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Abstract

Surrogate data methods have been widely applied to produce synthetic data,

while maintaining the same statistical properties as the original. By using

such methods, one can analyze time series behavior or increase the data set

size when few observations are available. Theiler’s surrogate data methods —

the most commonly considered approaches — are based on the Fourier trans-

form. Due to the use of Fourier transform, the application of such methods

is limited to stationary time series, the presence of a trend produces spurious

high frequencies, and hence generates inconsistent surrogates. To solve this

problem, we present two new methods that combine time series decomposi-

tion techniques and surrogate data methods. These new methods initially

decompose time series into a set of monocomponents, separating the deter-

ministic signal and trend. Afterwards, traditional surrogate methods are
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applied on those individual monocomponents and a set of surrogates is gen-

erated. Finally, all individual surrogates plus the trend signal are combined

in order to create a single surrogate series. With this method, one can inves-

tigate linear and nonlinear Gaussian processes in time series, irrespective of

the presence of nonstationary behavior.

Keywords: Surrogate Data, Decomposition Method, Fourier-based

Method, Nonstationary Time Series, Nonlinear Time Series

1. Introduction

Surrogate data methods [1, 2, 3] are traditionally applied on experimental

data to test it against specific null hypotheses. This is achieved by algorith-

mically generating an ensemble of surrogate data: each surrogate data set

is expected to be similar to the original data, but also consistent with the

underlying null hypotheses. Specifically, properties of this underlying null hy-

pothesis (for example linear correlation for the null of linearly filtered noise)

will produce the same statistical estimate from the original data and the sur-

rogates. However, other properties of data, unrelated to the null hypothesis,

are randomized. In other words, only features consistent with the null are

maintained so that statistical sampling from either surrogates or the original

data will provide the same results.

A secondary application of surrogate data is ...

The most commonly considered surrogate data methods are based on the

Fourier transform, such as the Fourier Transformed (FT)1 and Amplitude

1In this paper, FT stands for the Theiler’s Fourier Transformed method used to produce
surrogates. On the other hand, the basic Fourier transform is referred to as F .
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Adjusted Fourier Transformed (AAFT) methods proposed by Theiler et al.

[1]. These methods basically apply the Fourier transform on the original

data, obtaining amplitudes and phases, and substitute the original phases by

uniform random phases. Afterwards, they apply the inverse Fourier trans-

form to obtain the surrogate data. As this new data was generated using

the Fourier transform, which assumes data periodicity, nonstationary char-

acteristics are not represented in the surrogate. The main reason behind

this is that by applying the Fourier transform on nonstationary time series,

the difference between the first and last observations, caused by the trend,

produces spurious high frequencies, as a consequence, inconsistent surrogates

are produced [4, 5].

Aiming at overcoming this problem, we extended these two Fourier-based

methods by initially decomposing the time series into a set of components

plus a residue. Every component contains similar behavior and the residue

contains trends. Then, surrogate data is produced based on each individ-

ual component. Later on, all produced surrogates plus the original residue

are added to compose the surrogate, which is indeed considered as synthetic

data based on the original time series. To separate components, we consider

the Empirical Mode Decomposition (EMD) method. The last component

produced by EMD, i.e., the trend, contains nonstationary features. Accord-

ing to our experiments, we confirmed that our approach improves Theiler’s

methods to produce synthetic data to nonstationary time series.

The remainder of this paper is organized as follows. In Section 2, we

present an overview about the surrogate data methods and we discuss im-

portant surrogate methods. The proposed approach is presented in Section 3.
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In Section 4, we present an analysis of the proposed approach. Experimental

results as well as a detailed discussion about the advantage of our approach

are presented in Sections 5 and 6; finally, in Section 8, we draw conclusions

and discuss future work.

2. Surrogate Methods

The study of surrogate data was introduced by Theiler et al. [1], whose

the main objective was to analyze time series to confirm whether they belong

to the same generation process. In general, this evaluation is performed in

two straightforward steps. First, synthetic data is produced combining part

of the original data properties and another specific generation process. This

step is repeatedly performed to produce a set of surrogates. In the second

step, discriminating statistics are computed to compare the original time

series against all surrogates. Based on the computed values, one can verify

the similarity among them, and, consequently, state whether or not they were

created using the same process.

