Selection biases in the gamma-ray burst $E_{\text{iso}} - L_{\text{opt, X}}$ correlation

D. M. Coward, E. J. Howell, L. Wan and D. Macpherson

1 School of Physics, University of Western Australia, Crawley WA 6009, Australia
2 School of Astronomy and Space Science, Nanjing University, Nanjing 210093, China
3 ICRAR, University of Western Australia, Crawley WA 6009, Australia

Accepted 2014 December 1. Received 2014 November 24; in original form 2014 August 29

ABSTRACT

Gamma-ray burst (GRB) optical and X-ray afterglow luminosity is expected to correlate with the GRB isotropic equivalent kinetic energy of the outflow in the standard synchrotron model for GRB afterglows. Previous studies, using prompt GRB isotropic equivalent energy (E_{iso}) as a proxy for isotropic equivalent kinetic energy, have generally confirmed a correlation between X-ray and optical afterglow luminosities. Assuming that GRB afterglow luminosity does not evolve strongly with redshift, we identify a strong Malmquist bias in GRB optical and X-ray afterglow luminosity data. We show that selection effects dominate the observed $E_{\text{iso}} - L_{\text{opt, X}}$ correlations, and have likely been underestimated in other studies. The bias is strongest for a subset of optically faint bursts $m > 24$ at 24 h with $z > 2$. After removing this optical selection bias, the $E_{\text{iso}} - L_{\text{opt, X}}$ correlation for long GRBs is not statistically significant, but combining both long and short GRB luminosity data the correlation is significant. Using the median of the E_{iso} and $L_{\text{opt, X}}$ distributions, we apply the synchrotron model assuming the same power-law index for short and long GRBs, but different microphysical parameter distributions. Comparing the ratio of optical and X-ray luminosities, we find tentative evidence that the fraction of post-shock energy in magnetic fields, ϵ_B, could be systematically higher in short GRBs compared to long GRBs.

Key words: methods: statistical – gamma-ray burst: general.

1 INTRODUCTION

Gamma-ray bursts (GRBs) are the most energetic transients observed at cosmological distances. They have been categorized into two classes. The first class, ‘long’, hereafter LGRB ($T_{90} > 2$ s) is linked to the core collapse of massive stars (collapsars) (Woosley 1993; Paczynski 1998; MacFadyen & Woosley 1999). For several cases, the GRBs are firmly associated with Type Ib/c supernovae (e.g. Hjorth et al. 2003; Stanek et al. 2003), suggesting they are linked to the end of massive stellar evolution. In contrast, short GRBs ($T_{90} < 2$ s, hereafter SGRB) have a less certain origin.

The first breakthrough to understand the origin of SGRBs occurred in 2005 after the launch of the NASA Swift satellite (Gehrels et al. 2004). Prompt localizations and deep afterglow searches yielded the first redshifts and investigations of their progenitor environments based on their host galaxies. By 2014, about three dozen SGRBs had been localized by Swift and about 50 per cent have optical detections with redshift determinations.

Binary neutron star (NS–NS) mergers or neutron star–black hole (NS–BH) mergers are the favoured progenitors for SGRBs, based on the association of some SGRBs with an older stellar population (e.g. Lee, Ramirez-Ruiz & Granot 2005; Zheng & Ramirez-Ruiz 2007), as compared to LGRBs. Further evidence for the origin of SGRBs comes from observations showing that at least some SGRBs occur far from their site of origin, a consequence of possible high velocity kicks imparted to NSs at birth.

Although the bi-modal distribution is accepted as evidence for two GRB classifications, there remains ambiguity. About 20 per cent of Swift SGRBs have been detected with an extended emission lasting up to 100 s (hereafter SGRB-EE) (Norris & Bonnell 2006; Perley et al. 2009) leading to suggestions that different progenitor types produce these bursts (Norris, Gehrels & Scargle 2011). Troja et al. (2008) argue that SGRB-EE could be NS–BH mergers based on their galaxy off-sets or the birth of a rapidly rotating protomagnetar produced via NS–NS merger or accretion-induced collapse of a white dwarf (Metzger, Quataert & Thompson 2008; Bucciantini et al. 2011).

