Foamable drilling fluid
Schäumbare Bohrflüssigkeit
Fluide de forage moussable

Designated Contracting States:
DE DK GB NL

Priority: 28.08.2001 US 941508

Date of publication of application:
05.03.2003 Bulletin 2003/10

Proprietor: Intevep SA
Caracas 1070 A (VE)

Inventors:
• Aponte, Alida del Carmen
 San Antonio de Los Altos
 Edo.Miranda (VE)
• Rojas, Yenny Virginia
 San Antonio de Los Altos
 Edo.Miranda (VE)

Representative: Hiebsch, Gerhard F.
Hiebsch Behrmann Nüsse
Patentanwälte
Postfach 464
78204 Singen (DE)

References cited:
EP-A- 0 761 798
WO-A-95/14066
WO-A-00/51922
US-A- 4 599 188
US-B1- 6 172 010

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).
The invention relates to a drilling fluid and, more particularly, to a stable and environmentally safe foamy drilling fluid. In the course of drilling a subterranean well, drilling fluids are needed in order to lubricate the drill bit and to carry formation cuttings to the surface. In addition, the drilling fluid is needed in order to balance high-pressure encounters in subterranean formation.

Foamed drilling fluids are known and used in situations wherein reduced density is desired, for example in low-pressure formations, wherein the other functions of a drilling fluid are still needed. In low-pressure formations, the use of fluids having higher density can result in a partial or total fluid loss into the formation, which can result in increased drilling cost, formation fracturing and/or damage, and even well loss.

In such instances, under-balanced drilling is typically performed in order to avoid such desirable occurrences and, if necessary, permit a short influx from the formation.

A number of problems are experienced with known foamy drilling fluids. These include short stability periods in the presence of formation contaminants, poor transportation capability, short reutilization cycles and environmental issues.

US-5,360,558-A describes a process for drilling a wellbore at a surface into a subterranean formation for production of hydrocarbons. The process comprises placing a polymer enhanced foam in a wellbore being drilled, wherein said polymer enhanced foam comprises a substantially uncrosslinked -- partially hydrolized-- polyacrylamide or an acrylamide polymer, a surfactant, an aqueous solvent, an added gas and circulating said foam through said wellbore as a drilling fluid to suspend rock cuttings from a drilling face and transport said rock cuttings to the surface. The surfactant is selected from a group consisting of ethoxylated sulfates, ethoxylated alcohols, petroleum sulfonates, and alpha olefin sulfonates, and the polymer enhanced foam has a hydrostatic pressure gradient in said wellbore less than the fracture pressure gradient of said formation.

WO 95 14 066 A discloses a method of treating a subterranean formation comprising contacting the subterranean formation with an aqueous solution of a treatment fluid containing a formation control additive including a copolymer comprising about 50 % to about 95 % by weight of a cationic monomer selected from diallyl ammonium monomers of the formula \((\text{CH}_2=\text{CH})_2\text{N}^+\text{(CH}_3)_2\text{Cl}^- \) and acrylamide monomers of the formula \(\text{CH}_2=\text{COR}_1^+\text{(CH}_3)_2\text{A}^- \) and about 5 % to about 50 % of an anionic monomer of the formula \(\text{CH}_2=\text{RCOR}_2^- \) where \(\text{R} \) is hydrogen or \(\text{CH}_3 \), \(\text{R}^1 \) is a connecting linear or branched saturated hydrocarbyl group having from one to about five carbon atoms, and \(\text{R}^2 \) is \(\text{OH} \) or \(-\text{NHR}_1\text{SO}_3^- \), whereby permeability damage resulting from contact of the aqueous fluid with the formation is reduced. The fluid may comprise a gelling agent, a foaming agent and KCl. The gelling agent may be bentonite clays, polysaccarides, i.e. hydroxypropyl guar.

