Numerical Investigation of Novel Spudcan Shapes for Easing Spudcan-Footprint Interactions

M. J. Jun¹, Y. H. Kim², M. S. Hossain³, M. J. Cassidy⁴, Y. Hu⁵ and J. W. Sim⁶

¹PhD Student, Centre for Offshore Foundation Systems (COFS), The University of Western Australia, Tel: +61 8 6488 7725, Fax: +61 8 6488 1044, Email: minjung.jun@research.uwa.edu.au

²Corresponding Author, Research Associate (PhD), Centre for Offshore Foundation Systems (COFS), The University of Western Australia, 35 Stirling highway, Crawley, WA 6009, Tel: +61 8 6488 4316, Fax: +61 8 6488 1044, Email: youngho.kim@uwa.edu.au

³Senior Research Fellow (BEng, MEng, PhD, MIEAust), Centre for Offshore Foundation Systems (COFS), The University of Western Australia, Tel: +61 (0)8 6488 7358, Fax: +61 (0)8 6488 1044, Email: muhammad.hossain@uwa.edu.au

⁴Professor (BE, DPhil, FIEAust, FTSE), ARC Laureate Fellow, Centre for Offshore Foundation Systems (COFS) and ARC Centre of Excellence for Geotechnical Science and Engineering, The University of Western Australia, Tel: +61 8 6488 3732, Fax: +61 8 6488 1018, Email: mark.cassidy@uwa.edu.au

⁵Professor (PhD, MIEAust), School of Civil, Environmental and Mining Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Tel: +61 (0)8 6488 8182, Fax: +61 (0)8 6488 1018, Email: yuxia.hu@uwa.edu.au

⁶Research Engineer (PhD), Daewoo Shipbuilding & Marine Engineering Co. Ltd. (DSME), 5F, 26. Eulji-ro 5-gil, Jung-gu, Seoul, 100-210, Korea, Republic of, Tel: +82 2 2129 3598, Fax: +82 2 2129 3670, Email: ssims@DSME.co.kr

- Number of Words: 5178 (text only)
- Number of Tables: 02
- Number of Figures: 14
Numerical Investigation of Novel Spudcan Shapes for Easing Spudcan-Footprint Interactions

ABSTRACT

This paper reports a measure for easing spudcan-footprint interactions when a jack-up rig needs to be installed near existing jack-up footprints. Two novel spudcan shapes, skirted spudcan with four rectangular holes and skirted spudcan with six circular holes and sloped bottom profile, were investigated using 3D large deformation finite element (LDFE) analyses. The LDFE analyses were performed using the Coupled Eulerian-Lagrangian (CEL) approach in the commercial finite element package ABAQUS. After displaying the validity of the analyses against existing LDFE results and centrifuge test data, the efficiencies of the novel spudcans were studied against a generic spudcan shape, including the effects of spudcan offset distance from the footprint and the footprint depth. Both soft and stiff seabed strength profiles were considered with the undrained shear strength increasing with depth. The potential of spudcan sliding towards the footprint center during installation was evaluated based on the resultant maximum horizontal force \(H_{\text{max}} \) and moment \(M_{\text{max}} \) acting on the different spudcans. It is found that, between the two novel spudcans, the spudcan with six holes and sloped bottom profile is more effective at reducing \(H_{\text{max}} \) and \(M_{\text{max}} \). Any reduction in the resultant horizontal force on the spudcan can generate a large reduction of the moment at the top of a long jack-up leg. The results from this study indicate that the novel spudcan with circular holes and sloped bottom profile has potential to ease spudcan-footprint interactions without any additional mechanical operations.

Keywords: Clays; Spudcan-footprint interaction, Large deformation finite element, Coupled Eulerian-Lagrangian
Nomenclature

A_{hole} total hole area

A_{net} net spudcan plan area at largest section

A_{total} total spudcan plan area at largest section

D spudcan diameter at largest section

D_F footprint diameter

d penetration depth of spudcan base (lowest point of largest section) from mudline