The discriminating statistics can be computed using different methods,

such as the Grassberger-Procaccia (GP) correlation dimension [6], Autocor-

relation Function (ACF) [7], Spectral Density (SD) [8], Average Mutual In-

formation (AMI) [9] and Space-Time Separation Plot (STP) [10].

The results obtained by the discriminating statistics are then used to

perform Statistical Hypothesis tests which assess the null hypothesis that

the original and surrogate data are similar. For example, if we intend to test

the null hypothesis that the original data is linear, we can produce surrogate

data guaranteeing it will be linear. Thus, if the original and surrogate data
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have the same properties, we accept the null hypothesis, which simply states

we failed to find evidence that the original data is not linear. However,

if the null hypothesis is rejected then we have shown with some statistical

confidence that the original data is not linear.

Initially, Theiler et al. [1] proposed two methods to generate surrogate

data which have been widely studied and employed [2, 11, 12]: the Fourier

Transformed (FT) surrogate; and the Amplitude-Adjusted Fourier Trans-

formed (AAFT) surrogate.

The FT method was designed to identify the nonlinear property in time

series. This method defines as the null hypothesis that the analyzed time

series is linear [1, 2]. Hence, this method produces surrogates using a linear

process. Afterwards, discriminating statistics are computed on the original

and surrogates. Finally, if statistics are significantly different, the null hy-

pothesis is rejected.

In order to better understand the FT method, consider a time series

x(t) = {x(1), x(2), · · · , x(N)} with length N . Let X(f) be the coefficient

produced by the Fourier transform F at frequency f on x(t), Equation 1.

X(f) = F(x(t)) =

∫ ∞
−∞

x(t) · e−i2πftdt (1)

The previous equation can also be rewritten in terms of its amplitude

A(f) and phase φ(f) as shown in Equation 2.

X(f) = A(f) · eiφ(f) (2)

Then, the phase-randomized Fourier transform is obtained by rotating
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the phase at each frequency f considering an independent random variable ϕ

which is uniformly chosen within the interval [0, 2π) [1], as shown in Equation

3.

X̃(f) = A(f) · ei[φ(f)+ϕ(f)] (3)

Given the inherent linearity of the uniform distribution, this random-

ization creates surrogates with phases varying in a linear way. Finally, the

surrogate data y(t) is obtained by applying the Inverse Fourier transform

F−1 (Equation 4) [1].

y(t) = F−1{X̃(f)} = F−1
{∫ ∞
−∞

X(f) · eiϕ(f)df
}

(4)

The second surrogate data method proposed by Theiler et al. is called

the Amplitude Adjusted Fourier Transformed (AAFT) method. In this case,

the null hypothesis assumes that besides the time series dynamics are linear,

observations may be influenced by a nonlinear static transform [1]. Accord-

ing to authors, most conventional methods used to estimate nonlinearity

indicate that a given time series is nonlinear, but they do not provide fur-

ther information to conclude if the nonlinearity comes from the time series

dynamics or from the amplitude distribution [1]. On the other hand, by

using AAFT, surrogates are produced respecting the same amplitude distri-

bution of the original time series and presenting similar ACF, but not equal,

once there is an adjustment on the amplitude [1, 13]. Aiming at improving

AAFT to produce surrogates that preserve both amplitude distribution and

ACF, Schreiber et al. [14] proposed a new method called Iterative Ampli-
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tude Adjusted Fourier Transformed (IAAFT). However, this method is not

considered in our comparative study.

The AAFT method [1] receives the original time series x(t) and then

computes a rank for each observation. Then, the computed ranks are used

to sort the x(t) observations in an increasing order, returning a new series

xr(t). Next, AAFT generates a new time series y(t) using a Gaussian process.

This new time series is reordered so that the ranks agree with the xr(t) ranks.

After that, the FT method is applied on y(t) generating a new series y′(t).

Finally, AAFT produces the surrogate data xs(t) for x(t) by reordering the

observations in x(t) in a way that its ranks agree with the y′(t) ranks. [1].

The main problem faced by these methods is related to the stationarity

restriction imposed by the Fourier transform. Theiler’s FT and AAFT meth-

ods cannot create surrogate data sufficiently similar to time series character-

ized by nonstationary behavior. In such situation, the surrogate produced

by these methods is affected by the amplitude variation in the Fourier trans-

form, producing surrogates completely different from the original time series

[4, 5].

