Crop residue contributions to phosphorus pools in agricultural soils: a review

Paul M Damona*, Bill Bowdenb, Terry Rose c,d, Zed Rengef

a School of Earth and Environment, and The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley Western Australia 6009, Australia
b Hovea, WA 6071
c Southern Cross Plant Science, Southern Cross University, Military Road East Lismore NSW 2480
d Southern Cross GeoScience, Southern Cross University, Military Road East Lismore NSW 2480

* Corresponding author, e-mail: paul.damon@uwa.edu.au

Keywords

Organic matter, microbial phosphorus, mineralisation, phosphate, soil phosphorus pools
1. Summary

The phosphorus (P) content of crop residues and its availability to a subsequent crop can range from agronomically insignificant, to quantities in excess of crop P requirement. However, the contribution of crop residues to the P nutrition of subsequent crops has not been widely recognised, and simple predictive tools are lacking. By reviewing the published literature in which quantitative measurements of P transformations from plant residues applied to soil have been reported, we have evaluated the contribution of crop residue-derived P to the P nutrition of subsequent crops, assessed the key factors involved and summarised the knowledge as an empirical model. The contribution of crop residues to P availability is likely to be significant only under conditions where large amounts of crop residues of relatively high P concentration are applied to soil. Crop residues with low P concentration, such as cereal stubble (eg. due to re-translocation of a large proportion of stubble P into grain), will not make an agronomically significant contribution to soil P availability, but may reduce P availability due to assimilation in the microbial biomass. However, a productive green manure crop may release sufficient P to meet the requirements of a subsequent cash crop. The release of P from crop residues is significantly reduced in systems where the P-status of crops and soils is low, which reinforces the reliance on external P inputs for sustained crop productivity. The large variability in the potential contributions of plant residues to the P nutrition of subsequent crops suggests that there is a strong need to integrate model predictions of organically-cycled P with current fertiliser management strategies.

2. Introduction

Optimising phosphorus (P) use efficiency will deliver agronomic, economic and environmental benefits as agricultural production systems adjust to meet future global food production targets (Heffer and Prud’homme, 2013). Such optimisation will rely on adequate knowledge of the dynamics of soil P pools
to enable accurate predictions of the required external P inputs to achieve optimum growth of subsequent crops. While our understanding of soil inorganic phosphate (Pi) pools is relatively comprehensive, the value of P returned to the soil in crop residues has not been fully resolved. Agronomically significant amounts of P can be present in crop residues and the microbial biomass associated with their decomposition, and the potential contribution of this pool to the P nutrition of cropping systems is significant (e.g. Chauhan et al., 1979; Dalal, 1979; White and Ayoub, 1983; Thibaud et al., 1988; Umrit and Friesen, 1994; Kwabiah et al., 2003a; Nachimuthu et al., 2009). The main factors influencing the amount of crop residue P, its rate of mineralisation and subsequent availability to crops have been identified (Stockdale and Brookes, 2006; Guppy and McLaughlin, 2009; Simpson et al., 2011); but their interactions remain poorly elucidated and largely unquantified. By reviewing the published literature in which quantitative measurements of P transformations from plant residues applied to soil have been reported, we will evaluate the contribution of crop residue-derived P to the P nutrition of subsequent crops, assess the key factors involved and summarise the knowledge as an empirical model.

The dynamics of organically-derived nitrogen (N) and carbon (C) in agricultural soils has been extensively described, and a wide range of predictive tools have been developed. These have proved a valuable asset for landholders, agronomists and policy makers by providing good estimates of the impacts of agronomic management options on the dynamics of both C (e.g. Parton et al., 1988; Coleman and Jenkinson, 1999; Grace et al., 2006) and N (see Herridge et al., 2008) in agricultural soils. Considering our extensive knowledge of the N cycle in agricultural systems, and the benefits (economic, social and environmental) that have been obtained by our ability to predict and manipulate it, similar knowledge of the organic P cycle could also yield significant benefits. Yet, although the principal driving factors of organic P cycling have long been recognised and modelled (Cole et al., 1977), models have not proven to be universally applicable (Gijsman et al., 1996; Schnepf et al., 2011). Several models have demonstrated a capacity to incorporate P release from crop residues and manures into projected crop growth and yield, notably The Agricultural Production Systems Simulation (APSIM) (Keating et al., 2003),
Century (Parton et al., 1988) and CERES-Wheat (Ritchie et al., 1988; Godwin et al., 1989; Singh et al., 1991; Daroub et al., 2003) modelling frameworks. However, these models require detailed climate and site information that may not be available, and are specialised tools that cannot be operated by the layperson. The contribution of crop residue P to the nutrition of subsequent crops has not been widely recognised, and there is currently no decision support system (DSS) that can predict it from a simple, readily-available set of variables.

Plant uptake of residue-derived P has predominantly been evaluated using isotope labelling and isotopic dilution methodologies. Residues labelled with 32P or 33P isotopes have been applied to soil, enabling the differentiation of residue-derived P, native soil P and mineral fertiliser P through the plant-soil system (eg McLaughlin and Alston, 1986). Such studies have typically been conducted over a short term (1-2 months), according to the half-life of the available P isotopes, with the amounts of residue-derived P recovered in plants generally being 5 % to 10 % of the total P content of the residues (Blair and Boland 1987; Nachimuthu et al., 2009), 20 to 30% (Umrit and Friesen, 1994) and as high as 40% (Dalal, 1979).

Similarly, a large proportion of crop residue P is generally recovered from soil as inorganic P (Pi) in plant-available and sorbed pools (Chauhan et al., 1979; White and Ayoub, 1983; Kwabiah et al., 2003a) in proportions similar to those observed when P is applied as mineral P fertiliser (Friesen and Blair, 1988; Cong and Merckx, 2005).