The standard synchrotron model describes the relationship between afterglow luminosity and isotropic kinetic energy of the prompt emission ($E_{\text{K, iso}}$). Previous studies that have investigated this correlation for LGRBs include e.g. Freedman & Waxman (2001), Liang & Zhang (2006), Amati et al. (2007), Kaneko et al.
E recent investigations of correlations between afterglow luminosity and GRB X-ray luminosities with the standard synchrotron model. We argue (see 2.2.1) that a cut in opt, 24 – iso correlations can be inferred (Efron & Petrosian 1992). The study showed that the observed correlations are flatter than the theoretical expectation, similar to that identified by K10.

D’Avanzo et al. (2012) claim that they have obtained a complete selection of Swift LGRBs by applying a high cut-off in GRB peak photon flux to minimize flux bias. They show that the X-ray afterglow luminosity versus E_{iso} correlation evolves from strongest at early times to weakest at late times. Despite this high-energy flux limit, they acknowledge that their complete GRB X-ray luminosity sample is still biased, and apply a joint correlation method to account for the Malmquist bias correlation between redshift and luminosity. We argue (see 2.2.1) that a cut in γ-ray peak photon flux does not remove the redshift bias in their X-ray luminosity distribution.

Given the importance of testing the standard synchrotron model using multiwavelength GRB data, we re-examine the $L_{\text{opt, 24}} – E_{\text{iso}}$ correlation. Our main focus is understanding how selection biases in the GRB afterglow distribution influence the $L_{\text{opt, 24}} – E_{\text{iso}}$ correlation. We will apply robust methods to first identify flux limited biases (Malmquist) in GRB optical and X-ray afterglow data, and secondly, remove this bias to construct a bias free selection. Finally, we compare the unbiased LGRB and SGRB optical and X-ray luminosities with the standard synchrotron model.

1.1 GRB afterglow energetics in the standard fireball model

The standard afterglow synchrotron model uses free parameters that describe the relativistic shock microphysics: the fraction of post-shock energy in the magnetic fields, ϵ_B, the fraction of energy in relativistic electrons, ϵ_e. These parameters follow a power-law distribution, i.e. $N(\gamma) \propto \gamma^{-p}$ above a minimum Lorentz factor, γ_m (Sari, Piran & Narayan 1998).

In the standard afterglow synchrotron model, the X-ray band is expected to be located near or above the synchrotron cooling frequency (Granot & Sari 2002). The afterglow X-ray flux (assuming a fiducial value for $p \approx 2.4$) is given by

$$F_{\gamma, \text{X}} \propto E_{\text{K, iso}}^{(p+2)/4} \epsilon_e^{p-1} \epsilon_B^{(p-2)/4} \approx \epsilon_e E_{\text{K, iso}}.$$

(1)

For the optical afterglow flux, the synchrotron model predicts that the optical band is below the synchrotron cooling frequency so that

$$F_{\nu, \text{opt}} \propto E_{\text{K, iso}}^{(p+3)/4} n_0^{1/2} \epsilon_e^{p-1} \epsilon_B^{(p+1)/4}.$$

(2)

There are several observational consequences for the two spectral regimes. First, the X-ray luminosity should be independent of n_0 and ϵ_B. Secondly, the distributions of the microphysical parameters will introduce scatter in the afterglow luminosity and $E_{\text{K, iso}}$. And in the optical band, n_0 and ϵ_B should introduce additional scatter.

For the X-ray band, E_{iso} is a reasonable proxy for the more directly relevant, but not directly measurable $E_{\text{K, iso}}$.