Another surrogate method called Small Shuffle Surrogate (SSS) was pro-

posed by Nakamura and Small[5]. To generate surrogate data, this method

performs the following steps: i) the original time series x(t) is analyzed and

the indices of its observations are stored in a list i(t); ii) a new index list is

created by considering equation i′(t) = i(t) +A · g(t), in which A represents

an amplitude and g(t) is a sequence of Gaussian random numbers. In this

equation, the amplitude A is responsible for defining the scale of changes in

the index list i(t); iii) list i′(t) is sorted and stored in a new list î(t); iv)
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finally, a surrogate s(t) is obtained by selecting values of the original time

series x(t) according to new indexes î(t), i.e., s(t) = x(̂i(t)).

According to authors, this method can be used to investigate irregular

fluctuations in time series, once it destroys local structures or correlations

and keeps the global behavior, such as trend. Hence, the null hypothesis

addressed by this new method is that the time series consists of a underlying

(slow) trend and that the fast dynamics are random.

The main limitation of the SSS method comes from the difficulty to in-

dicate if data are linear or nonlinear, because both behaviors are character-

ized by some dynamics [4]. Aiming at solving this limitation, the same au-

thors presented a new method called Truncated Fourier Transform Surrogate

(TFTS), which produces surrogates by randomizing phases only in the high-

frequency domain. For this, they define a threshold fε to determine whether

phases may change or not, i.e., if phases are characterized by frequencies

higher than fε, then they are randomized; otherwise, they remain the same.

Since high-frequency phases are randomized, the nonlinearity present in ir-

regular fluctuations is destroyed, whereas the global behavior is preserved by

the untouched phases. Hence, the null hypothesis addressed by the TFTS

method states that irregular fluctuations are generated by stationary linear

systems [4].

The TFTS method was later considered by Lucio et al. [13], who pre-

sented two new techniques named AAFTTD and IAAFTTD. Similarly to

our approach, the authors designed these techniques to preserve the global

nonstationarity present in time series. In summary, the techniques consist of

detrending and retrending the time series, applying the TFTS and AAFT (or
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IAAFT) method to generate the surrogate data. These last three methods

emphasize the importance of producing surrogate data considering nonsta-

tionary behavior in time series as approached in this work.

The main problem with the TFTS method, and consequently with the

methods based on it, is the need for setting a value for parameter fε, which

determines the frequencies to be randomized. In summary, when this param-

eter assumes low values, most of the phases will be randomized, producing

surrogates very similar to the traditional FT method. On the other hand,

high values mean the surrogate will be very close to the original data.

Concluding, the nonstationary problem faced by the traditional Theiler

FT and AAFT methods and the restriction imposed by parameter fε to

the TFTS method have motivated the development of two new methods

presented in the following section.

3. Improving surrogate methods by decomposing time series

The surrogate methods presented in this paper were designed to solve

the problem faced by Theiler’s Fourier Transformed (FT) and Amplitude

Adjusted Fourier Transformed (AAFT) methods when analyzing nonlinear

time series. As previously presented, by applying these Fourier-based meth-

ods on time series with trends, the produced observations are influenced by

spurious high frequencies, which affect the general behavior of surrogates.

In order to overcome this drawback, we initially decompose time series into

a set of monocomponents plus a residue, which represents the time series

trend. Afterwards, we apply traditional surrogate methods on every mono-

component, producing a set of monocomponent surrogates. Those individual
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surrogates are combined to produce a single surrogate data, which is finally

retrended by adding the residue obtained in the first step. These detrend-

ing and retrending steps allow to preserve the global nonstationarity in the

surrogate series.

This decomposition step was performed by using of the Empirical Mode

Decomposition (EMD) method [15], which reduces the time series into mono-

components, also called Intrinsic Mode Functions (IMFs), revealing impor-

tant information embedded in the original series [15]. IMFs are also referred

to as monocomponent due to its characteristic of representing only one fre-

quency at any given time instant, supporting the study of instantaneous

frequencies and amplitudes using the Hilbert Spectral Analysis (HSA) [15].

The most important advantage of using EMD is the possibility of decompos-

ing time series irrespective of its generation processes, i.e., the decomposition

proccess is not affected by the nonlinearity, nonstationarity, and/or stochas-

ticity present in time series.