Where P pools and mineralisation were measured over a period of decades, rotation management has been shown to have a significant effect on the dynamics and partitioning of soil P. In the context of a pasture/cereal cropping rotation, Büinemann et al. (2006) measured accumulation of P in the organic fraction during a wheat/pasture rotation at ~2 kg ha$^{-1}$ year$^{-1}$ (a trend previously reported by McLaughlin et al., 1988), but no accumulation under continuous cropping. Soil organic matter has been shown to increase under legume pasture phases, with subsequent release of nutrients through mineralisation of
the organic matter during cropping phases (cf. Simpson et al., 2011). Although the accumulation of soil N is usually the focus of pasture phases, there is also the potential for pasture or green manure phases to augment soil P availability in the subsequent cropping phase (Horst et al., 2001). Interestingly, pulse crops including chickpea, white lupin, and faba bean have been shown to enhance the P nutrition of subsequent cereal crops even when legume residues have been removed from the soil (Nuruzzaman et al., 2005; Rose et al., 2010), and some legume genotypes improve the P nutrition of subsequent cereals more than others (Rose et al., 2010b). However, the mechanism(s) responsible for this are not clear, the impact of the time lapse between legume harvest and subsequent cereal sowing on potential P benefits is unresolved, and there are currently insufficient data to incorporate such mechanisms into predictive models for P turnover.

Although the processes determining the cycling of P in soils are indisputably complex, several key factors have consistently been demonstrated to govern the mineralisation and availability of crop residue-derived P. These main factors can be broadly grouped as the quality of the crop residues, the activity of the soil microbial biomass, and the subsequent sorption reactions of mineralised P in soil (summarised in Figure 1 as a conceptual model). We characterise the process of P release from crop residues based on four key P pools; namely the inorganic and organic P components of crop residues, P assimilated in the microbial biomass and Pi associated with the soil. The key processes of P transfer between these pools are represented by five vectors: the rate of release of the inorganic and organic P fractions from residues \(k_{Pi} \) and \(k_{Po} \) and the microbial biomass pool \(k_{Pm} \), the assimilation of Pi by the microbial biomass as it proliferates after the addition of crop residues \(M_{Pm} \), and the uptake of native soil Pi by the stimulated microbial biomass \(M_{Pi} \) when Pi released from crop residues is less than \(M_{pm} \).

Figure 1: A schematic representation of the conceptual pools and vectors as described and quantified. ‘Residue Pi’ represents water-soluble phosphate and ‘Residue Po’ represents the organically bound...
component of P in ‘Crop Residues’. ‘Soil Pi’ represents all Pi that is associated with the mineral
compartment of soil that is potentially exchangeable with the soil solution. ‘k_{Pi}’ and ‘k_{Po}’ represent the
decay constants for the rate of release of ‘Residue Pi’ and ‘Residue Po’, respectively. ‘M_{pm}’ represents
the amount of Pi assimilated by the ‘Microbial Biomass’ as it proliferates in response to the availability
of C substrate from ‘Crop Residues’, whereas ‘M_{Pi}’ represents the uptake of ‘Soil Pi’ by the stimulated
‘Microbial Biomass’ where P released from crop residues is less than ‘M_{pm}’. ‘k_{pm}’ represents the decay
constant for the rate of release of Pi from the ‘Microbial Biomass’ as it decays in response to diminishing
availability of C substrate from ‘Crop Residues’.

We present herein a quantitative summary of the available literature resources, with respect to the rate
and magnitude of P transfer from crop residues to the plant available soil pools, and the major
environmental and management factors involved. We discuss how the pools and vectors represented in
Figure 1 describe the major processes governing the transfer of crop residue P to plant available soil P,
and quantify them. This knowledge is then integrated as a simple empirical model of the response of soil
P availability to various crop residue scenarios. We draw as broadly as practicable on the published
literature, to represent averaged values that can be expected across a diversity of conditions, thereby
summarising key areas of scientific consensus, and processes that are as yet poorly elucidated. As the
sum of existing knowledge and in the interest of robustness and simplicity, the release of P from crop
residues is described according to major processes illustrated in Figure 1; they have been quantified
widely. The numerous interacting factors that have yet to be completely elucidated (eg. tillage effects, P
sorption in soil, pH of soil) are not accounted for, but their potential relevance is discussed. Likewise, the
interaction of growing plants with residue P during its release from crop residues is not addressed, as
this level of understanding has not been reported in the literature yet. We propose that the model be
used as a template for i) targeted elucidation of the mechanisms controlling the mineralisation and fate
of organic matter-associated P, and ii) the development of more refined predictive models that
integrate the P contributions from various crop residue handling scenarios into decision support systems for P fertiliser management.

3. Amount and fractions of P in crop residues

The amount and forms of P in residues have a large bearing on the immediate bioavailability of P in the residue material and on the subsequent reactions of P with soil constituents. The P characteristics of crop residues are highly dependent on environmental and soil conditions and on the physiological age of the crop from which they are derived. The P concentration of applied residues is the principal factor determining whether P will be mineralised in the short term as a result of residue decomposition. Generally, P will be mineralised if the P concentration in residues is greater than 3 mg g\(^{-1}\) or immobilised if it is less than 3 mg g\(^{-1}\), although reported threshold values range from 2 to 3 mg g\(^{-1}\) (eg Fuller et al., 1956; White and Ayoub, 1983; Friesen and Blair, 1988; Umrit and Friesen, 1994; Iyamuremye et al., 1996; Kwabiah et al., 2003a; Iqbal, 2009). Immobilisation of soil P occurs when the total P content of the residue is insufficient to meet the P requirement of the microbial biomass as it proliferates in response to the new C substrate; the relevant issues will be discussed in detail in a following section.

The forms of P in crop residues as they influence the dynamics of P release can be characterised as soluble Pi, which is rapidly leached within days and an insoluble organic phosphorus (Po) component, which decays at a rate several orders of magnitude slower (Figure 1). Water-soluble Pi typically constitutes from 40 to 60 % (average 50 %) of the total P content in mature crop residues at grain harvest (Chang, 1939; Kaila, 1949; Birch, 1961; Jones and Bromfield, 1969; Kwabiah et al., 2003b; Noack et al., 2012) and from 60 to 80 % (average 70 %) of total P content in green crop residues during the vegetative stage (Jones and Bromfield, 1969; Bromfield and Jones, 1972; White and Ayoub, 1983; Friesen and Blair, 1988; Ha et al., 2008). The root component of crop residues can be assumed to have
comparable P release (per unit of biomass) to the shoot component (Martin and Cunningham, 1973, Thibaud et al., 1988).