WO 00 51922 A a method is provided for incorporating a foaming agent into mixtures of particulates and then forming a foam within the mixture to increase the flowability of the particulates. A method is also provided for excavating solid particulates, incorporating a foaming agent into mixtures of solid particulates, and then forming a foam within the mixture to increase the flowability of the particulates. The particulates can be transported through pipelines or boreholes. Examples of particulates include, but are not limited to, mine tailings, ores, sand coal, soils, clays, silts, aggregates, and mixtures thereof. This document discloses olefin sulfonates as a foaming agent and guar gum as a stabilizing agent.

It is clear that the need remains for a foamy drilling fluid, which is stable in the presence of formation contaminants such as crude oil and/or salt, which has effective cutting transport capability, which exhibits good reutilization cycles through re-generation of foam at the surface, and which is environmentally friendly.

It is therefore the primary object of the present invention to provide a foamy drilling fluid having these properties.

Other objects and advantages of the present invention will appear hereinbelow.

The problems are solved by the teaching according to the independent claims. Particular developments are given in the independent claims. Within the frame of the invention are all combinations of at least two of the descriptive elements and technical features disclosed in the claims and/or in the description.

In accordance with the present invention, the foregoing objects and advantages have been readily attained.

According to the invention, a foamy drilling fluid is provided which comprises an aqueous solvent, a surfactant, which is an ethoxylated alcohol sulfate, selected from the group consisting of ammonium lauryl ether sulfate, sodium lauryl sulfate, ammonium laurel sulfate, triethanolamine lauryl sulfate, and mixtures thereof; and a polysaccharide polymer derived from a galactomannan gum, and most preferably guar gum, selected from the group consisting of hydroxypropyl guar, guar gum, hydroxypropyl carboximethyl guar and mixtures thereof and further comprising a salt, which is preferably...
a monovalent salt, which is selected from the group consisting of potassium chloride, sodium chloride, potassium acetate, sodium acetate and mixtures thereof, wherein said salt is preferably potassium chloride.

In accordance with a further aspect of the present invention, a foamed drilling fluid is provided, which comprises a liquid phase comprising an aqueous solvent, a polysaccharide polymer derived from a galactomannan gum selected from the group consisting of hydroxypropyl guar, guar gum, hydroxypropyl carboximethyl guar and mixtures thereof and a surfactant which is an ethoxylated alcohol sulfate, selected from the group consisting of ammonium lauryl ether sulfate, sodium lauryl sulfate, ammonium lauryl sulfate, triethanolamine lauryl sulfate, and mixtures thereof; and further comprising a salt, which is preferably a monovalent salt, which is selected from the group consisting of potassium chloride, sodium chloride, potassium acetate, sodium acetate and mixtures thereof, wherein said salt is preferably potassium chloride and a gas phase selected from the group consisting of nitrogen, air, natural gas, CO₂ and combinations thereof.

According to the invention said fluid contains said polymer in an amount between about 1.5 and about 3.0 % w/v, said surfactant in an amount between about 0.3 and about 1.0% w/v, and said salt in an amount between about 0.1 % and about 0.5 % w/v.

The polysaccharide additive of the present invention has been found to advantageously provide for excellent stability and cutting transport capacity, while nevertheless being environmentally friendly.

Further advantages, characteristics and details of the invention are apparent from the following detailed description of preferred embodiments of the invention with reference to the attached drawing schematically illustrates a multi-stage process in accordance with the present invention.

A detailed description of preferred embodiments of the present invention follows, with reference to the attached drawings, wherein:

Figures 1 and 2 illustrate drilling fluid in accordance with the present invention and conventional drilling fluid when contaminated with crude oil;

Figures 3 and 4 further illustrate drilling fluid in accordance with the present invention and conventional drilling fluid when contaminated with greater amounts of crude oil;

Figure 5 illustrates the relationship between crude oil quantity of contamination and foam stability in terms of half life time;

Figure 6 illustrates biodegradation of a drilling fluid in accordance with the present invention in aerobic conditions; and Figure 7 illustrates biodegradation of a drilling fluid in accordance with the present invention in anaerobic conditions.

The invention relates to a foamable drilling fluid which contains a particular class of polymer that has been found in accordance with the present invention to provide the fluid with excellent stability when foamed even in the presence of crude oil and salt, which provides for good cuttings transport capability, desirable density values, and sufficient reutilization cycles, and which also results in an environmentally friendly fluid.