The key point to perform this decomposition is the sifting process, which

initially identifies local minima and maxima values for observations along

time. Afterwards, these extrema are connected through the cubic spline

method and, thus, the upper and lower envelopes are defined, which must

cover all values [15]. Then, mean m1(t) of these envelopes is calculated and

the first monocomponent candidate c1(t) is obtained by using Equation 5, in

which x(t) represents the analyzed time series.

c1(t) = x(t)−m1(t) (5)

Then, the first monocomponent candidate c1(t) is used in place of the
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original data and the sifting process is repeated k times, producing c1k(t) =

c1(k−1)(t)−m1k(t). This process continues until c1k(t) satisfies the IMF mono-

component definition [15]: i) the number of extrema and the number of zero-

crossings must be either equal or differ at most by one; or ii) at any point, the

mean value of the envelope defined by the local maxima and the envelope de-

fined by the local minima is zero. After retrieving the first monocomponent

that satisfies the IMF definition, i.e., c1k(t), the first IMF monocomponent

is obtained according to Equation 6.

h1(t) = c1k(t) (6)

Then, this first IMF is removed from data, i.e., x(t) − h1(t), and the

resultant series is again analyzed by the whole process, producing further

IMFs until reaching a stop criterion. This criterion is defined when the last

component hn(t) becomes a monotonic function, avoiding the extraction of

further components. Hence, this last component is referred to as final residue

rM(t) [15]. In summary, according to EMD, a time series x(t) is composed of

a set of monocomponents plus a residue as presented in Equation 7, in which

M represents the number of monocomponents obtained from time series x(t).

x(t) =
M−1∑
m=1

hm(t) + rM(t) (7)

The decomposition step in our method permits detrending the time se-

ries, by the residue extraction, before applying any surrogate method. Hence,

as next step, our method executes the Theiler’s FT method on all decom-

posed monocomponents {hm(t)}, except on residue rM(t), producing a set of
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monocomponent surrogates.

In the last step, all monocomponent surrogates are summed to form a

single surrogate data. Finally, the global trend of the original time series

is combined to this single surrogate by adding the residue. In summary,

this new adapted method, called EMD-FT, is defined by Equation 8, in

which y(t) is the surrogate data, Xm,k(f) represents the coefficients obtained

applying the Discrete Fourier transform on the m-th monocomponent, and

ϕ(f) represents the values obtained with the phase randomization.

y(t) =
M−1∑
m=1

(
1

N

N∑
k=1

Xm,k(f) · eiϕ(f)
)

+ rM(t) (8)

On the other hand, the adapted EMD-AAFT method was created using

exactly the same steps previously presented, however the AAFT method was

adopted to produce surrogate data for every monocomponent instead.

One of the most important contributions of the proposed methods is the

possibility of removing nonstationary influences during the decomposition of

the original time series. After decomposition, every monocomponent con-

tains simpler behavior which is better represented using sinusoidal functions.

Thus, when we apply Theiler’s surrogate data methods on every monocom-

ponent to produce surrogates, except the residue which represents the time

series trend. Consequently, by using FT and AAFT in our methods, one

can test the linearity in stationary or nonstationary time series, what is not

possible using Theiler’s methods directly on the original time series.

In order to evaluate the proposed methods, in the next section, we analyt-

ically demonstrate that surrogates produced by the original FT and AAFT

methods are similar to the proposed EMD-FT and EMD-AAFT methods,
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even when there is a trend embedded in the time series.

4. Analyzing the proposed surrogate methods

In order to investigate the efficiency of the proposed methods, we ana-

lyzed the surrogate data produced by FT and EMD-FT methods. The main

objective of this analysis is to assure that the adapted method produces

surrogates with the same behavior as the traditional one and, consequently,

the same null hypothesis can be used by both methods, even when there is

nonstationary behavior in data.

All analysis presented in this section is based on constant phase random-

ization, i.e., the same phase randomization is applied on every IMF, in order

to simplify the stated theorem and proof. However, this is not mandatory,

because one can employ our methods to apply different phase randomizations

to IMFs what is discussed in Section 7.

It is important to highlight that we used the EMD-FT method because

it is simpler and more intuitive, but the same results can be extended to the

EMD-AAFT method. In order to proceed with this analysis, we first present

a theorem which states that the surrogate data produced by both methods

are exactly the same, even when there is trend embedded in the time series.

By proving this theorem, we confirm the same hypothesis test used by the

Theiler’s FT method can be adopted for the EMD-FT method. In this sense,

we can formally define our hypothesis:

Theorem: If the trend can be separated from nonlinear time series, then

Theiler’s FT and the proposed EMD-FT method produce the same surrogate
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data.