During plant growth the concentration of P in the cytoplasm is tightly regulated (Schachtman et al., 1998), and P in excess of these requirements is stored primarily in the vacuole as Pi (Shane et al., 2004). Data from studies with tobacco suggest that the proportion of Pi can range from 20 % of total P in leaves at low P availability to 50 % at high P availability (Kakie, 1969). Cytoplasmic Pi (often referred to as metabolically-active Pi) is typically around 0.1-0.8 mg P g \(^{-1}\) dry matter (Veneklaas et al., 2012); this Pi, as well as that stored in the vacuole, is water-soluble and should be readily available for plant/microbial uptake (or sorption in soil) upon return to the soil. The amount of P in vacuoles therefore has a significant impact on the short to medium-term release of P from residues. While it is generally accepted that the Pi concentration in tissues is a reflection of the P supply from the growth medium (White and Hammond, 2008), the range of variation that can be encountered in typical crop species grown and the key factors affecting speciation need elucidation.

During grain maturation, P is transferred from vegetative plant parts to developing grains where it is stored primarily as phytate (Marschner, 2012). In wheat, 80-90% of total plant P content can be translocated to grain during maturation and subsequently exported with the harvested product (Batten and Khan, 1987), so that total P concentrations in mature residues can be an order of magnitude lower than those in green residues. However, the partitioning of P between grain and straw/roots at maturity is highly dependent on crop species, genotype and environment. For example, the P harvest index (PHI, or proportion of aboveground plant P located in the grain at maturity) of wheat can range from 30-90% depending on genotype and environment (Batten, 1992). In contrast, most studies consistently report that canola has a PHI of 70-80 % (Jackson, 2000; Rose et al., 2007, 2008), but this narrow range may be
more of a reflection of limited published data, as opposed to lack of variation in PHI across genotypes and environments.

Regardless of whether variation in PHI arises due to species or genotype differences, the key question is how these differences impact on the speciation of P in the residue, i.e. does a greater proportion of P retained in straw mean an increased proportion of Pi in the straw? Unfortunately, the speciation of P compounds in crop residues remains poorly documented. Noack et al. (2012) recently demonstrated a large variability in the amount of P residing as Pi in mature crop residues across crop species, but examining the effect of genotype, soil fertility, seasonal conditions, or crop management on P speciation was beyond the scope of that study. The effect of crop management strategies that interrupt the translocation of P into the exported product, such as swathing or chemically desiccating an indeterminate canola crop vs direct harvesting a determinate canola crop may have a large bearing on P cycling. Seasonal events such as frosting and terminal drought, which reduce grain yields, may also result in a substantial increase in the amount of P retained in residues. Given a relatively high proportion of Pi in residues of a range of crops compared with the high proportion of phytate in seeds (Noack et al. 2012), efforts to restrict the loading of P into grains (Rose et al. 2010c; Richardson et al. 2011; Rose and Wissuwa 2012; Veneklaas et al. 2012) may have substantial implications for P mineralised in crop residues. In contrast, it is difficult to predict the impact of soil P fertility on the amount and forms of P in residues. Even though high-P supply to plants increases tissue P concentrations in vegetative biomass (White and Hammond 2008), such high P supply also tends to increase yields, which, in turn, increases the amount of P located in seeds at maturity. Presumably, once yield potential is achieved there comes a point where any P taken up beyond maximum yields (luxury P) leads to higher inorganic P in straw as well as higher seed P (see Rose et al. 2008), but there is presently little information available on the impact of P supply on P speciation and the distribution of the P in crop residues.
Table 1 summarises the average biomass and P content of common crop residues that can be expected under low, medium and high productivity situations in the southern Australian grain cropping regions. The values presented are referenced from survey data for multiple sites and seasons where available, and values representing consensus in the literature where survey data was unavailable. The data represent the southern Australian cereal cropping regions, but may be applicable to other dryland cropping regions, particularly where highly weathered soils predominate. The data confirm that the most influential factor with respect to the quantity and speciation of P in crop residues is the developmental stage of the crop, exemplified by the differences in P between mature crop residues remaining after grain harvest (less than 1 kg P ha\(^{-1}\) in a low-yielding wheat crop residues) and those residues utilised at the vegetative growth stage (more than 30 kg P ha\(^{-1}\) in a productive green manure crop).

4. Microbial biomass P

The soil microbial biomass has two main roles in the dynamics of crop residue P in soil; i) the principal driver for the transformation of organically-bound phosphorus to plant-available phosphate, and ii) the accumulator of a significant pool of P. The notable effect of crop residues on soil P dynamics, when compared to mineral fertiliser, is their stimulation of the soil microbial biomass with subsequent uptake and immobilisation of P (and other minerals) in this biomass. Upon the addition of crop residues, the microbial biomass is generally the predominant soil P pool that is influenced in the short term, regardless of the characteristics of either the crop residues or the soil (e.g., Chauhan et al., 1979, White and Ayoub 1983; McLaughlin and Alston 1986). In comparison, application of mineral P fertiliser causes little (McLaughlin and Alston 1986; Marschner et al. 2006), or no increase (Chauhan et al., 1979) in the amount of P in the microbial biomass.
The size of the microbial biomass in soil is stimulated rapidly upon addition of crop residues. The magnitude of the increase in microbial biomass is proportional to the amount of C in residues, since C-substrate availability is the primary factor limiting microbial activity in agricultural soils (e.g., Van Veen et al., 1984; Bünemann et al., 2004a). The magnitude of microbial biomass proliferation may respond to other characteristics of the crop residues that are related to age, species and environmental factors; however, these factors have not been thoroughly elucidated. The C concentration in crop residues is typically 450 mg g\(^{-1}\) (45 %) (Baldock, 2009), on average, and we will assume this value represents all crop residues considered herein.

Phosphorus from the crop residue substrate and from soil P pools is taken up by the proliferating microbial biomass. Microbial biomass P responds rapidly to the addition of C substrate to soil, reaching a maximum within days of substrate addition (Chauhan et al., 1979; White and Ayoub, 1983). In the short term, net mineralisation will occur if the amount of soluble P in residues is in excess of that taken up by the microbial biomass. However, residue P content is often insufficient to meet the requirements of the growing microbial biomass, under which circumstances the microbial biomass will take up Pi from the solution and exchangeable pools in soil; leading to net immobilisation of soil Pi. Hence, the importance of crop residue characteristics in determining the dynamics of P release is due to the interaction between the crop residues and the microbial biomass.