In the context of this work (and other studies) it is important to consider the effect of the Malmquist bias on the $E_{\text{iso}} – L_{\text{X}}$ correlation using different data selections. For a highly biased sample, where the Malmquist correlation is significant, the intrinsic $E_{\text{iso}} – L_{\text{opt}, \text{X}}$ correlation can be falsely increased, because both E_{iso} and afterglow luminosity are both determined from flux limited (redshift dependent) observations. The E_{iso} distribution is biased by the sensitivity of Swift, producing a positive $z – E_{\text{iso}}$ correlation. Secondly, the afterglow luminosity distribution is biased by telescope sensitivity. This affect is strongest in the optical (see Table 1 and Fig. 1), because redshifts for LGRBs are mostly obtained directly from the optical afterglow (not the host galaxy); this causes a bias for sampling the optically brightest part of the L_{opt} distribution (see Coward et al. 2013). Hence, the two independent variables (ignoring the standard synchrotron model for now), $L_{\text{opt}, \text{X}}$ and E_{iso}, are forced to correlate positively via redshift, but possibly only limits for any intrinsic correlations can be inferred (Efron & Petrosian 1992).

2 DATA SELECTION, ANALYSIS AND RESULTS

2.1 Data selection

2.1.1 Optical, X-ray luminosity, and E_{iso} data

LGRB and SGRB optical luminosities, are obtained from K10 and references therein. Our optical data selection taken from K10 includes 61 LGRB optical afterglow absolute magnitudes measured at 11 h in the rest frame. Based on Norris et al. (2011), we classify a subset of SGRBs as SGRB-EE in this sample. X-ray luminosities are calculated using light curves from the Swift-XRT light curve repository (Evans et al. 2007, 2009). We used an interpolation procedure using flux data in the light curves to find both X-ray luminosities and uncertainties at 11 h. Burst classifications are based on

<table>
<thead>
<tr>
<th>Sample</th>
<th>Selection criteria</th>
<th>Correlation</th>
<th>ρ</th>
<th>p</th>
<th>p_r(per cent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KO61</td>
<td>None</td>
<td>$z – L_{\text{opt}}$</td>
<td>0.6</td>
<td>10^{-8}</td>
<td>–</td>
</tr>
<tr>
<td>KX55</td>
<td>None</td>
<td>$z – L_X$</td>
<td>0.5</td>
<td>10^{-5}</td>
<td>–</td>
</tr>
<tr>
<td>KB61</td>
<td>None</td>
<td>$z – E_{\text{iso}}$</td>
<td>0.4</td>
<td>10^{-3}</td>
<td>–</td>
</tr>
<tr>
<td>KO61</td>
<td>None</td>
<td>$E_{\text{iso}} – L_{\text{opt}}$</td>
<td>0.4</td>
<td>10^{-3}</td>
<td>80</td>
</tr>
<tr>
<td>KX55</td>
<td>None</td>
<td>$E_{\text{iso}} – L_X$</td>
<td>0.4</td>
<td>10^{-3}</td>
<td>80</td>
</tr>
<tr>
<td>KOB24</td>
<td>$m < 24$, $z < 2$</td>
<td>$E_{\text{iso}} – L_{\text{opt}}$</td>
<td>0.25</td>
<td>0.23</td>
<td>–</td>
</tr>
<tr>
<td>KOB22</td>
<td>$m < 24$, $z < 2$</td>
<td>$E_{\text{iso}} – L_X$</td>
<td>0.27</td>
<td>0.28</td>
<td>80</td>
</tr>
<tr>
<td>KOMB10</td>
<td>$m > 24$, $z > 2$</td>
<td>$E_{\text{iso}} – L_{\text{opt}}$</td>
<td>0.8</td>
<td>10^{-2}</td>
<td>97</td>
</tr>
</tbody>
</table>

To account for the Malmquist bias, we apply a joint correlation method to the selection criteria in column 2. Column 3 is the correlation pair, columns 4 and 5 are Spearman’s ρ and Spearman’s p, respectively, and column 6 is the probability that the correlations are not a result of small number statistics. See Section 2.2.1 for the interpretation of these results.
the scheme from Howell et al. (2014) with redshifts taken from the Jochen Greiner online catalogue of localized GRBs. We note the classification and redshifts in this catalogue are subject to ongoing updates.