Proof: To validate this theorem, we need to prove that the surrogate

data produced by both methods are exactly the same to linear and nonlinear

time series. However, before proceeding with this analysis, we postulate the

trend can somehow be detached from time series.

Therefore, considering this postulate, we can rewrite a nonlinear time

series as x(t) = z(t) + rM(t), in which z(t) represents the time series obser-

vations and rM(t) is the trend. We used rM(t) to represent the trend just to

keep the same pattern used to describe the Empirical Mode Decomposition

(EMD) method. Hence, in the first part of our proof, after applying Theiler’s

FT surrogate method on the observations of z(t), we obtain surrogate y(t)FT .

y(t)FT = FT (z(t)) + rM(t) (9)

Considering the definition of Fourier transform (Equation 1), we can

rewrite the previous equation as:

y(t)FT =
1

N

N∑
k=1

Xk(f) · eiϕ(f) + rM(t) (10)

The second part of our proof is, initially, obtained by applying the EMD

method on the same nonlinear time series x(t), which returns a set of mono-

components {hm(t)} and a residue rM(t). By definition, residue rM(t) rep-

resents the time series trend, once the EMD method was previously proved

to be nonlinear and useful to retrieve the trend from time series [16]. After-

wards, Theiler’s FT method is also used to generate surrogates, but Equation
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1 may be individually applied on every monocomponent hm(t), resulting in

surrogate y(t)EMD−FT .

EMD(x(t)) = h1(t) + · · ·+ hm(t) + rM(t)

y(t)EMD-FT = FT (h1(t)) + · · ·+ FT (hm(t)) + rM(t)

=

(
1

N

N∑
k=1

X1,k(f) · eiϕ(f)
)

+ · · ·+

(
1

N

N∑
k=1

Xm,k(t) · eiϕ(f)
)

+ rM(t)

(11)

An important step of our proof is stated by assuming the phase ran-

domization is performed only once for all monocomponents hm(t), i.e., all

monocomponents were randomized considering the same sequence of values.

Hence, surrogate y(t)EMD−FT can be rewritten evidencing the randomized

phase according to Equation 12.

y(t)EMD-FT =

[(
1

N

N∑
k=1

X1,k(t)

)
+ · · ·+

(
1

N

N∑
k=1

Xm,k(t)

)]
· eiϕ(f) + rM(t)

y(t)EMD-FT =

[
M−1∑
m=1

(
1

N

N∑
k=1

Xm,k(t)

)]
· eiϕ(f) + rM(t) (12)

Finally, in order to prove the theorem stated in this section, we need to

evaluate the relation y(t)FT = y(t)EMD−FT , i.e., observations generated by

both methods are equal.
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y(t)FT = y(t)EMD−FT(
1

N

N∑
k=1

Xk(f) · eiϕ(f)
)

+ rM(t) =

[
M−1∑
m=1

(
1

N

N∑
k=1

Xm,k(t)

)]
· eiϕ(f) + rM(t)

(13)

By subtracting rM(t) from both sides of Equation 12, we obtain the equal-

ity shown in Equation 14.

(
1

N

N∑
k=1

Xk(f) · eiϕ(f)
)

=

[
M−1∑
m=1

(
1

N

N∑
k=1

Xm,k(t)

)]
· eiϕ(f)

(14)

Finally, we divide both sides of the equation by eiϕ(f):

[(
1

N

N∑
k=1

Xk(f)

)]
· eiϕ(f) =

[
M−1∑
m=1

(
1

N

N∑
k=1

Xm,k(t)

)]
· eiϕ(f)(

1

N

N∑
k=1

Xk(f)

)
=

M−1∑
m=1

(
1

N

N∑
k=1

Xm,k(t)

)
(15)

This equality proves the sum of amplitudes, obtained by applying Theiler’s

FT on EMD decomposed monocomponents, is equal to the amplitude ob-

tained using Theiler’s FT surrogate method directly on the time series. 2

Therefore, we confirm the new method supports the same null hypothesis
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as Theiler’s FT and AAFT, but without any interference of the nonstationary

behavior, once the nonlinear EMD method permits treating the trend as a

separated component.

In the following section, we present the experimental setup to evaluate

the proposed methods.