Phosphorus is taken up by the proliferating microbial biomass to meet its growth and metabolic requirements according to relatively flexible ratio of C:P within the microbial biomass. The C:P ratio and forms of P in the microbial biomass differ widely between microbial communities and ecosystem types, and Bünemann et al. (2011) present a thorough review and assessment on the subject. In cereal cropping soils the C:P ratio of the microbial biomass has been reported to range from 10:1 (Oehl et al., 2004; Bünemann et al., 2007) to 35:1 (Chauhan et al., 1979; Butterly et al., 2010). Chauhan et al. (1979)
found the C:P ratio of new microbial biomass formed after residue addition to be 20:1, compared to
35:1 for the resident soil microbial biomass. Parton et al. (1988) proposed that the C:P ratio of the
microbial biomass varies as a function of soil P availability. As a simplistic representation of the
concurrent short-term effects of microbial biomass proliferation and P uptake, we propose that the
proliferation of the microbial biomass and the amount of P taken up as a consequence of this
proliferation are in proportion to the amount of C substrate in crop residues. The amount of P taken up
by the microbial biomass was 1 mg P g⁻¹ C applied as organic residues (Mₚₓ; Figure 1) on average for a
range of crop residues and soil types (Chauhan et al., 1979; Kwabiah et al., 2003a; Iqbal, 2009).
Therefore, assuming the C content of crop residues is 450 mg kg⁻¹, if the concentration of soluble Pi in
residues is greater than 0.45 mg P g⁻¹, kₚᵢ will exceed the demands of the microbial biomass, and Mₚᵢ will
be zero. Where the soluble Pi content is less than 0.45 mg P g⁻¹, kₚᵢ will not meet the P requirements of
the microbial biomass in the short term, and Pi from soil pools will be immobilised in the microbial
biomass, quantified as Mᵢₚ (Figure 1).

Although the C:P ratio of the microbial biomass responds to P availability in the soil and crop residue
substrate, the microbial biomass has a high capacity to acquire P from soil P fractions that are generally
not considered to be plant-available, and will be more competitive than plants for solution and
exchangeable P (Chauhan et al., 1979; White and Ayoub, 1983; Friesen and Blair, 1988; Bünemann et al.,
2004b; Cleveland and Liptzin, 2007; Iqbal, 2009; Ehlers et al., 2010; Oberson et al., 2011). It has been
demonstrated that even for highly P-limited environments, such as tropical soils with high P sorption
capacity and sparse P fertiliser history, the microbial biomass dominates geochemical processes for
competitive uptake of applied P (Kwabiah et al., 2003a; Olander and Vitousek, 2004) and is limited by C
and N rather than by P availability (Bünemann et al., 2004a).
The microbial biomass in soil and its response to substrate addition is significantly influenced by soil pH, a concept reviewed in detail by Wardle (1992). Briefly, the size of the microbial biomass typically decreases with decreasing soil pH. Thompson et al. (1954) and Harrison (1982) both reported soil pH to be a significant factor influencing rates of organic P mineralisation. The stability of soil organic P to mineralization increased as soil pH decreased, so soil organic P may be more stable, and mineralisation rates slower, in soils with acidic pH. Indeed mineralisation rates of C and N have been widely demonstrated to be lower, and soil organic C retention to be higher, in soils at acidic pH (eg. Amato and Ladd, 1992; Motavalli et al., 1995; Li et al., 2007). However, empirical data to quantify the influence of soil pH on mineralisation rates is poorly developed for both C and for P.

Microbial biomass P is potentially available for plant uptake. In the short term, there is potential for competitive uptake by plant roots following predation by soil fauna. During transient periods of drying and re-wetting of soil, desiccation and lysis of microbial cells and the subsequent transfer of microbially-held P to extractable soil pools can be significant (Turner et al., 2003). In the medium term, the size of the microbial biomass decays at a rate similar to the decay of organic C (Oehl et al., 2001; Bünemann et al.; 2004a; Grace et al., 2006) as the availability of C substrate decreases. The incubation studies of Oehl et al. (2001) and Bünemann et al. (2004a) demonstrated that the decrease in microbial P after exhaustion of C-substrate resulted in an increase in plant-available P. However, the work of Marschner et al. (2005; 2006; 2007) indicates that crop reliance on microbial biomass-derived P may be strongly influenced by soil properties and plant species, a subject that indeed warrants further investigation.

Ladd et al. (1995) proposed that the microbial biomass derived from residue addition could be allocated into 2 pools; unprotected (due to its presumed association with crop residues) and protected (that with opportunities for protection within the soil). The ratio of protected / unprotected biomass is dependent on clay content and the CEC of the soil, and ranges from 0.6 (high clay soil) to 0.4 (sandy loam soil).
However, for the purpose of simplicity and with consideration of the limits of the published data, we will adopt a single pool for the microbial biomass P, and assume that its size decays at the same rate as the stable residue pool.

Martin and Cunningham (1973) reported a relatively non-significant role of the microbial biomass in P transformations during the decomposition of intact wheat roots. They proposed that the use of finely-ground plant residues in many studies may have misrepresented its availability to microorganisms and resulted in an over-estimate of the microbial biomass response. It is likely that the rate, but not the magnitude of microbial biomass proliferation may be influenced by the particle size of the substrate (e.g. Ambus and Jensen, 1997; Singh et al., 2006).

The data presented are almost exclusively derived from studies where finely-ground crop residues were incorporated into soil. Given the widespread adoption of no tillage cropping practices worldwide, it is imperative to investigate how the assumptions translate into systems where the majority of crop residues are a) largely intact and b) either standing or at the soil surface. The factors that may differ between finely-ground crop residues incorporated into soil (classical tillage) and no-till systems include variable moisture content at the soil surface, greater potential for separation of soluble and insoluble components by leaching, reduced availability of soil nutrients for uptake by the microbial biomass during decomposition and lower surface area of intact residues for decomposition. The influence of tillage practices on the dynamics of mineralisation remains poorly elucidated even for C and N, which have been more extensively studied than P. The simulation models APSIM, RothC (Coleman and Jenkinson, 1999) and Ceres Wheat, have cultivation increase the rate that “litter” (residues) are incorporated and become fresh soil organic matter, but thereafter, the rates of mineralisation are not changed by cultivation. Whilst Daroub et al. (2000) measured no effect of tillage on the release of P from plant residues applied to soil, Chauhan et al. (1979) found that mixing soil increased microbial
biomass P to a greater extent than the addition of grass residue, indicating a potential tillage effect. Due to a lack of empirical data we have not quantified the effect of tillage on the release of P from crop residues.

