laboratory workflow will not affect the demultiplexing minimum

ided that the user is able to prepare a file detailing the indexes/tags related to each sample in step, prov

ols required format. Mismatches are not allowed in the index/tag sequences for demultiplexing. the OBITo

               lting split sample files are then changed to a USEARCH (Edgar, 2016) suitable format by The resu

              g sequence headers. The pipeline also allows the user to skip the quality and demultiplexing relabellin

directly inputting demultiplexed data. The USEARCH unoise3 algorithm is employed to perform steps by 

               tion, create ZOTUs (default minimum abundance is 8, but can be adjusted by user for higher dereplicaA
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               sensitivity; see eDNAFlow GitHub page for details of how to adjust parameters), and make the ZOTU 

               ZOTU sequences are then queried against a local nucleotide database from GenBank (NCBI) table. The

 STN and/or a custom database (Altschul, Gish, Miller, Myers, & Lipman, 1990). Finally LULU, a using BLA

ering curation method, is applied for removal of spurious operational taxonomic units that are post clust

 by relating sequence similarity and co-occurrence patterns (Frøslev et al., 2017). Once the first identified

e analysis is finished, the user can run eDNAFlow to assign taxonomy to curated or un-curated part of th

  he  script  supporting  this  part  is  described  in  the  next  section:  “Assigning ZOTUs  to  lowest ZOTUs. T

ancestor (LCA)”. A schematic outline of these tasks is illustrated in Fig 1. common 

               eters of different tasks and platforms are set from adaptable configuration files and can be All param

           via setting parameters at command line. For instance, while the default minimum abundance adjusted 

oise3 is eight sequence reads to form a ZOTU cluster, a user may choose to reduce the size to size of un

igher sensitivity. Replacing the default settings of the configuration file should be achieved by four for h

              e relevant parameters’ flag when running the script (e.g.  nextflow run eDNAFlow.nf --reads adding th

00reads.fastq' --barcode 'se_bc*' --blast_db 'Path2TestBlastDataset/db' --minsize '4'). Similarly, if 'test_300

le a user has access to computing resources with higher memory, then they can run eDNAFlow for examp

ng ‘-profile nimbus’.  with setti

                 detailed description of how the pipeline can be run and how the parameters and/or To see a

tion file can be adjusted see https://github.com/mahsa-mousavi/eDNAFlow.configura

 ZOTUs to lowest common ancestor (LCA)Assigning

 Python script was created to filter multiple taxonomic assignments (hits) from the BLAST results, A custom

              the latest taxonomy information from NCBI website, assign ZOTUs to their lowest common download

(LCA), and link this information to the ZOTU abundance table. The filtering applied in this script is ancestor 

           a set of  user specified  thresholds, including query  coverage (qCov), percentage identity  (% based on

nd the difference (Diff) between % identities of two hits when their qCov is equal. Setting qCov identity) a

                 ntity thresholds ensures that only BLAST hits >= to those thresholds will progress to the Diff and % ide

      n step. Setting Diff means that if the absolute value for the difference between % identity of compariso

it2 is > Diff, then a species level taxonomy will be returned, otherwise taxonomy of that ZOTU hit1 and h

   ropped  to  the  lowest common  ancestor.  This  script  produces  two  files,  a  file  in  which  the will be d

                 is assigned to LCA (the final result), and an intermediate file which includes the blast result taxonomy

h taxonomy information, where sequences have passed initial filtering thresholds (i.e. qCov and linked wit

), but have not yet been compared for LCA assignment nor have been linked with the abundance %identityA
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                   table. This file will give the user an idea of why some ZOTUs may have been assigned to the lowest 

    ancestor. For instance, if user was expecting a particular species which was not found in their common 

result, they may be able to find it in the intermediate file and check what other close blast hits final LCA 

at caused the final assignment to drop to LCA level.existed th

udy 1 - AccuracyCase st

               nstrate the relevance of the pipeline to a real-world study and the influence of user-defined To demo

              ion parameters, we analysed the dataset reported by Alexander et al. (2020). This dataset is classificat

d of 90 surface seawater samples, three negative controls (bleach and tap water) and  a positive comprise

       sted using  the CoralITS2  assay (paired-end)  primers (Brian,  Davy, &  Wilkinson, 2019).  The control te

r et al. (2020) study provided an opportunity to validate the result of our pipeline as it reported Alexande

            l diver-based visual survey results and eDNA data that was produced using different traditiona

atic  tools:  the  R  package  Insect  (Wilkinson,  Davy,  Bunce,  &  Stat,  2018)  for  demultiplexing, bioinform