5. Experimental setup

In order to evaluate the proposed methods, we analyzed two sets of time

series2. The first one was composed of three synthetic time series created by

adding a trend to a sine function (Figure 1.a), a white noise process (Figure

1.b), and an autoregressive process (Figure 1.c). The autoregressive (AR)

process used in these experiments was generated considering a first-order

model and a Normal distribution N(0, σ2). This Normal distribution was

also used to create the white noise time series presented in Figure 1.b.

The second set was composed of three real-world time series. The first

series is illustrated in Figure 1.d, which corresponds to a collection of yearly

average global temperatures [17]. Figure 1.e presents the second time series

that corresponds to atmospheric concentrations of CO2 [18]. Finally, Figure

1.f represents the Dow Jones Utilities Index commonly considered in stock

market analysis [8].

[Figure 1 about here.]

The evaluation process was performed by analyzing every time series and

producing 99 surrogates using the methods FT, AAFT, EMD-FT, and EMD-

2The time series used in this experiments, as well as the source code, are available in:
http://www.icmc.usp.br/~rios/surrogate/

17



AAFT. Then, the original and surrogate time series were evaluated consid-

ering three types of analyses: i) visual inspection of time series plots; ii)

visual inspection of plots produced by the Autocorrelation Function (ACF)

[10] and the Average Mutual Information (AMI) [9, 5, 4]; iii) hypothesis test

considering the discriminating statistics obtained using AMI.

The Autocorrelation Function allows to identify temporal correlations

present in series at different lags in time, depicting the difference among the

methods. Formally, the Autocorrelation function ρ̂(h) of a time series x(t)

is obtained by computing the autocovariances of x(t) and its time-shifted

version x(t + h) as defined in Equation 16, in which E[·] is the expected

value of the expression, and µ and σ2 are the variance and mean of x(t),

respectively.

ρ̂(h) =
E[(x(t)− µ)(x(t+ h)− µ)]

σ2
(16)

In summary, ACF allows to analyze the similarity among time series

observations. By considering it as discriminating function, we can evaluate

whether the similarity among the original time series observations agrees

with the similarities of surrogates or not.

The Average Mutual Information (AMI) can be considered a nonlinear

version of ACF, which helps to determine the dependence between past and

future observations [9, 5, 4]. Equation 17 defines AMI, in which p(x(t)) repre-

sents the marginal probability distribution function of x(t) and p(x(t), x(t+

h)) is the joint probability distribution function of x(t) and x(t+ h), having

h as the time lag. In all experiments, the time lag as varied within interval

[1, 20] and sixteen bins were used to discretize data and estimate probabili-
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ties.

I(h) =
∑
x

p(x(t), x(t+ h)) log

(
p(x(t), x(t+ h))

p(x(t)) p((t+ h))

)
(17)

6. Experiments

This section presents the experimental results in two subsections. First,

we analyzed the synthetic time series, then the real ones.

6.1. Synthetic Time Series

In the first synthetic experiment, we analyzed a time series created by the

combination of a sine function and a linear sequence of observations, added

to simulate a trend behavior. This time series (red continuous line) and

the surrogates (dashed lines) generated by FT, AAFT, EMD-FT, and EMD-

AAFT are illustrated in Figures 2.a, Figures 2.d, 2.g, and 2.j, respectively.

By visually inspecting these plots, we observe EMD-FT produced surrogates

whose behavior is very similar to the original series. Although the surrogates

produced by the EMD-AAFT method are also close to the original time

series, we notice the presence of small noise changing the expected behavior.

These conclusions were also drawn by analyzing the discriminating statis-

tics. According to ACF (Figures 2.b, Figures 2.e, 2.h, and 2.k) and AMI

(Figures 2.c, Figures 2.f, 2.i, and 2.l) plots, the original data (red continuous

line) only falls within the surrogate distribution (dashed lines) produced by

the EMD-FT method.

[Figure 2 about here.]
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In the second synthetic experiment, we analyzed a time series (Figure 3.a)

created by the combination of a white noise process and a linear sequence of

observations used to simulate a trend behavior.

[Figure 3 about here.]

By analyzing the plots in Figure 3, we confirm the proposed methods

produce surrogates, whose behavior is closer to the original time series than

the Theiler’s FT and AAFT methods. In case of EMD-FT and EMD-AAFT,

we observe no significant differences.

The last synthetic time series was created combining an autoregressive

process to a linear sequence of observations. Observing Figure 4, the pro-

posed methods generated surrogates more consistent with the original time

series. We highlight there is no significant difference between EMD-FT and

EMD-AAFT when visually inspecting time series plots.

