Antibiotic Use and Nuclear Receptor Inactivation Linked to Mitophagy in Diabetes and Chronic Diseases

Ian James Martins¹,²,³

¹Centre of Excellence in Alzheimer’s Disease Research and Care, Sarich Neuroscience Research Institute, Edith Cowan University, Verdun Street, Nedlands, Western Australia, Australia
²School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Nedlands
³McCusker Alzheimer’s Research Foundation, Hollywood Medical Centre, Nedlands, Australia

Keywords: Non-alcoholic Fatty Liver Disease; Antibiotic Use; Mitophagy; Diabetes; Neurodegenerative Diseases; Bacterial Lipopolysaccharides; Diabetic Foot Ulcer; Antimicrobial Drug Metabolism

Editorial

Antibiotic overuse, antibiotic resistance and the risk of induction of diabetes have raised concerns with use of the dose of antibiotics in various communities [1-6]. The risks of infections in diabetes and neurodegenerative diseases [7-9] have increased antibiotic use in these individuals. Mitophagy in diabetes and neurodegeneration have been associated with poor mitochondrial quality control and autophagic degradation of mitochondria relevant to mitochondrial apoptosis associated with multisystem organ disease [10-13]. The association between infections, antibiotic use and mitophagy [14-16] has raised concerns with relevance to the doses of antibiotics in mitochondrial dynamics and antibiotic induced mitophagy in these chronic diseases with irreversible cell death associated antibiotics and multisystem organ disease.

Non Alcoholic Fatty Liver Disease (NAFLD) has now been linked to diabetes and neurodegenerative diseases [17-19] with the nuclear receptor Sirtuin 1 (Sirt 1) now closely associated with these chronic diseases [20]. Defective Sirt 1 has been associated with the induction of NAFLD, diabetes and neurodegeneration [21, 22] and its role in hepatic drug metabolism may inactivate glucose/cholesterol homeostasis with defective drug metabolism relevant to insulin resistance and various chronic diseases [20]. Excessive antibiotic use may damage the liver [23] and inactivate Sirt 1 with excessive antimicrobial drug use with Sirt 1 repression linked to mitophagy, programmed cell death and chronic disease [24]. Antibiotic use (dose) and antibiotic resistance is now relevant to Sirt 1’s activity in the liver with Sirt 1 critical to hepatic antibiotic clearance and metabolism [25]. Sirt 1’s role in antibiotic treatment and therapy is connected to chronic disease with NAFLD (Figure 1) primarily involved in the multiple system organ disease and diabetes (Figure 1). Antimicrobials such as Indian spices (doses) and caffeine should be carefully controlled [26] with relevance to inactivation of antibiotic use in medicine, diabetes and chronic diseases.

Systemic treatment with the use of antimicrobial drugs to prevent infections in neurodegenerative diseases [7-9] and soft tissues infections such as foot (diabetic foot ulcers) should be carefully controlled to prevent nuclear receptor Sirt 1 inactivation and mitophagy. LPS may induce NAFLD, diabetes and neurodegenerative diseases with inactivation of hepatic antibiotic drug metabolism associated with antibiotic resistance and chronic disease.

Figure 1: NAFLD and inactivation of antibiotic drug metabolism is now important to multisystem chronic diseases. Systemic treatment by antimicrobials of brain infections and soft tissue infections such as the foot (diabetic foot ulcers) should be carefully controlled to prevent nuclear receptor Sirt 1 inactivation and mitophagy. LPS may induce NAFLD, diabetes and neurodegenerative diseases with inactivation of hepatic antibiotic drug metabolism associated with antibiotic resistance and chronic disease.

Correspondence to: Ian Martins, School of Medical Sciences, Edith Cowan University, Western Australia 6009, Australia, Tel: +61863042574; E-mail: i[DOT]martins[AT]ecu[DOT]edu[DOT]au

Received: Nov 05, 2018; Accepted: Nov 06, 2018; Published: Nov 09, 2018
after antimicrobial treatment [32] that may induce mitophagy in neurodegenerative diseases such as diabetes and chronic diseases [25, 33]. Maintenance of liver antimicrobial drug metabolism and systemic therapy may involve a diet that maintains nuclear receptor Sirt1 activation [20-22] to prevent LPS induced Sirt1 repression associated with diabetes and neurodegenerative diseases.

**Conclusion**

NAFLD is now relevant to defective antimicrobial drug metabolism in diabetes and neurodegenerative diseases. The NAFLD epidemic is expected by the year 2050 to effect between 20-30% of the global population. Excessive systemic administration of antibiotic use with NAFLD should be avoided to prevent excessive LPS release with antibiotic use associated with mitophagy in NAFLD and multisystem diseases that include diabetes, neurodegenerative diseases and soft tissue diseases such as diabetic foot ulcer.

**Acknowledgement**

This work was supported by grants from Edith Cowan University, the McCaskey Alzheimer’s Research Foundation and the National Health and Medical Research Council.

**References**


Copyright: © 2018 Martins IJ. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.