             Callahan et al., 2016) for detection of amplicon sequence variance (ASV), and taxonomy DADA2 (

nt using a 95% threshold with MEtaGenome Analyser (MEGAN) (Huson et al., 2016).assignme

              was run on a high-throughput HPC Linux cluster called Zeus, at the Pawsey Supercomputing eDNAFlow

 general purpose work queue node on Zeus allows jobs to run up to 24 hours on 28 CPUs and Centre. A

 RAM. Multiple nodes can be used for each job to make use of more CPUs and RAM, and/or to 128GB of

 workflows. parallelise

 the raw sequence file that was published by Alexander et al. (2020), eDNAFlow generated 7,466 Analysing

      ut of which 4,103 ZOTUs remained after post-clustering curation with LULU. Taxonomies were ZOTUs, o

               by running the LCA script on the curated ZOTU table specifying a range of taxonomy assigned 

ion parameters: 1) qCov 100, %id 95, Diff 0.5; 2) qCov 100, %id 95, Diff 1; 3) qCov 98, %id 93, Diff classificat

mpare and provide an accuracy estimation of our classification results, we used the heat map of 0.5. To co

leractinia visual survey and molecular OTUs detected per genus as demonstrated in Alexander the CKI Sc

20). We also conducted an  analysis of all taxa reported in the heat map that were not et al. (20 in silico

               by the CoralITS2 assay by Alexander et al. (2020) to determine whether there are available detected 

 sequences for these taxa and that the assay is theoretically capable of detecting them.reference

             l, our taxonomy results were highly congruent with Alexander et al. (2020). Some differences In genera

      attributed to altered classification parameters. Using the first setting parameters listed above, could be 

               able to detect  and  genera in seawater samples, both of which were we were Lithophyllon EchinoporaA
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            recorded  in  their visual survey.  These genera were not found by Alexander et al. (2020),  with the 

               of one  OTU found in high abundance in their control sample and subsequently exception Echinopora

                   In contrast to Alexander et al. (2020) we did not find the genus  in our final LCA removed. Goniastrea

ugh it was detected in our intermediate file. That is because one of the representing ZOTUs was result, tho

                 after LULU curation and the other returned the first hit among the two (%id 96.98 for removed Favia 

Goniastrea stelligerastelligera versus 96.25 for ) as Diff was set to > 0.5.

               second parameter thresholds were applied,  did not appear in our final result, When the Lithophyllon

ultiple ZOTUs had multiple blast hits, but all of them had %id difference of below 1 (i.e. Diff 1). because m

              ntly, the taxonomy assignment was dropped to the lowest common ancestor as it no longer Conseque

                  resolved at genus level with Diff 1. Also, we did not find  or  with either could be Oxypora Lobophyllia

                   or 2, because the ZOTU representing  had 2 very close hits - i.e. %id of 98.944 for setting 1 Oxypora

acera Echinophyllia echinateOxypora l  and 98.947 for . These could not be further resolved at either Diff 1 

                5 and so the taxonomy was dropped to the LCA. For , the representing ZOTU was or Diff 0. Lobophyllia

    ter LULU curation. Furthermore, despite visual support for the genera  and , absent af Favites Cyphastrea

              not detected by Alexander et al. (2020) or eDNAFlow until qCov threshold was relaxed from they were

 using the third parameter settings.  100 to 98

r benchmark eDNAFlow, we conducted additional analysis of the Alexander et al. (2020) dataset To furthe

             M (Dufresne et al., 2019). The raw sequences were demultiplexed using Double Tag using SLI

lexing module of SLIM. The demultiplexed files were analysed by module DADA2 (Callahan et al., Demultip