[Figure 4 about here.]

In the next section, we present the results obtained when considering

real-world time series.

6.2. Real-World Time Series

The first time series analyzed in this section is presented in Figure 5.a.

This time series was studied in [17] and it is composed of yearly average

values of global temperatures.

[Figure 5 about here.]

By analyzing this series, we realized observations follow a trend, i.e.,

the mean temperature increases over time, characterizing the time series

as nonstationary. Nevertheless, the surrogates created by Theiler’s FT and
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AAFT cannot represent such trend. On the other hand, the EMD-FT and

EMD-AAFT methods produced surrogates considering the nonstationarity

of the original time series. Analyzing only the AMI plots, we conclude all

methods produced surrogates, which are compatible with the original time

series, once they are within the surrogate distribution. However, in this

situation, the ACF plot clearly indicates Theiler’s FT and AAFT surrogates

are different from the original time series, what is evident by plots on the left

side of Figure 5.

The second real-world time series considered in this study is composed

of atmospheric concentrations of CO2 and has a similar behavior to the syn-

thetic series presented in Figure 2. This series is characterized by some trend

and cyclical behavior. In this scenario, the best surrogates were generated

using EMD-FT and EMD-AAFT, as expected due to presence of trend. This

is also confirmed by the ACF and AMI plots. In this situation, there is no

significant difference between the EMD-FT and EMD-AAFT surrogates.

[Figure 6 about here.]

Finally, the last experiment was performed on the Dow Jones Utilities

Index, which was recorded from August 28th to December 18th, 19723 [8].

This time series (Figure 7) has a trend behavior as well, benefiting the EMD-

FT and EMD-AAFT methods. This conclusion is also evident in the ACF

plots. However, according to the AMI plots, the only ineffective method was

Theiler’s AAFT. In such situation, EMD-FT and EMD-AAFT surrogates

have similar behavior.

3Although there are most current observations for this dataset, we used this period due
to its adoption in several papers and textbooks on time series analysis.
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[Figure 7 about here.]

Finally, we also applied a hypothesis test on the discriminating statistics

produced by the Average Mutual Information. Thus, we applied hypothesis

tests to compare the original time series against every surrogate produced

by all methods. Then, we computed the average p-value µp−value for every

method. At last, the following hypothesis test was applied to compare the

methods, which considers a significance level of 0.01 for the one tailed test.

H0 : µp-value ≥ 0.01

Ha : µp-value < 0.01

(18)

This test accepts the null hypothesis when the average p-value is greater

than 0.01, otherwise, we accept the alternative hypothesis, which allows us

to infer the surrogate and original time series were not produced using the

same generation process. The obtained results were summarized in Table 1,

in which letters A and R mean the null hypothesis was accepted or rejected,

respectively.

[Table 1 about here.]

According to Table 1 the surrogates generated by Theiler’s FT and AAFT

were significantly different from the original time series in most situations,

hence the null hypothesis was rejected for most surrogates. On the other

hand, the proposed EMD-FT and EMD-AAFT methods provided greater p-

values, showing their surrogates are more similar to the original time series.

By analyzing the results obtained with the synthetic and real-world time

series, we conclude the proposed EMD-FT and EMD-AAFT methods provide

effective surrogates, which respect the behavior of original time series. This
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is evident in the presence of a trend, which affects Theiler’s methods but not

EMD-FT and EMD-AAFT.

7. Discussion on the phase randomization

In our proof, we applied the same phase randomization for all monocom-

ponents, i.e., after extracting a set of IMFs for a nonlinear time series, the

same variable ϕ (Equation 3) used to rotate the phase of the first IMF is

again used for the remaining IMFs. This assumption was used to simplify

the analysis of our methods. By using a constant value for the phase, we

were able to prove that our methods produce similar surrogates to Theiler’s

FT and AAFT methods, but without any stationary influence.

This assumption is not mandatory, what means we can produce the final

surrogate by combining IMFs at different phase randomizations. Using this

process, we can use our methods to: i) filter only deterministic IMFs [19]

and apply phase randomization to produce more representative surrogates,

once the stochastic behavior may be out of scope for some application do-

mains, such as signal and image processing; ii) filter time series trends out

and produce surrogates only considering the relevant behavior which is repre-

sented by IMFs. At last, we only add trends to compose the final surrogate,

maintaining the nonstationary characteristic of the original time series (as

approached in this work) what is not fulfilled by Theiler’s FT and AAFT

methods; iii) filter IMFs according to amplitudes to produce surrogates at

different randomization levels. For example, consider the time series shown

in Figure 1.d, which corresponds to a collection of yearly average global tem-

peratures. By applying the EMD method on this time series, a set of IMFs
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is obtained as shown in Figure 8. We notice the amplitudes of IMFs vary

significantly. Hence, the phase randomization of a low-amplitude IMF adds

no significant information to the final surrogate.

