Practical synchronization on complex dynamical networks via optimal pinning control

Kezan Li1, Weigang Sun2, Michael Small3, and Xinchu Fu4

1School of Mathematics and Computing Science, Guangxi Key Laboratory of Cryptography and Information Security, Guilin University of Electronic Technology, Guilin 541004, People’s Republic of China
2Institute of Applied Mathematics and Engineering Computations, Hangzhou Dianzi University, Hangzhou 310018, People’s Republic of China
3School of Mathematics and Statistics, The University of Western Australia, Crawley, WA, 6009, Australia
4Department of Mathematics, Shanghai University, Shanghai 200444, People’s Republic of China

We consider practical synchronization on complex dynamical networks under linear feedback control designed by optimal control theory. The control goal is to minimize global synchronization error and control strength over a given finite time interval, and synchronization error at terminal time. By utilizing the Pontryagin’s minimum principle, and based on a general complex dynamical network, we obtain the optimal system to achieve the control goal. The result is verified by performing some numerical simulations on Star networks, Watts-Strogatz networks and BA networks. Moreover, by combining the optimal control and traditional pinning control, we propose an optimal pinning control strategy which depends on the network’s topological structure. Obtained results show that the optimal pinning control is very effective for synchronization control in real applications.

PACS numbers: 05.45.Xt, 89.75.Hc

Since synchronization of complex networks has potential applications in various fields, it has been studied thoroughly and widely during the past few decades [1-4] (and many references therein). In order to realize various synchronization patterns, many synchronization control methods have been proposed, such as pinning control [5, 6], impulsive control [7], adaptive control [8], and so on. A general and common control goal is to realize complete synchronization, i.e., the synchronization error converges to zero as time $t \to +\infty$. Though these control methods can effectively achieve the synchronization goal, they generally need great control strength. In particular, these methods may be unfeasible when the control strength is limited to a small range. In order to achieve a balance between the control strength and synchronization goal, this paper will study network synchronization by applying a time-varying control via the optimal control theory to globally reduce the synchronization error and control strength. Noting that time interval for every complex dynamical network in real applications is usually finite, in this case, the control goal becomes minimizing the global synchronization error and control strength over the given finite time interval, and the synchronization error at terminal time. Actually, the expected synchronization becomes practical complete synchronization [9, 10] (or practical synchronization for short), where the synchronization error is limited globally to a small level.

Synchronization of master-slave systems via optimal control theory has been studied in recent years [11-13]. However, to the best of our knowledge, there are no reports of synchronization on complex dynamical networks via optimal control. So, based on a general dynamical complex network model, in this paper we will investigate its practical synchronization with optimal control. We find that the proposed optimal control method is more effective than linear feedback control with constant strength (i.e., constant control). To further improve the performance of optimal control, we introduce the optimal pinning control strategy, by which only a fraction of nodes in the network are controlled. These results are verified by numerical simulations.

The behaviour of the complex dynamical network under control is described by

\[
\begin{aligned}
\dot{x}_i(t) &= f(x_i(t)) + c \sum_{j=1}^{n} a_{ij} x_j(t) \\
&\quad + u_i(t)(s(t) - x_i(t)), \\
\dot{s}(t) &= f(s(t)),
\end{aligned}
\]

(1)

where $x_i(t) = (x_{i1}(t), x_{i2}(t), \ldots, x_{im}(t))^T \in \mathbb{R}^m$ denote the state variables for $i = 1, 2, \ldots, n$. The initial condition of model (1) is set as

\[
\begin{aligned}
x_i(0) &= \theta_i \in \mathbb{R}^m, \quad i = 1, 2, \ldots, n, \\
s(0) &= \theta_{n+1} \in \mathbb{R}^m.
\end{aligned}
\]

(2)