5. Soil phosphate fractions

The plant uptake of P from soil occurs predominantly in the form of Pi (HPO$_4^{-2}$ and H$_2$PO$_4^{-}$; Bucher, 2007); hence, the soil Pi pool (Figure 1) represents soil P forms that are potentially available for uptake by plants. The soil Pi pool (Figure 1) incorporates the net release of Pi from crop residues and is a simplified representation of a complex, dynamic, and diverse system. Soluble Pi can be readily leached from crop residues (Jones and Bromfield, 1969), resulting in a direct, rapid transfer from crop residue to the soil Pi and microbial P pools (with the assumption that there is no new crop interacting with these pools). Phosphorus that is taken up by the microbial biomass as it proliferates in response to the crop residue-C substrate availability is subsequently released as the microbial biomass decays with the exhaustion of C substrate (Oehl et al., 2001; Bünemann et al., 2004a). The size of the soil Pi pool (Figure 1) is the sum of Pi released from crop residues and the microbial biomass at a time point in the P mineralisation process, together with Pi from fertiliser inputs and background native P in the soil. Biological and geochemical processes of mineralisation, sorption and dissolution of P contribute to background native soil Pi.

5.1. Forms and transformations

The soil Pi pool includes soil solution Pi and chemically sorbed Pi, which interact in a dynamic equilibrium. The distribution of soil phosphorus between the sorbed and solution phases is dominated by sorption reactions (Barrow, 1983; Barrow, 1999), while its availability to plants (and microbes) is also affected by diffusion processes (Probert and Keating, 2000). Sorption reactions are highly influenced by
the chemistry and mineralogy of soil, and their influence on P availability is greatest in soils with high P sorption capacity, such as tropical soils dominated by iron and aluminium sesquioxides. The availability of Pi in soil, whether derived from mineral fertiliser or from crop residues, can be short-lived in soils with high P sorption capacity. For the purpose of this exercise, we have represented soil Pi as a single pool, into which all P released from crop residues is allocated and from which the microbial biomass may acquire P.

Organic P compounds released into soil either directly from crop residues or after the lysis of microbial cells are subject to sorption and precipitation reactions in soil, after which their potential for mineralisation into Pi is greatly reduced (Celi and Barberis, 2005). Organic P compounds are readily adsorbed onto iron oxides and to a lesser extent, aluminium oxides, with the amount of iron oxides generally governing the capacity for Po adsorption (Anderson et al., 1974). As such, sorption and stabilisation of Po is greatest in highly weathered, tropical soils with high P fixing capacities, hence there is often an accumulation of Po in these soils (Reed et al., 2011). The sorption and subsequent stabilisation of Po in soils remain the major processes whereby the dynamics of P release from crop residues may deviate from that of C and N, for which there is a more refined understanding. However, methodological problems have hindered the elucidation of the long-term fate of crop residue Po in soil, notably the relatively short half-life of 32P and 33P isotopic tracers, and a limited capacity to characterise P-containing compounds that cannot be extracted from the soil matrix.

Organic P forms can constitute up to 80% of total P in soil (Anderson, 1980) and can be associated with soil organic carbon (C), or adsorbed by soil minerals (Celi and Barberis, 2005). Stimulation of the microbial biomass to mineralise soil Po is referred to as a “priming effect” and is a potential strategy for matching soil Pi supply with crop demands (Simpson et al., 2007). Where Po is associated with organic C, it can be released into soil solution by C mineralisation and subsequently hydrolysed by enzymes.
released from the microbial biomass (Randhawa et al., 2005; Richardson 2007). Although the absence of suitably stable P isotopes makes direct measurement of Po mineralisation difficult to measure, the “priming effect” was found to be negligible where 14C was used as a tracer for C mineralisation (Dalenberg and Jager, 1989). Hydrolysis of sorbed Po compounds, such as inositol phosphates, by the microbial biomass may be stimulated after addition of crop residues to soil, particularly where a high C:P ratio of crop residues promotes the uptake of soil P by the microbial biomass. However, there is evidence that assimilation of soil P by the microbial biomass occurs predominantly from the available soil Pi fraction (White and Ayoub, 1983; Wu et al., 2007; Jalali, 2009), even in low P soils (Bünemann et al., 2012). Although the “priming effect” will not be addressed in our modelling, further investigation is warranted, given the potential benefits of manipulating the release of Pi from the significant pools of soil Po.

5.2. Availability to plants

Sorption of Pi by soil minerals is the principal factor influencing plant availability of P mineralised from crop residues (White and Ayoub, 1983; Friesen and Blair, 1988; Umrit and Friesen 1994; Jalali, 2009; Jalali and Ranjbar, 2009). The availability of Pi released from crop residues is influenced by sorption reactions in a similar way to Pi applied to soil as mineral fertiliser (Friesen and Blair, 1988; Cong and Merckx, 2005). Iyamuremye et al. (1996) used the method of Hedley et al. (1982) to investigate the role of both residue and soil characteristics on the fate of crop residue-derived P in soil. The majority of P released from crop residues was recovered as chemically-sorbed Pi (NaOH-extractable) for all soils, although the proportion recovered in readily available (resin and bicarbonate-extractable) pools was related to the P sorption capacity of the soil. Friesen and Blair (1988) measured almost no increase in the soil solution P during the mineralisation of crop residues, with almost all mineralised P sorbed to Fe (NaOH-extractable) and Al minerals (NH$_4$F-extractable). Although the Al-sorbed P fraction was readily depleted by plants (and the microbial biomass), the Fe-sorbed fraction was unavailable. The factors governing the sorption of phosphate ions in soil are well understood, and it is evident that the P release
from crop residues occurs primarily as Pi; hence the existing models targeted toward fertiliser and native soil P should adequately describe the reactions of crop residue P in soil.

Addition of crop residues to soil can indirectly influence the availability of P within the soil P pool by altering the chemical and physical properties of the soil (Joffe, 1955). Cong and Merkx (2005) measured significant changes to a suite of chemical and physical characteristics, leading to an increase in both the chemical availability and diffusive supply of P following a high rate of organic matter addition to soil. They demonstrated the capacity of plant residues to increase pH, decrease extractable Al, and increase the net negative charge surfaces in soil, with the net effect of increased solubility and reduced sorption of Pi in soil. Greater macro-aggregation and reduced specific surface area and porosity of soil were also measured, reducing P sorption and increasing P diffusion rates. A review by Guppy et al. (2005) concluded that the application of organic matter to soils at agronomically feasible rates does not reduce the sorption of P by soil, and that any increase in soil P availability could be directly attributed to P released from the crop residues. However, it should be noted that the distribution of crop residues is often locally concentrated after deposition by harvesting operations at rates many-fold greater than if crop residues were evenly distributed (eg. Brennan et al., 2000). It is likely that soil P availability is influenced by physical and chemical changes in soil following the addition of crop residues; however the magnitude of these changes under diverse scenarios has not been elucidated.