In accordance with the present invention, the fluid contains an aqueous solvent phase containing a surfactant, a polysaccharide derived from a galactomannan gum, e.g. guar gum, and, preferably, a monovalent salt. The gas phase of the foamy drilling fluid, when foamed, may be any suitable gas and is preferably selected from the group consisting of nitrogen, air, natural gas, CO₂ and combinations thereof.

The aqueous solvent may be any suitable liquid into which the additives are soluble, such as water or the like.

The surfactant is an ethoxylated alcohol sulfate, and sodium lauryl ether sulfate has been found to be particularly suitable for use in accordance with the present invention, particularly when having three moles of EO. Of course, other types of surfactants could be used, such as ammonium lauryl ether sulfate, sodium lauryl sulfate, ammonium lauryl sulfate, triethanolamine lauryl sulfate, sodium alpha-olefin sulfonate and the like.

The class of polymer useful in accordance with the present invention as a polysaccharide source, specifically guar gum polymers, have been found to advantageously provide an additive to the drilling fluid of the present invention which provides for excellent stability and fluid characteristics while nevertheless providing an environmentally friendly and biodegradable drilling fluid.

Particularly desirable polysaccharides of the invention include polysaccharide polymers derived from galactomannan gum, such as hydroxypropyl guar, guar gum, and hydroxypropyl carboximethyl guar. The most preferred polysaccharide derivative for use in this invention is a hydroxypropyl guar gum derivative, which provides the drilling fluid of the present invention with excellent stability at reasonably small amounts, for example between about 1.5 and about 3.0% w/v, and molecular weights between 1,500,000 and 4,000,000.

The salt serves to stabilize the foam by means of repulsive forces due to the presence of polar groups at the interface, and may suitably be a monovalent salt such as potassium chloride, sodium chloride, potassium acetate, sodium acetate and mixtures thereof.

The foamed drilling fluid, as set forth above, includes a gas phase which may suitably be nitrogen, air, natural gas, CO₂ and the like. The foamed drilling fluid can be prepared using any known technique, and can be prepared at laboratory scale for example through mechanical mixing and gas injection.
The drilling fluid in accordance with the present invention is provided having different amounts of components so as to provide the desired resulting foamy fluid having stability, density, viscosity and other parameters as desired. For example, the foamed drilling fluid according to the invention may suitably have a density of between 137.8 kg/m³ (1.15 ppg) and 589.15 kg/m³ (5.0 ppg), and a volumetric gas fraction or quality of between 45 and 95% v/v. Viscosity at temperatures up to about 180°F for fluids having a quality of between 80 and 95% v/v is between 25 and 50cP.

In accordance with the present invention, it is particularly preferred to provide the liquid phase of the fluid containing polymer, surfactant and salt additives as set forth below in Table 1:

<table>
<thead>
<tr>
<th>Additive</th>
<th>Concentration range, ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydroxypropyl guar polymer</td>
<td>1.5 - 3.0</td>
</tr>
<tr>
<td>Surfactant selected from the group of ethoxylated alcohol sulfates (sodium lauryl ether sulfates with 3 moles EO)</td>
<td>0.3 - 1.0</td>
</tr>
<tr>
<td>Monovalent salt (KCl or NaCl)</td>
<td>0.1 - 0.5</td>
</tr>
</tbody>
</table>

The foamy drilling fluid in accordance with the present invention is particularly useful for low-pressure applications, for example in depleted or partially depleted reservoir areas where lower density drilling fluids are needed. In such environments, a foamed drilling fluid in accordance with the present invention is particularly advantageous in that formation damage due to drilling fluid filtrate into the formation can be substantially reduced, while nevertheless maintaining the cutting carrying capacity of the drilling fluid and while maintaining normal penetration rates.

A further advantage of the drilling fluid of the present invention is that the fluid stability helps maintain cuttings in the fluid for periods of time while drilling is ceased, such that cuttings do not return downhole.