[Figure 8 about here.]

Finally, even using constant phase randomization, the analysis on the null

hypothesis for our methods (see Section 4) remains consistent.

8. Concluding remarks

In this paper, we discussed the problem faced by Theiler’s FT and AAFT

methods when time series present nonstationary behavior. In such situation,

surrogates produced by these methods are very different from the original

data. By applying statistical methods or even performing a visual inspection

on the original and surrogate time series, we cannot state whether they were

created from the same process or not.

In order to address this drawback, we proposed two new methods based

on Theiler’s techniques. The new methods initially decompose the time se-

ries into monocomponents that are, in a second step, transformed by either

Theiler’s FT or AAFT method. As a result, a set of monocomponent surro-

gates is produced, which are combined with the original time series trend to

create the surrogate time series.

Experimental results on synthetic and real-world time series confirmed

the proposed methods produced surrogates in accordance to the original data

in presence of nonstationarity. This is made possible due to the extraction

of the series trend, which adds spurious high frequencies. As consequence,

the proposed methods support the linear/nonlinear test for stationary and
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nonstationary time series, what is not possible when directly using Theiler’s

methods.
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Figure 1: Time series used to evaluate the proposed methods: (a) A sine function combined
with a trend; (b) A white noise process combined with a trend; (c) Autoregressive process
combined with a trend; (d) Global Temperature [17]; (e) Atmospheric concentrations of
CO2 [18]; (f) Dow Jones Utilities Index [8].
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Figure 2: Surrogates generated from the synthetic time series created by the combination
of trend and sine function. At the left side, the original time series (red continuous line)
and its surrogates (dashed lines) are presented. In the middle and right side, the ACF
and AMI plots are shown.
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Figure 3: Surrogates generated from the synthetic time series created by the combination
of trend and white noise process. At the left side, the original time series (red continuous
line) and its surrogates (dashed lines) are presented. In the middle and right side, the
ACF and AMI plots are shown.
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Figure 4: Surrogates generated from the synthetic time series created by an autoregressive
noise. At the left side, the original time series (red continuous line) and its surrogates
(dashed lines) are presented. In the middle and right side, the ACF and AMI plots are
shown.
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Figure 5: Surrogates generated from the real-world time series composed of average values,
yearly, collected of global temperatures. At the left side, the original time series (red
continuous line) and its surrogates (dashed lines) are presented. In the middle and right
side, the ACF and AMI plots are shown.
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Figure 6: Surrogates generated from the real-world time series composed of atmospheric
concentrations of CO2. At the left side, the original time series (red continuous line) and
its surrogates (dashed lines) are presented. In the middle and right side, the ACF and
AMI plots are shown.
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Figure 7: Surrogates generated from the real-world time series of Dow Jones Utilities
Index. At the left side, the original time series (red continuous line) and its surrogates
(dashed lines) are presented. In the middle and right side, the ACF and AMI plots are
shown.
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Figure 8: The plots from (a) to (f) show the IMFs and the residue extracted from the
time series presented in Figure 1.d.
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Table 1: Hypothesis test using Average Mutual Information (AMI): FT and AAFT re-
jected the null hypothesis in 9 out of 12 scenarios, confirming the surrogate series produced
are not representative enough; EMD-FT and EMD-AAFT accepted the null hypothesis in
all scenarios, confirming they produce more significant surrogate data.

Time Series FT AAFT EMD-FT EMD-AAFT

Sine + Trend 0 (R) 0 (R) 0.753 (A) 0.013 (A)
White noise + Trend 0 (R) 0 (R) 0.601 (A) 0.508 (A)

AR(1) + Trend 0 (R) 0 (R) 0.565 (A) 0.571 (A)
Global Temperature 0.727 (A) 0.942 (A) 0.829 (A) 0.886 (A)

CO2 0 (R) 0 (R) 0.483 (A) 0.412 (A)
Dow Jones 0.073 (A) 0 (R) 0.344 (A) 0.321 (A)
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