6. An empirical model

The mobilisation of P from crop residues added to soil typically exhibits two distinct phases, with an initial rapid release of labile P in the first weeks after addition (the soluble Pi content), followed by a prolonged phase of slower release of the more recalcitrant organic P species (eg Blair and Boland, 1987; Friesen and Blair, 1988; Umrit and Friesen, 1994). Carbon mineralisation from crop residues has been
observed to follow a similar two stage pattern, and two-component exponential decay functions have been widely adopted to describe the decay and nutrient loss from organic residues (eg Grace et al., 2006, van Veen et al., 1985), ascribing decay coefficients to the labile and recalcitrant fractions (eg Shammas et al., 2003). This approach was found to adequately describe the mobilisation of P from a range of organic residues with contrasting characteristics when added to soil (Jalali and Ranjbar, 2009).

Equation 1 describes the exponential decay function in the model presented, whereby the rate of decomposition is quantified by the decay coefficient (k).

Equation 1: Exponential decay functions and P release from individual pools

\[P_t = P_0 \exp(-k \cdot t) \]

- \(P_t \) = P released at time t (kg ha\(^{-1}\))
- \(P_0 \) = initial P content (kg ha\(^{-1}\)) of the labile or recalcitrant fraction
- \(k \) = decay constant
- \(t \) = time after residue addition (weeks)

The soluble component of residue P has a typical residence time of about 4 weeks in residues (eg Blair and Boland, 1987; Friesen and Blair, 1988 (2 weeks); Umrit and Friesen, 1994; Jalali and Ranjbar, 2009) at 25 °C and optimal moisture conditions, which is well fitted by the decay constant of the SOCRATES model (Grace et al., 2006) for the labile component of crop residue C. We therefore allocate the decay constant of 0.29 week\(^{-1}\) to vector \(k_p \) (Figure 1) at 25 °C and optimal moisture conditions.

Mineralisation of C and P has been reported to be well correlated (Cole et al., 1977; Baggie et al., 2004; Bünemann et al., 2004a); hence, the release of the stable component of crop residue P was assumed to occur in parallel with the mineralisation of the stable C component. The decay constant for C mineralisation in the Socrates model (Grace et al., 2006) predicted a half-life of 35 weeks (at 25 °C and
optimal moisture) for the stable component. This figure is similar to that reported by Jalali and Ranjbar (2009) for the release of the stable component of P from a range of plant residues in a soil-less system. Hence, we assume the recalcitrant component of residue P will decay according to the decay constant of 0.02 week⁻¹ at 25 °C and optimal moisture (kPo; Figure 1).

The microbial biomass is a significant pool of P associated with the decomposition of crop residues in soil, and the dynamics of the pool size have a significant influence on the release of P from residues (Oberson and Joner, 2005; Richardson and Simpson, 2011). The accumulation of soluble residue Pi in the microbial biomass after addition of crop residues to soil (Mpm; Figure 1) was assumed to occur within the first week after addition, at the rate of 1 mg P g⁻¹ C substrate applied in crop residues, as described above. The subsequent decay (or longevity) of the microbial biomass during the decomposition of crop residues is largely determined by the quantity of C substrate remaining, but is influenced by the clay content and cation exchange capacity (CEC) of the soil (Amato and Ladd, 1992). For simplicity in this exercise, soil clay properties were not accounted for and the microbial biomass-P was assigned to decay in parallel with the stable P component, since the two pools were adequately described by similar decay constants in the SOCRATES model (Grace et al., 2006). Therefore, kPm (Figure 1) is equal to kPo, at 0.02 week⁻¹ at 25 °C and optimal moisture conditions.

The main effects of temperature and moisture on C mineralisation rates from crop residues in soil have been intensively studied and described, with substantially less advanced developments for P mineralisation. Decay constants were adjusted for the mean annual temperature (18 °C) and precipitation (364 mm) at Cunderdin, in the central wheat belt of WA (31.65° S, 117.24° E) using the multiplicative temperature and moisture factors of the SOCRATES model (Grace et al., 2006). The adjusted decay constants were 0.16, 0.01 and 0.01 for kPi, kPo and kPm, respectively. Climate averages for Cunderdin, Western Australia, are comparable to Aleppo, Syria (36°10’N, 37°12’E), and other locations with Mediterranean-type climate (eg. South Africa, parts of Chile, California, etc.).
The model was applied to the amounts of crop residues and their P characteristics under various scenarios typical of the southern Australian grain cropping region (Table 1), and the amount of P released into soil or assimilated in the proliferating microbial biomass are presented in Table 2.

Phosphorus transformations in the short and medium term (Table 2) range from rapid net release of Pi into soil (green manure) to microbial biomass immobilisation of Pi from the soil exchangeable fractions that is sustained up to 1 year (wheat stubble). The predictions support the large variation reported in the literature for Pi released from crop residues under different scenarios (e.g., Fuller 1956). Model predictions estimated half-lives for the labile P component (4 weeks) and the recalcitrant residue P and microbial biomass components (70 weeks) under average climatic conditions at Cunderdin, Western Australia. Most of the P release from crop residues occurred within 1 year of their application to soil; hence, we propose the model is most relevant over this time-span.

Model predictions were compared under the contrasting climate scenarios of Los Baños, Philippines (14°10’N 121°13’E) and Harpenden, United Kingdom (51°48’N 0°21’W). Harpenden, the site of Rothamsted Research, has a temperate maritime climate, with a mean temperature of 9.5 °C and mean annual precipitation of 697 mm, which is comparable with the central corn belt of North America. Los Baños, the site of the International Rice Research Institute headquarters, has a tropical marine climate with a mean temperature of 27.1 °C and mean annual precipitation of 1942 mm. At Los Baños, the predicted half-lives of soluble (Pi) and stable (Po) components of residue P were 2 weeks and 21 weeks, respectively, compared to half-lives of 7 weeks and 100 weeks at Harpenden.