To ensure a consistent sample of E_{iso} data, we use the Butler online catalogue Swift BAT Integrated Spectral Parameters. This catalogue, an extension of Butler et al. (2007), Butler, Bloom & Poznanski (2010), circumsents the nominal BAT upper energy of 150 keV to produce values of E_{iso} through a Bayesian approach. We note that Butler provides no E_{iso} data for GRBs 061006, 061210 and 071112C, so we use estimates provided by K10.

2.2 Analysis and Results

2.2.1 Removing the Malmquist bias

We minimize the Malmquist bias for LGRB optical afterglows using two joint selection criteria: $z < z_{\text{lim}}$ and $m < m_{\text{lim}}$; i.e. the limiting redshift and apparent magnitude, respectively. They are obtained by incrementally reducing the maximum allowable redshift (volume) and magnitude (flux limit) until the correlation between luminosity and redshift is insignificant (i.e. Spearman’s $p > 0.02$). Using this procedure we obtain 24 samples, the optically unbiased sample. For the optical afterglow luminosity data, the optimal selection criteria that minimizes the bias are: $z < 2$ and $m < 24$. Fig. 1 plots optical luminosity versus redshift using the Malmquist bias corrected sample, and the highly biased sample: $z > 2$ and $m > 24$. We also tested a high energy GRB peak flux cut-off, similar to D’Avanzo et al. (2009), and find that the bias in afterglow luminosity versus redshift is not removed (see Fig. 2).

Table 1 summarizes the correlations and their significance. After applying the selection criteria above, we find that the correlation between L_{opt} and equivalent isotropic energy E_{iso} in the 24 h rest frame

\begin{table}
\centering
\begin{tabular}{|c|c|}
\hline
z_{lim} & m_{lim} \\
\hline
2 & 24 \\
\hline
\end{tabular}
\caption{Examples of selection criteria used to remove the Malmquist bias.}
\end{table}

2.3 Synchrotron model comparison to the SGRB and LGRB $L_{\text{opt}}, X-E_{\text{iso}}$ correlation

For SGRBs, we followed the same analysis procedure as above to identify a Malmquist bias. Unfortunately, although we identify a distance-dependent bias in SGRB X-ray luminosity, the data are too small (nine bursts with both confident redshifts and X-ray luminosities at 11 h) to apply a robust selection criteria that would
yield a statistically significant sample. Hence, we do not apply any selection criteria to these data, but note that the $E_{\text{iso}}-L_{\text{opt},X}$ correlation using these data is likely biased. With this proviso, we find a relatively significant $L_{\text{opt},X}/E_{\text{iso}}$ correlation with $p = 0.01$.

As shown above, the LGRB data selection (bias free) shows no significant correlation between $L_{\text{opt},X}$ and E_{iso}, hence a fit to these data is both unreliable and not meaningful (see Isobe et al. 1990, for the pitfalls of fitting to weakly correlated data). Alternatively, we can apply a constrained synchrotron model fitted to the median of the LGRB E_{iso} and $L_{\text{opt},X}$ distributions to compare with the SGRB data. We describe the procedure and motivation below.

We assume that the microphysical parameter distributions of ϵ_B, ϵ_e and n_0 vary between SGRBs and LGRBs. We use separate synchrotron models, assuming the same power-law index, $p = 2.4$, to the SGRB and LGRB data selections, constrained by the median of E_{iso} and $L_{\text{opt},X}$ distributions for the two GRB classes. The result of assuming two different microphysical distributions is to introduce different scalings for $L_{\text{opt},X}$. The ratio of the two scalings is related to differences in the median of the microphysical parameter distributions, and/or energy efficiency, between LGRBs and SGRBs. Finally, the ratio between the optical and X-ray luminosity ratios provides insight into the relative difference in n_0 between LGRBs and SGRBs, as the X-ray luminosity is expected to be independent of n_0 and ϵ_e. Finally, we fit a single unconstrained power-law model, with the power index a free parameter, for a comparison with other studies. It is not used to place constraints on the microphysical parameter distributions, because of the large scatter of the E_{iso} and $L_{\text{opt},X}$ distributions.