Another advantageous feature of the fluid of the present invention is that the stability is not impacted at high temperatures which are frequently encountered in subterranean formations.

Still further, the drilling fluid of the present invention maintains stability when exposed to substantial amounts of crude oils, and/or salts, which of course are frequently encountered contaminants when drilling through subterranean formations. Depending upon the physico-chemical composition of the crude oil, large amounts of contamination can significantly increase foam stability, and the foam stability reactants at contamination levels up to at least about 50% w/v of crude oil.

The fluid of the present invention is stable at temperatures up to at least 82.22°C (180°F), and has a foam half lifetime of at least about 17 minutes.

Finally, the foamed drilling fluids in accordance with the present invention can be collapsed, or broken down for example at the surface, if desired, by adding low molecular weight alcohol, defoamers and/or pH adjusting additives. These breakdown mechanisms do not cancel the effect of the surfactant and permit regeneration of the foam by using the same foaming solution with a minimal amount of additional additives. This may be desirable in order to decrease the cost of the drilling fluid and provide good surface control.

The following examples further demonstrate the excellent characteristics of the drilling fluid of the present invention.

EXAMPLE 1

In this example, a drilling fluid in accordance with the present invention is compared to a commercial Transfoam O fluid.

The drilling fluid in accordance with the present invention (Foamdrill) was prepared utilizing water as an aqueous solvent, wherein the aqueous solvent contained sodium lauryl ether sulfate having three moles of EO, hydroxypropyl guar polymer and potassium chloride in amounts set forth in Table 2 below.

The foam was formed using air, in a mechanical mixing method. The foam was prepared and mixed with 10% w/v of crude oil in order to determine static foam stability.

A commercially available fluid (Transfoam O) was prepared containing an anionic Transfoam O surfactant, non-ionic Dionic 900 polymer, and KCl as salt in the amount set forth in Table 2 below, also using air as the gas phase and a mechanical mixing method. The foam was prepared and mixed containing crude oil in an amount of 10% w/v so as to determine the static foam stability.
As shown in Table 2, the drilling fluid of the present invention (Foamdrill) reached a foam level of 400 ml, and maintained this foam level for a half life time of 26.7 minutes. The half life time is defined as the time during which the column reduces in height to half of the beginning level.

By contrast, the Transfoam O fluid reached a foam level of 540 ml, but also reached the half lifetime in only 5.8 mins. Clearly, the foam of the present invention is more stable in the presence of crude oil than the conventional Transfoam O fluid, and is therefore beneficial for use as a drilling fluid in accordance with the present invention.

EXAMPLE 2

This example demonstrates the advantageous characteristics of the foam of the present invention when exposed to 10% w/v oil contamination, and when prepared using an air expansion method. Both foam formulations were prepared using concentrations as shown in Table 2. As shown in Figures 1 and 2, the drilling fluid of the present invention (Figure 1) exhibits higher stability in the presence of crude oil contamination than the commercial formulation (Figure 2). Further, the foam of the present invention, as shown, is homogeneous and uniform, while in contrast, the conventional foam has bubbles with different sizes, and is not uniform, and the foam is substantially broken.

EXAMPLE 3

In this example, a drilling fluid was prepared in accordance with the present invention as described in Example 1, and mixed with a 50% w/v amount of crude oil. A commercial drilling fluid (Transfoam O) was also prepared and mixed with crude oil in an amount of 50% w/v.

While the drilling fluid of the present invention maintained a foam structure when allowed to rest (Figure 3), the commercial fluid immediately separated to well below the half life level (Figure 4). This occurred using both mechanical mixing methods and air expansion foam forming methods.

Figure 5 shows the influence of crude oil concentration on stability of the foam of the present invention. As shown, as the crude oil contamination increases, foam stability also significantly increases. Further, the increase in foam stability is more substantial with certain types of crude oil. Highly acidic crude oils do tend to reduce the foam stability to some extent, although greater stability still occurs at higher oil concentrations. This demonstrates that the foam can be broken down in the presence of acidic crude oils, and on the other hand, that crude oils with similar chemical compositions exhibit similar foam stability.