Although typical residue characteristics will differ under contrasting climates, we compared the model predictions for the release of P from the medium-productivity green manure and wheat crops (see Table 1) under the contrasting climate scenarios. For the green manure crop, there was rapid release of P under the tropical climate scenario in the first 4 weeks (7.1 kg P ha⁻¹) compared to the temperate climate scenario (1.4 kg P ha⁻¹) (Table 1). However, after 1 year, P release was similar for the tropical and
temperate climate scenarios. Predicted P release from the wheat crop residue (Table 1) after 1 year was
0.7 kg P ha\(^{-1}\) and 0.3 kg P ha\(^{-1}\) under the tropical and temperate climate scenarios, respectively, but was
similar at 4 weeks. The assimilation of P and its release by the microbial biomass was largely unaffected
by climate factors.

A sensitivity analysis was conducted to assess the robustness of model predictions against variation in
the model parameters (Table 3). Model predictions of P release from crop residues were highly sensitive
to doubling or halving the parameters for the concentration and speciation of P in the residues, and in
the uptake of P by the microbial biomass following residue addition (Table 3). By comparison, doubling
or halving the coefficients for decay of the water-soluble and stable components of crop residue P and
for microbial biomass P had a smaller effect on P release. The initial P concentration of the crop
residues, notably cereal straw or green manure, influenced the sensitivity of the model predictions to
other parameters. While predicted P release from cereal straw (0.05 % P) was dramatically influenced by
P uptake by the microbial biomass, this parameter had a smaller effect on P release from green manure
residue (Table 3).

The amount of P immobilised by the microbial biomass was the most important parameter in predicting
the dynamics of P release from residues, and emphasised the importance of the microbial biomass as a
pool of soil P as well as the driver of P mineralisation and organic matter decomposition. Doubling or
halving the estimate of 1 mg P taken up by the microbial biomass per gram of C added to soil as wheat
straw resulted in model predictions ranging from 30 % of initial P content immobilised to 47 % of initial P
content released after 1 year, respectively (Table 3). For a green manure crop, the effect was less
significant, but the timing of P release was affected, with 6 % or 27 % of P content released, respectively
after 4 weeks if microbial biomass P uptake was doubled or halved. Given the range of reported values
in the literature, there is cause for uncertainty over the averaged value applied in the model. For
example, in a single soil type, Kwabiah \textit{et al}. (2003) found the amount of P taken up by the microbial
biomass to range from less than 1.5 to more than 3 mg P g\(^{-1}\) C applied for different organic residues.
Microbial biomass P uptake was not correlated with any of the residue characteristics measured. Other studies reported that the microbial biomass took up 0.3 mg P/g C added as cellulose + N, 0.8 mg P/g C added for grass + N (Chauhan et al., 1979), 1.0 mg P/g C added as mature wheat straw or 1.5 mg P/g C added as young wheat residues (Iqbal, 2009). The factors determining variation in the amount of P taken up by the microbial biomass after addition of C substrate is unclear (eg Kwabiah et al., 2003a), but may be related to the fractions and lability of C in residues. Alternatively, Oberson and Joner (2005) make a detailed assessment of the significant methodological problems related to the determination of microbial P in soil, which may account for some of the differences among and even within studies. Notably, they highlight inaccuracies associated with predicting total microbial biomass P from the proportional amount that is extracted and measured (by application of Kp factors). The significant influence of soil type and microbial community composition on the proportion of microbial biomass P that is released by cell lysis and extracted from soil can lead to significant differences in the estimation of microbial P in soil. Given the range of reported values, and the impact on model predictions, there is certainly cause for further elucidation of P uptake by the microbial biomass following the addition of crop residues to soil.

7. Concluding remarks

The body of literature as well as our modelling confirm that the contribution of crop residues to P availability is likely to be significant only under conditions where large amounts of crop residues with relatively high P concentration are applied to soil. Crop residues with low P concentration, such as cereal stubble (eg. due to re-translocation of a large proportion of stubble P into grain), will not make an agronomically significant contribution to soil P availability either in the short or long term. However, a productive green manure crop may release sufficient P to meet the requirements of a subsequent cash crop.
Much research and discussion has been devoted towards developing productive low-input farming systems. However, the consensus of the works discussed in this review is that the organic cycling of P is intricately linked with the inherent productivity of the site, including climate. The release of P from crop residues is significantly reduced in systems where the P-status of crops and soils is low, compared to where it is high (eg. Blair and Boland, 1987). In fact, addition of crop residues to soil in low-P systems can stimulate the uptake and immobilisation of significant amounts of soil P by the microbial biomass (eg. Bünemann et al., 2012), reinforcing the reliance on P inputs for sustained crop productivity. Whilst the most significant management option impacting the biological cycling of P is a green manure rotation, one must consider whether there is any net benefit to the P nutrition of a subsequent crop if P is mined from the exchangeable fractions and subsequently returned to those fractions after cycling through the microbial biomass in the following cropping rotation. Any P benefit may relate to the capacity of the manure crop to scavenge or solubilise pools of P that are otherwise unavailable to the cash crop.

The literature review and modelling have identified key areas of knowledge gaps that should be prioritised for further elucidation. Notably, P release from crop residues is strongly influenced by the concentration and speciation of P in the residues, as well as by the uptake of P by the microbial biomass following residue addition. However, a wide range in values has been reported for these key parameters, and the factors that determine them remain poorly elucidated. Soil pH and tillage practices are both known to influence organic matter mineralisation rates in soil, but empirical data relating to their impact on P release from crop residues are lacking. Although burning crop residues is a common practice in many farming systems, there is currently little information on the effect of burning on soil P availability. We envisage that future elucidation of the identified knowledge gaps will increase our capacity to estimate P release from crop residues and will consolidate the model presented here, enhancing its capacity to accurately predict the contribution of crop residue P to soil P availability.
This review has not addressed the capacity for P supply from organic sources other than crop residues. Indeed, there is a requirement for crop models to take into account the P supply to crops from a variety of sources, including composts, animal manures (eg. APSIM Manure; Probert et al., 2004), green manures and mineral fertilisers as we move towards more sustainable sources for managing the P nutrition of cropping systems (Palm et al., 1997).

Of the identified opportunities to enhance the efficient cycling of P in cropping systems, the potentially most readily manipulated is reducing P loading into grain with greater retention of P in crop residues; its feasibility, at least, warrants investigation. The long-term, cumulative effect of repeated cropping cycles where high-P residues are returned to soil may lead to a significant accumulation of organically-cycled P and reduced requirement for fertiliser P inputs.