                ASV inferences with the following setting: making an error model for each sample. This 2016) for

 a total of 6,875 ASVs. We used these ASV sequences to query against the GenBank nucleotide generated

 The eDNAFlow LCA script with setting 1 was used for taxonomy assignment.database.

               arison of these results with those already discussed above shows a high similarity among all The comp

            thods with  some  differences (Fig 2). For instance, while both Alexander et  al. (2020) and three me

    identified the genera  and neither of these were found by SLIM. The eDNAFlow Tubastraea Anacropora, 

               and  were detected in SLIM results, but were only seen in the intermediate genera anafungiaD Favites

 with eDNAFlow and were missed in Alexander et al. (2020).result file

             rved differences could be ascribed to utilization of different algorithms or choosing different The obse

rs of the same algorithm (e.g. differences between Alexander et al (2020) vs SLIM, both of which paramete

 DADA2). have usedA
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Our  CoralITS2 analysis for 35 genera listed in the heat map presented in Alexander et al. (2020) in silico

that the CoralITS2 assay is theoretically capable of detecting 26 of those genera, out of which 19 revealed 

 reported by the visual survey. The comparison of the  analysis, visual survey filtered bywere also in silico  

in silico tcomes, and the results of three pipeline analyses is provided in Table 2. All of the intermediate,  ou

taxonomy results and comparisons can be found in Table S1.final LCA 

 these findings, we believe that eDNAflow provides a high level of accuracy in data filtering and  Based on

c assignment. However, we note that the LCA parameter settings should be adjusted according taxonomi

earch question and how stringent the user wants the taxonomy assignments to be. We suggest to the res

while to run the LCA script with different settings to inform researchers of the impact of these it is worth

rs.paramete

udy 2 - ScalabilityCase st

      nstrate the  scalability of  our  pipeline, we  combined  sequence results  of single-end  libraries To demo

                 from seawater samples collected from the east and west coasts of Australia. A total of 154 generated

             including negative controls) were analysed with the  16S_FishSyn_Short (Nester et al., 2019) samples (

                multiple single-end libraries (a total of 49Gb of raw sequences). There were nine Multiplex assay from

  (MID) tag files used in the demultiplexing step. Laboratory preparation details are provided in Identifier

 S1.  eDNAFlow was successfully run on the Zeus long queue node, which allows jobs to run for Appendix

ays,  generating 3,156 ZOTUs, which were filtered to 2,841 ZOTUs after curation with LULU. The up to 4 d

     esult was then used for assigning taxonomy with the LCA script using the same parameters as curated r

e in Case study 1 only to demonstrate the scalability of the script. ZOTUs were assigned to 411 setting on

of which 20 were assigned to class level, 76 to order level, 150 to family level, 230 to genus level taxa, out 

o species level. A list of identified taxa is provided in Table S2. and 242 t

                and parameters used to run eDNAFlow on these single-end and paired-end datasets can be All scripts

at the following GitHub page: https://github.com/mahsa-mousavi/eDNAFlow.  accessed 

 directionFuture

 eDNAFlow supports using both USEARCH 32-bit (by default) and USEARCH 64-bit (if a path to its Currently

e is provided). We acknowledge the memory limitation of USEARCH 32-bit version. Even though executabl

                perience and as shown per our “Case study” sections, USEARCH 32-bit works very well with in our exA
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              moderate to large datasets, for very large datasets the 64-bit version is preferred (Edgar, 2020). 

                , in future we aim to add the DADA2 workflow to this pipeline, to both address the Therefore

tioned limitation and give users more flexibility in choosing the classifier to identify zero-radius aforemen

al taxonomic units and/or ASVs. operation

sionsConclu

        at  which metabarcoding  workflows and  associated tools  are growing  places a  challenge on The rate 

          rs to generate high fidelity and reproducible results which are easily scalable. Along with two researche

tools, Nextflow and Singularity, eDNAFlow enables processing of eDNA metabarcoding datasets effective 

            ipeline that is customizable, scalable, portable and reproducible. Additionally, thanks to with a p

s caching mechanism, eDNAFlow allows for task execution caching, meaning, upon resuming the Nextflow’

tasks which are completed successfully are skipped and cached results are used for downstream pipeline, 