EXAMPLE 4

In this example, a drilling fluid in accordance with the present invention and as described in Example 1 above was prepared and mixed with different amounts of crude oils. Once thoroughly mixed, the foam was then allowed to stand and the half life time was measured. The physical-chemical properties of crude oils investigated in this example are shown in Table 3.

<table>
<thead>
<tr>
<th>Crude Oil</th>
<th>Water by Distill %</th>
<th>Dehydration %</th>
<th>Salt by conduct PTB</th>
<th>API Gravity @ 60°F</th>
<th>Ac. Num. mg KOH/g crude oil</th>
<th>Saturated % w/w</th>
<th>Aromatic % w/w</th>
<th>Resins % w/w</th>
<th>Asphalt % w/w</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>-</td>
<td>5.2</td>
<td>24.7</td>
<td>0.38</td>
<td>41.1</td>
<td>42.3</td>
<td>12.2</td>
<td>4.4</td>
</tr>
</tbody>
</table>
Even with a 10% contamination of crude oil, the foam maintained a half life of approximately 1020 seconds.

EXAMPLE 5

[0049] In this example, the toxicology of the drilling fluid additives of the present invention, as well as biodegradability, was evaluated.

[0050] In this example, toxicity (CL₅₀ - 96h) of the additives of the drilling fluid of the present invention was evaluated. In this type of testing, the higher the CL₅₀ number, the lower the actual toxicity of the component. The surfactant of the present invention was found to have a toxicity of 300 mg/l, while the polymer component was found to have toxicity of greater than about 500 mg/l. As compared to commercial surfactant, these toxicities are substantial improvements. For example, a number of commercial surfactants were evaluated which have toxicities in the range of about 25 up to about 250 mg/l, all of which are substantially lower than, and therefore more toxic than, the ingredients of the present invention.

[0051] Biodegradation of the components of the fluids of the present invention was also measured over time under aerobic and anaerobic conditions, as compared to basic glucose.

[0052] Figures 6 and 7 illustrate the results obtained, wherein the fluid of the present invention is illustrated as "Foamdrill". As shown in Figure 6, under aerobic conditions, the "Foamdrill" fluid reaches a 60% biodegradation level quite rapidly and has a biodegradation profile comparable to glucose.

[0053] In Figure 7, for the anaerobic biodegradation of the Foamdrill fluid is nearly identical to glucose.

[0054] Thus, the drilling fluid of the present invention exhibits excellent biodegradability and is therefore extremely environmentally friendly.

EXAMPLE 6

[0055] In this Example, the cleaning capacity of the Foamdrilling fluid in accordance with the present invention is demonstrated. A pilot test was carried out in well P-203, of the La Paz field, in Venezuela. A 12 1/4" hole was drilled in the aforementioned well using 30-50 gallons per minute (gpm) of foam solution and 600-1000 scbm of nitrogen. Drilling was carried out using minimum annular velocities of 45ft/min. During the course of drilling, increments of injection pressures were not observed, drilling cuttings in the shakers were as expected according to the drilling rate, problems due to physical obstruction of cuttings or cutting deposition in the well was not observed, and the foam maintained a high stability at the well outlet before the breakdown process. All of these characteristics demonstrate an excellent cleaning capacity of the foam drilling fluid in accordance with the present invention.
EXAMPLE 7

[0056] In the same pilot test as carried out in Example 6, an effective fluid reutilization cycle was also conducted. The foam was formed and, upon exiting the well, was broken using alcohol and defoamer. The foaming solution with drilling cutting were separated and sent to shakers in order to separate the solids and regain the solution to be used again. With minimal addition of new components, the foam was regenerated approximately 76 times. This shows excellent re-usability of the fluid in accordance with the present invention.

[0057] It should be readily apparent that the drilling fluid in accordance with the present invention is stable, and useful in carrying cuttings to the surface during drilling operations, while nevertheless presenting a low density which is useful in low pressure applications so as to avoid formation damage and fluid loss, while also reducing cost.

[0058] Further, the drilling fluid is environmentally friendly.