We propose that the work described here i) presents a basis for estimating the contribution of crop residues to soil P availability to a subsequent crop, and ii) acts as a template for further research to identify priority aspects of organic P cycling for elucidation.

Acknowledgements:
This work was funded by the Australian Research Council (LP0669878), ERA Sustainable Farming Company (Malaga, Perth), The University of Western Australia, the Department of Agriculture and Food Western Australia, and Southern Cross University. The authors acknowledge the three anonymous reviewers for their significant contribution to the manuscript.

References

Biogeochemistry. 5, 109–131.

Probert, M.E., Keating, B.A., 2000. What soil constraints should be included in crop and forest models?

Agriculture, Ecosystems and Environment. 82, 273–281.

Van Veen, J.A., Ladd, J.N., Amato, M. 1985. Turnover of carbon and nitrogen through the microbial biomass in a sandy loam and a clay soil incubated with \(^{14}\text{C}(\text{U})\)glucose and \(^{15}\text{N}\)(\text{NH}_4)_2\text{SO}_4 under different moisture regimes. Soil Biology and Biochemistry. 17, 747–756.

Table 1: Typical biomass and P content of post harvest residue of common crops under low, medium (med) and high productivity scenarios in the southern Australian grain cropping region. The values presented are referenced from survey data for multiple sites and seasons where available, and values representing consensus in the literature where survey data was unavailable. Extreme values were omitted hence the range of possible scenarios will extend beyond the “high” and “low” productivity scenarios depicted.

<table>
<thead>
<tr>
<th></th>
<th>Green manure</th>
<th>wheat stubble</th>
<th>legume stubble</th>
<th>canola stubble</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>low</td>
<td>med</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>Residue biomass (t ha(^{-1})) *(^{a})</td>
<td>2.4</td>
<td>4.8</td>
<td>7.2</td>
<td>1.8</td>
</tr>
<tr>
<td>Residue P concentration (kg t(^{-1}))</td>
<td>1(^{b})</td>
<td>3(^{b})</td>
<td>4(^{b})</td>
<td>0.2(^{c})</td>
</tr>
<tr>
<td>Residue P amount (kg ha(^{-1}))</td>
<td>2.4</td>
<td>14</td>
<td>30</td>
<td>0.4</td>
</tr>
<tr>
<td>Soluble Pi (% of total P) **</td>
<td>70</td>
<td>70</td>
<td>80</td>
<td>50</td>
</tr>
</tbody>
</table>

*Based on average yield expectation and average harvest index, includes roots at a root:shoot ratio = 0.2 after grain export (Jackson et al., 1996)

**Estimates of soluble Pi in crop residues are averaged values were derived from various sources and described in detail in ‘Amount and fractions of P in crop residues’, above. (Chang, 1939; Kaila, 1949; Birch, 1961; Jones and Bromfield, 1969; Bromfield and Jones, 1972; White and Ayoub, 1983; Friesen and Blair, 1988; Ha et al., 2008; Noack et al., 2012).

Table 2: Model predictions of the fate of crop residue P from common crops under low, medium (med) and high productivity scenarios in the southern Australian grain cropping region. Model predictions are based on the typical crop biomass and P content scenarios described in Table 1 and adjusted for mean temperature and precipitation at Cunderdin, in the central wheatbelt of Western Australia (31.65° S, 117.24° E). Transformations after 4 weeks and 1 year depict the half-life of the soluble component of crop residue P and the term of an annual crop rotation, respectively.

<table>
<thead>
<tr>
<th></th>
<th>Green manure</th>
<th>wheat stubble</th>
<th>legume stubble</th>
<th>canola stubble</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>low med high</td>
<td>low med high</td>
<td>low med high</td>
<td>low med high</td>
</tr>
<tr>
<td>P release 4 weeks (kg ha⁻¹)</td>
<td>-0.2 2.9 6.8</td>
<td>-0.7 -1.1 -0.9</td>
<td>-0.7 -1.6 -1.3</td>
<td>-0.5 -1.1 -0.9</td>
</tr>
<tr>
<td>Δ microbial biomass P after 4 weeks (kg ha⁻¹)</td>
<td>1.0 2.1 3.1</td>
<td>0.8 1.6 2.3</td>
<td>0.8 2.3 3.1</td>
<td>0.8 1.8 2.3</td>
</tr>
<tr>
<td>P release 1 year (kg ha⁻¹)</td>
<td>1.3 11 22</td>
<td>-0.2 0.3 2.3</td>
<td>-0.2 0.4 3.1</td>
<td>0.2 0.9 2.4</td>
</tr>
<tr>
<td>Δ microbial biomass P after 1 year (kg ha⁻¹)</td>
<td>0.6 1.3 1.9</td>
<td>0.5 1.0 1.4</td>
<td>0.5 1.4 1.9</td>
<td>0.5 1.1 1.4</td>
</tr>
</tbody>
</table>

Negative values of P release = microbial biomass immobilisation of Pi from the exchangeable soil Pi pool.
Table 3: The effect of halving \((x0.5)\) or doubling \((x2)\) model parameters on the predicted release/immobilisation of P from crop residues after 4 weeks and 1 year of decomposition. Two contrasting crop residues: a medium-productivity wheat stubble and a medium-productivity green manure crop (described in Table 1) are presented. The sensitivity to soluble Pi content was assessed at 20 % or 80 % of the total P content. Values represent the percentage of the initial P content of the crop residue, with negative values representing immobilisation of soil Pi.

<table>
<thead>
<tr>
<th>P concentration (mg g dry weight(^{-1}))</th>
<th>Soluble Pi (% of total P)</th>
<th>P uptake by microbial biomass ((M_{Pm}))</th>
<th>decay constant ((k_{Pi}))</th>
<th>decay constant ((k_{Po}))</th>
<th>decay constant ((k_{Pm}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>x0.5</td>
<td>x2</td>
<td>20</td>
<td>80</td>
<td>x0.5</td>
<td>x2</td>
</tr>
<tr>
<td>x2</td>
<td>20</td>
<td>80</td>
<td>x0.5</td>
<td>x2</td>
<td>x0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Green manure (3 kg P t(^{-1}))</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4 weeks</td>
<td>4</td>
</tr>
<tr>
<td>1 year</td>
<td>43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wheat straw (0.5 kg P t(^{-1}))</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4 weeks</td>
<td>-147</td>
</tr>
<tr>
<td>1 year</td>
<td>-30</td>
</tr>
</tbody>
</table>

40