Fig. 3 plots E_{iso} and $L_{\text{opt},X}$ for the two scenarios above using the LGRB optical luminosity bias free selection (see Fig. 1) combined with SGRB, and SGRB-EE data. We apply two synchrotron models constrained by the medians of E_{iso} and $L_{\text{opt},X}$ assuming $p = 2.4$, so that $L_{\text{opt},X} \propto E_{\text{iso}}^{1.1}$ for LGRBs and SGRBs. There is 2σ evidence for different scaling of the two models with ratio of 0.2 ± 0.1 between LGRBs and SGRBs. For X-ray luminosity, the synchrotron model predicts that L_{γ} is independent of the microphysical parameters, so that the ratio $L_{\gamma}/L_{\text{opt},X, \text{SGRB}}$ should be unity. This is shown to be the case in the bottom figure for X-ray luminosity. If we reasonably assume that the scaling is a result of the difference in microphysical parameters between LGRBs and SGRBs, then the scaling ratio implies that the combined microphysical parameter values are relatively larger for SGRBs compared to LGRBs. For comparison with previous studies, we apply an unconstrained power-law model fit to the combined LGRB and SGRB data, and find $L_{\text{opt},X,24} \sim 1.96 \times 10^{63}E_{\text{iso},51}^{0.66}$ erg s^{-1} and $L_{\gamma,11} \sim 2.65 \times 10^{44}E_{\text{iso},51}^{0.53}$ erg s^{-1} for the optical and X-ray luminosities, respectively. The shallower fits to the combined data, also identified by Berger (2014), can be partially explained by the scatter in the two-parameter relation of gamma-ray energy release and X-ray luminosity, which may be attributed to the presence of hidden variables like E_p (Margutti et al. 2013).

3 CONCLUSIONS

In summary, we identify a strong Malmquist bias in GRB optical and X-ray afterglow luminosity data. We show that selection effects dominate the observed $E_{\text{iso}}-L_{\text{opt},X}$ correlations. The significance of GRB $E_{\text{iso}}-L_{\text{opt},X}$ correlations depend on the data selection. After removing a Malmquist bias, the $E_{\text{iso}}-L_{\text{opt},X}$ correlation for long GRBs is not statistically significant, but combining SGRB, SGRB-EE and LGRB data, the correlation is significant. It is possible that the correlation between LGRB optical luminosity and redshift is intrinsic (there is a physical correlation between afterglow luminosity and redshift). We do not consider this in our analysis, because it would require including ad hoc additions to the standard synchrotron model that cannot be currently physically justified.

Applying a synchrotron model (assuming $p = 2.4$) constrained by the median of the $E_{\text{iso}}-L_{\text{opt},X}$ distributions for LGRBs and SGRBs separately, we find a factor of 5 difference in scaling between optical and X-ray luminosities. We test several possible scenarios to explain this result. First, if the prompt energy efficiency for SGRBs was systematically smaller, relative to LGRBs, then the median SGRB E_{iso} would be smaller. But we highlight that the scaling between SGRBs and LGRBs for the X-ray data is unity (Fig. 3), so this explanation is not consistent with the data. Secondly, if SGRBs had a median beaming angle significantly greater than LGRBs, this would also shift the median SGRB E_{iso} to a smaller value compared to the LGRB E_{iso}. But, again this should be apparent in the X-ray $L_{\gamma}/E_{\text{iso}}$ correlation. Hence we attribute the difference in scaling between the optical and X-ray correlation as a result of systematic differences in the microphysical parameter distributions of ϵ_B and n_0. Furthermore, for n_0 to be similar to (or systematically smaller) for SGRBs compared to LGRBs, requires ϵ_B to be systematically higher relative to LGRBs.
ACKNOWLEDGEMENTS

DMC is supported by an Australian Research Council Future Fellowship (FT100100345). EJH acknowledges support from a University of Western Australia Fellowship. This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester. We thank the reviewer for providing detailed tests and suggestions that have improved the clarity of our results.

REFERENCES

Hjorth J. et al., 2003, Nature, 423, 847

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article:

Please note: Oxford University Press is not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

This paper has been typeset from a TEX/LATEX file prepared by the author.