[0059] It is to be understood that the invention is not limited to the illustrations described and shown herein, which are deemed to be merely illustrative of the best modes of carrying out the invention, and which are susceptible of modification of form, size, arrangement of parts and details of operation.

Claims

1. Drilling fluid, comprising:
 - an aqueous solvent;
 - a surfactant, which is an ethoxylated alcohol sulfate, selected from the group consisting of ammonium lauryl ether sulfate, sodium lauryl sulfate, ammonium lauryl sulfate, triethanolamine lauryl sulfate, and mixtures thereof;
 - a polysaccharide polymer, which is derived from a galactomannan gum, selected from the group consisting of hydroxypropyl guar, guar gum, hydroxypropyl carboxymethyl guar and mixtures thereof;
 - a salt, which is selected from the group consisting of potassium chloride, sodium chloride, potassium acetate, sodium acetate and mixtures thereof, wherein said fluid contains said polymer in an amount between 1.5 and 3.0 % w/v, said surfactant in an amount between 0.3 and 1.0 % w/v, and said salt in an amount between 0.1 % and 0.5 % w/v.

2. Fluid of claim 1, wherein the surfactant further comprises sodium alpha-olefin sulfonate.

3. Fluid of claim 1 or 2, wherein said galactomannan gum is hydroxypropyl guar.

4. Fluid of any of the claims 1 to 3, wherein the salt is a monovalent salt.

5. Fluid of any of the claims 1 to 4, wherein said salt is potassium chloride.

6. Fluid of any of the claims 1 to 5, wherein the fluid is a foamed fluid containing a gas.

7. Fluid of claim 6, wherein said gas is selected from the group consisting of nitrogen, air, natural gas, CO₂, and mixtures thereof.

8. Fluid of claim 6 or 7, wherein the foamed fluid has a density of between 137.8 kg/m³ (1.15 ppg) and 599.15 kg/m³ (5.0 ppg).

9. Fluid of claim 6 or 7, wherein the foamed fluid has a viscosity of between 25 and 50 cP for a volumetric gas fraction between 80 and 95 %, at temperatures up to 82.22°C (180° F).

10. Fluid of claim 6 or 7, wherein the foamed fluid is stable when exposed to oil and salt contaminants or wherein the foamed fluid is stable when mixed with crude oil up to at least 50 % w/v or crude oil.

11. Fluid of claim 6 or 7, wherein the foamed fluid has a half life time of at least 17 min.

12. Fluid of claim 6 or 7, wherein the foamed fluid is stable at temperatures up to at least 82.22°C (180°F).
Patentansprüche

1. Bohrfluid, aufweisend:
 ein wässriges Lösungsmittel;
 ein Polysaccharid-Polymer, welches abgeleitet ist von einem Galactomannan-Gummi, ausgewählt aus der Gruppe, bestehend aus Hydroxypropyl-Guar, Guar-Gummi, Hydroxypropyl Carboxymethyl Guar und Mischungen davon;
 ein Salz, welches ausgewählt ist aus der Gruppe bestehend aus Kaliumchlorid, Natriumchlorid, Kaliumacetat, Natriumacetat und Mischungen davon, wobei das genannte Fluid das genannte Polymer enthält in einer Menge zwischen 1,5 und 3,0 Gew.-%, das genannte oberflächenaktive Agens in einer Menge von 0,3 und 1,0 Gew.-% und das genannte Salz in einer Menge zwischen 0,1 und 0,5 Gew.-%.

2. Fluid nach Anspruch 1, wobei das oberflächenaktive Agens weiter ein Natrium Alpha-Olefin Sulfonat aufweist.

3. Fluid nach Anspruch 1 oder 2, wobei das Glactomannan Gummi ein Hydroxypropyl-Guar ist.

4. Fluid nach einem der Ansprüche 1 bis 3, wobei das Salz ein monovalentes Salz ist.

5. Fluid nach einem der Ansprüche 1 bis 4, wobei das Salz ein Kaliumchlorid ist.

6. Fluid nach einem der Ansprüche 1 bis 5, wobei das Fluid ein Gas enthaltendes geschäumtes Fluid ist.

7. Fluid nach Anspruch 6, wobei das genannte Gas ausgewählt ist aus der Gruppe, bestehend aus Stickstoff, Luft, Naturgas, CO₂ und Mischungen davon.