The nonlinear vector function $f(\cdot)$ defines the local dynamics of node i, and we assume that it is differentiable. The constant $c > 0$ is the coupling strength. The coupling matrix $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ with zero-sum rows shows the coupling configuration of the network. If nodes i and j are connected, then $a_{ij} = a_{ji} = 1$; otherwise $a_{ij} = a_{ji} = 0$. The diagonal elements of the coupling matrix A are $a_{ii} = - \sum_{j=1, j \neq i}^{N} a_{ij} = -k_i$, $i = 1, 2, \ldots, n$, where k_i denotes the degree of node i. In this paper, we suppose that the matrix A is irreducible. Let $u_i(t) \in \mathbb{R}^+$ denote the time-varying control strength. Note that if $u_i(t)$ are constant, synchronization of model (1) has been studied widely under linear feedback control method [2, 4]. In this case, large control strengths are generally needed to drive all nodes toward the desired state $s(t)$. In order to decrease the control strength, time-varying adaptive control can be used [6, 14]. However,
where the Hamiltonian
\[J(u) = \frac{1}{2} \sum_{i=1}^{n} \left\{ e_i^T(t_f)e_i(t_f) + \int_0^{t_f} [e_i^T(t)e_i(t)+\beta_i u_i^2(t)]dt \right\}, \]

with Lagrangian
\[L = \frac{1}{2} \sum_{i=1}^{n} \left[e_i^T(t)e_i(t) + \beta_i u_i^2(t) \right], \]

where parameters \(\beta_i \) are all positive weights, \(u(t) = (u_1(t), u_2(t), \ldots, u_n(t)) \). In fact, the integral form in objective function (3) is generally chosen to study the synchronization on dynamical systems [11-13]. This kind of objective function can insure that the synchronization error is decreased in the whole time interval \([0, t_f]\) under the following optimal control. If we want to strengthen relatively the control of synchronization (i.e., weaken the consideration of control strength), then the weights \(\beta_i \) should be decreased, and vice versa.

Therefore, the optimal control problem can be described as
\[
\text{OCP} : \begin{cases}
\min, & J(u(t)) \\
\text{s.t.} & u(t) \in U_{ad}
\end{cases}.
\] (4)

The optimal solution \((x_i^*(t), u_i^*(t))\) of OCP will be resolved by using the Pontryagin's minimum principle [15]. Combining the standard optimality conditions and complex network structure, we develop a new formalization of network control in terms of optimal control. Define the Hamiltonian \(H \) for OCP as
\[
H = L + \sum_{i=1}^{n} \lambda_i^T(t)\dot{x}_i(t),
\] (5)

where \(\lambda_i(t) = (\lambda_{i1}(t), \lambda_{i2}(t), \ldots, \lambda_{im}(t))^T \in \mathbb{R}^m \) are the adjoint variables determined by the following equations
\[
\dot{\lambda}_i(t) = -\frac{\partial H}{\partial x_i(t)}\bigg|_{x_i(t)=x_i^*(t),u_i(t)=u_i^*(t)} = -e_i^* - \left[\frac{\partial f(x_i^*(t))}{\partial x_i^*(t)} \right]^T \lambda_i(t) - c \sum_{j=1}^{n} a_{ji} \lambda_j(t) + u_i^*(t)\lambda_i(t),
\] (6)
with transversality condition
\[\lambda_i(t_f) = \frac{\partial}{\partial x_i(t_f)} \left(1 \sum_{i=1}^{n} e_i^T(t_f) e_i^*(t_f) \right) \]
\[= e_i^*(t_f), \]
(7)
where \(i = 1, 2, \ldots, n \). Furthermore, under the necessary condition, the optimal control should satisfy
\[\frac{\partial H}{\partial u_i(t)} \bigg|_{x_i(t) = x_i^*(t), u_i(t) = u_i^*} = \lambda_i(t) - \beta_i u_i^*(t) - \lambda_i^T(t) e_i^*(t) = 0, \]
(8)
and \(u_i^*(t) \in U_{ad} \). These restriction conditions give the optimal control
\[u_i^*(t) = \begin{cases} 0, & \frac{\lambda_i(t) e_i^*(t)}{\beta_i} \leq 0; \\ \frac{\lambda_i(t) e_i^*(t)}{\beta_i}, & 0 < \frac{\lambda_i(t) e_i^*(t)}{\beta_i} < b; \\ b, & \frac{\lambda_i(t) e_i^*(t)}{\beta_i} \geq b, \end{cases} \]
(9)
whose compact expression is given by
\[u_i^*(t) = \min \left\{ \max \left(0, \frac{\lambda_i^T(t) e_i^*(t)}{\beta_i} \right), b \right\}. \]
(10)
Therefore, the optimal system of the complex dynamical network under the optimal control is determined by equations (1), (6) with initial condition (2), transversality condition (7) and optimal control (10). In general, it is impossible to obtain an analytic state solution and optimal control, however, a solution can be obtained by numerical methods. In the following simulations, we will apply the forward-backward sweep method [16] to solve the optimal system, where the underlying ordinary differential equations (1) and (6) are solved by a fourth order Runge-Kutta method. The control strengths are updated by convex combination between the current strengths and the new control strengths provided by (10).