. This minimizes the repetition of efforts and enables users to easily test how choosing different processes

rs affects the sensitivity and fidelity of their results. We believe this workflow is a step forward paramete

te reproducible, comparative and transparent eDNA metabarcoding analysis.to genera
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Fig 1. hart of the eDNAFlow pipeline. Flowc * Non-curated or curated ZOTU tables can be used with the script.  
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Fig 2. diagram depicting number of genera from the Scleractinia order detected using Alexander et al. 2020, SLIM and  Venn 

ethodseDNAFlow m
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Table 1. Summ

eDNAFlow and 

workflows

eDNAFlow FACEPAI Anacapa SLIM

roducibilityRep     i e automatically installed by Dependenc es ar

     iner management applied in Singularity conta

     lo orkflow configuration files are the workf w. W

    reusable. Each execution recorded and 

     reates various log files that automatically c

details and can be rerun or used records the run 

for debugging.  

   No container management is 

   used; correct dependency version 

of tools must be installed. 

   Anacapa and its dependencies 

      must be installed, or it can be 

   downloaded in a Singularity 

container.

    A bash script fetches the 

  application dependencies. Each 

execution can be saved and stored 

as a configuration file. 

ibilityFlex      Workflow parameters and the choice of 

 computational platforms can be easily specified 

 by  adding  the  relevant parameters’  flag  when 

    running the  script. If needed,  modification of 

     computational resources can be achieved by 

adjusting the configuration file. 

    Only a few options are adjustable 

     through a config file, while the 

   majority have been hard-coded in 

    the facepai.sh script. Not easily 

  expandable to other 

computational platforms. 

     ing  modular tool makes it Be  a

   xibl in choosing run fle e 

 ram ; however setting it up pa eters

  ious computational in var

  and adjusting platforms 

   resources will be computational 

more difficult.  

  m entered application A odule-c

 kes   xible  in  choosing run ma  it fle

 ram ; however setting it up pa eters

  ious computational in var

  and adjusting platforms 

   resources will be computational 

more difficult. 

labilitySca     sets  the  computational resources A config file 

 different platforms. It enables the necessary for

be run on local machine, cloud and workflow to 

. n cloud or HPC, minimal changes in HPC If run o

     uration file may be necessary the config

   on users’ cluster/cloud depending 

infrastructure.   

Not available      It can be downloaded in a 

    Singularity container and can be 

     run on HPC cluster; however it 

   doesn’t allow easy configuration 

of computational resources. 

    faul  rThe de t settings a e not 

    for l  suitable  sca ing to bigger

   M l  datasets. ore know edge on

    the set  changing  default tings is

  r o  required th ough D cker

    configurations. Scaling to HPC

resources is not directly possible.   

rface TypeInte Command line Command line Command line   -based (with some  command Web

line)

Workflow 

versioning

Yes No No Yes

Container 

management

It can manage multi scale containers. Not available      aded in a It can be downlo

Singularity container.

It uses a docker container. 

cution Task exe

caching

Yes No No No

 Automated job

parallelization

Yes No      er, In case of using a clust

RcppParallel has to be installed.  

Yes

d typesRea Single-end & paired-end Paired-end Paired-end Single-end & paired-end

ultiplexingDem Yes No No Yes

tering Post-clus

curation

Yes No No Yes
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able 2. T Number of Scleractinia genera detected using the CoralITS2 assay from Alexander et al. (2020), SLIM analysis and the eDNAFlow intermediate and Lowest Com

etermined using different stringency parameters compared with  analysis of genera listed in that study heatmapd In silico

SLIM analysis (Un-curated) eDNAFlow analysis (LULU curated)

Alexander et al., (2020) Parameter setting 1 parameter settings 1 parameter settings 2 p

In silico 

oraIITS2 C
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listed in 
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results)
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eDNA 
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egends of the Supplementary Tables L

able S1. T The list of intermediate, final identified taxa and comparison of different taxonomy classification parameters in case study 1

able S2. T The list of intermediate and final identified taxa in case study 2