8. Fluid nach Anspruch 6 oder 7, wobei das geschäumte Fluid eine Dichte von zwischen 137,8 kg/m³ (1.15 ppg) und 599,15 kg/m³ (5.0 ppg) hat.

9. Fluid nach Anspruch 6 oder 7, wobei das geschäumte Fluid eine Viskosität zwischen 25 und 50 cP oder eine volumetrische Gasfraktion zwischen 80 und 95 % bei Temperaturen bis zu 82,22°C (180°F) hat.

12. Fluid nach Anspruch 6 oder 7, wobei das geschäumte Fluid stabil bei Temperaturen von bis zu wenigstens 82,22°C (180°F) ist.

Reivendicaciones

1. Fluide de forage, comprenant :
 un solvant aqueux ;
 un surfactant, qui est un sulfate d’alcool éthoxylé, choisi dans le groupe consistant en l’éther laurylique de sulfate d’ammonium, le sulfate laurylique de sodium, le sulfate laurylique d’ammonium, le sulfate laurylique de triéthanolamine, et des mélanges de ceux-ci ;
 un polymère de polysaccharide, qui est dérivé d’une gomme de galactomannane, d’une gomme de guar, d’hydroxypropyl carboxymethyl guar et des mélanges de ceux-ci ;
 un sel, choisi dans le groupe consistant en le chlorure de potassium, le chlorure de sodium, l’acétate de potassium, l’acétate de sodium et des mélanges de ceux-ci, dans lequel ledit fluide contient ledit polymère dans un quantité de 1,5 à 3,0 % en poids/volume, ledit surfactant dans une quantité de 0,3 à 1,0 en poids/volume, et
ledit sel dans une quantité de 0,1 à 0,5% en poids/volume.

2. Fluide selon la revendication 1, dans lequel le surfactant comprends en outre du sulfonate de sodium d’alpha-oléfines.

3. Fluide selon la revendication 1 ou 2, dans lequel ladite gomme de galactomannan est l’hydroxypropyl guar.

4. Fluide selon l’une quelconque des revendications 1 à 3, dans lequel le sel est un sel monovalent.

5. Fluide selon l’une quelconque des revendications 1 à 4, dans lequel le sel est le chlorure de potassium.

6. Fluide selon l’une quelconque des revendications 1 à 5, dans lequel le fluide est un fluide mousse contenant un gaz.

7. Fluide selon la revendication 6, dans lequel ledit gaz est choisi dans le groupe consistant en l’azote, l’air, le gaz naturel, le CO₂, et des mélanges de ceux-ci.

8. Fluide selon la revendication 6 ou 7, dans lequel le fluide mousse a une densité de 137,8 kg/m³ (1,15 ppg) à 599,15 kg/m³ (5,0 ppg).

9. Fluide selon la revendication 6 ou 7, dans lequel le fluide mousse a une viscosité de 25 à 50 cP pour une fraction volumique de gaz de 80 à 95%, à des températures allant jusqu’à 82,22°C (180°F).

10. Fluide selon la revendication 6 ou 7, dans lequel le fluide mousse est stable quand il est exposé à des contaminants huileux ou sous forme de sels, ou dans lequel le fluide mousse est stable quand il est mélangé avec de l’huile brute jusqu’à au moins 50% en poids/volume d’huile brute.

11. Fluide selon la revendication 6 ou 7, dans lequel le fluide mousse a un temps de demie vie d’au moins 17 min.

12. Fluide selon la revendication 6 ou 7, dans lequel le fluide mousse est stable à des températures jusqu’à au moins 82,22°C (190°F).
Fig. 5

Fig. 6

Fig. 7
REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- US 5360558 A [0006]
- WO 9514066 A [0007]
- US 6172010 B1 [0008]