Without loss of generality, the heterogeneous structure is characterized by three cases: Star network, Watts-Strogatz network and BA network. The network size is \(n \). In the Star network, the first node has degree \(n - 1 \), while the other nodes have the same degree 1. The Watts-Strogatz network [17] is generated with probability 0.1 for rewiring links, where each node is symmetrically connected with its 6 nearest neighbors in its initial nearest neighbor network. The BA network [18] is produced with four initial nodes, which are fully connected, and then adding a new node with three new edges at each time step.

The local dynamics of each node is described by the chaotic Lorenz oscillator
\[\begin{cases} \dot{z}_1 = a_1 (z_2 - z_1), \\ \dot{z}_2 = a_2 z_1 - z_2 - z_1 z_3, \\ \dot{z}_3 = z_2 z_3 - a_3 z_3, \end{cases} \]
(11)
where \(a_1 = 10, a_2 = 28, a_3 = 8/3 \). So, we have \(m = 3 \) and
\[\frac{\partial f(z)}{\partial z} = \begin{pmatrix} -a_1 & a_1 & 0 \\ a_2 - z_3 & -1 & -z_1 \\ z_2 & z_1 & -a_3 \end{pmatrix}. \]
In order to show that the choice of parameters for numerical simulations doesn’t affect the results, we consider two groups of parameter: (i) \(n = 50, c = 0.1 \),
\[u_i(t) = \min \left\{ \frac{x_i^2(\theta_i) + \beta_i(t)}{\beta_i(t)}, b \right\} \text{ from (10), and} \]
\[u_i^*(t) = 0, i = 2, 3, \ldots, n \text{ in equations (6). The other parameters are set as } c = 2, b = 5, t_f = 3, \text{ and } \beta_i = 1. \]

The initial value \(\theta_i \) are chosen from \([0, 1]^3\) at random for \(i = 1, 2, \ldots, n + 1 \). From Fig. 6, we find that the synchronization error under the optimal pinning control \(u_i^*(t) \) is limited to a relatively low level, compared to the other constant pinning controls on the same node. Moreover, from Fig. 7, the value of the objective function is minimal when we apply the optimal pinning control. Fig. 8 shows the dynamical change process of the optimal control \(u_1^*(t) \) with small average control strength \(v_1 = 1.6494 \). For further comparison, we find that the synchronization error and objective function are both increased if only the second node is controlled with optimal control \(u_2^*(t) \) (see Fig. 6-7), where the other parameters are the same as the optimal pinning control. Hence, in real applications of practical synchronization, the optimal pinning control strategy is a highly effective method, as the number of controlled nodes and the objective function are both small. As we know, there is a close relationship between network synchronization and network topological structure. The developed optimal pinning control strategy provides a feasible method to optimize the synchronization control on complex dynamical networks.

This research was supported jointly by NSFC grants (Nos. 61004101, 11331009) and Guangxi Natural Science Foundation Program (Nos.2011GXNSFBB018059, 2013GXNSFBA019252).
MS is supported by an ARC Future Fellowship (No. FT110100896). This work was supported by Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation, Guilin University of Electronic Technology. This work was also supported by Program for Innovative Research Team of Guilin University of Electronic Technology.