d_h hole diameter

H horizontal force at spudcan base level

H_{max} maximum horizontal force at spudcan base level

h_{min} minimum element size

k shear strength gradient with depth

L_J jack-up leg height

L_s skirt length

M moment at spudcan base level

M_a additional moment induced by horizontal force and jack-up leg height

M_{max} maximum moment at spudcan base level

M_t moment at given jack-up leg height

M_{t,max} maximum moment at given jack-up leg height
<table>
<thead>
<tr>
<th>No.</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>RP</td>
<td>reference point at spudcan</td>
</tr>
<tr>
<td>69</td>
<td>RP1</td>
<td>reference point at top of leg</td>
</tr>
<tr>
<td>70</td>
<td>S_t</td>
<td>soil sensitivity</td>
</tr>
<tr>
<td>71</td>
<td>s_u</td>
<td>undrained shear strength</td>
</tr>
<tr>
<td>72</td>
<td>$s_{u,\text{ref}}$</td>
<td>reference undrained shear strength</td>
</tr>
<tr>
<td>73</td>
<td>$s_{u,m,\text{ref}}$</td>
<td>reference undrained shear strength at the seabed</td>
</tr>
<tr>
<td>74</td>
<td>$s_{u,\text{ave}}$</td>
<td>average undrained shear strength along the frictional surface</td>
</tr>
<tr>
<td>75</td>
<td>V</td>
<td>vertical force</td>
</tr>
<tr>
<td>76</td>
<td>v</td>
<td>spudcan penetration velocity</td>
</tr>
<tr>
<td>77</td>
<td>z</td>
<td>depth below soil surface</td>
</tr>
<tr>
<td>78</td>
<td>z_F</td>
<td>footprint depth</td>
</tr>
<tr>
<td>79</td>
<td>α</td>
<td>interface friction ratio</td>
</tr>
<tr>
<td>80</td>
<td>α_b</td>
<td>spudcan base angle</td>
</tr>
<tr>
<td>81</td>
<td>β</td>
<td>offset distance</td>
</tr>
<tr>
<td>82</td>
<td>δ_{rem}</td>
<td>remoulded strength ratio</td>
</tr>
<tr>
<td>83</td>
<td>$\dot{\gamma}$</td>
<td>shear strain rate</td>
</tr>
<tr>
<td>84</td>
<td>$\dot{\gamma}_{\text{ref}}$</td>
<td>reference shear strain rate</td>
</tr>
<tr>
<td>85</td>
<td>μ</td>
<td>rate parameter for logarithmic expression</td>
</tr>
<tr>
<td>86</td>
<td>μ_C</td>
<td>Coulomb friction coefficient</td>
</tr>
</tbody>
</table>
87 θ_F footprint slope angle

88 τ_{max} limiting shear strength at soil-spudcan interface

89 ξ cumulative plastic shear strain

90 ξ_{95} cumulative plastic shear strain required for 95% remoulding

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105
1 INTRODUCTION

1.1 ‘Mobile’ Jack-Up Rig and Spudcan-Footprint Interactions

Most offshore drilling in shallow to moderate water depths (< 150 m) is performed from self-elevating jack-up rigs due to their proven flexibility, mobility and cost-effectiveness (CLAROM 1993; Randolph et al. 2005). Today’s jack-ups typically consist of a buoyant triangular platform supported by three independent truss legs, each attached to a large 10 to 20 m diameter spudcan. After the completion of the task, the legs are retracted from the seabed, leaving depressions, referred to as a crater or ‘footprint’, at the site (see Figure 1a).

Jack-ups often return to sites where previous operations have left footprints in the seabed. This is, for example, to drill additional wells or service existing wells; installing structures such as jackets or wind turbines (Killalea 2002; Osborne and Paisley 2002; InSafeJIP 2011). When a spudcan is located on or near a footprint slope, there is a tendency for the spudcan to slide towards the center of the footprint, inducing excessive lateral forces and bending moments to the rig (see Figure 1b). Adverse spudcan displacement could result in an inability to install the jack-up in the required position, leg splay, structural damage to the leg, and at worst, bumping or collapsing into the neighbouring operating platform. The frequency of offshore incidents during installation near footprints has increased by a factor of four between the period 1979–88 and 1996–06 (Osborne 2005) and at an even higher rate over 2005–2012 (Jack et al. 2013), with examples of offshore incidents also documented by Hunt and Marsh (2004), Brennan et al. (2006) and Handidjaja et al. (2009).

1.2 Spudcan Footprint Geometry

In general, the soil strength profile, the depth of detaching the spudcan base from the underlying soil during extraction, and the degree of soil reverse backflow around the extracting spudcan dominate the formation of the footprint. From the results of a series of
half-spudcan centrifuge tests, Hossain and Dong (2014) concluded that a conical footprint of depth $z_F = 0.22\sim0.33D$ was formed in soft clay whilst a cylindrical footprint of depth $z_F = 0.5\sim0.66D$ was formed in stiff clay. In addition, the combined effects of soil heaving during initial penetration of the spudcan and reverse backflow during extraction resulted in a soil bulge extending laterally over $1.92\sim1.96D$ particularly in soft clay. These findings are consistent with footprints measured in Gan et al. (2008), Teh et al. (2010), and Erbrich et al. (2015). Critical footprint depth (z_F) of 0.33D and 0.66D and width of 2D were considered in this study.

Natural fine grained soils experience remoulding during the spudcan penetration and extraction event. This disturbance is healed gradually with the passing of time through dissipation of excess pore pressure. Centrifuge tests in Kaolin clay showed full recovery of the original strength taking 1~1.5 years in the vicinity of the footprint, though of course this is a function of the soil’s permeability (Leung et al. 2007). Further disturbance and strength’s greater that the original intact strength were measured at greater depths below the depth to which the spudcan was originally penetrated and after the passing of many years (see contours of Gan et al. 2012). Because of the complexity and variety of possible strength gradients around the footprint, in this study, an artificial footprint with the soil strength along and adjacent to the footprint identical to the intact strength profile was considered. This allows a consistent evaluation of the benefits of the spudcan shape (and allows comparisons with the testing programs of Kong et al., 2013, 2015a, 2015b). Further numerical study and experiments in more complex soil profiles are recommended.

1.3 Previous Work

Penetration of spudcan foundations next to footprints has been addressed by a number of researchers, with of particular interest being on spudcan-footprint interactions and consequent
Numerical Investigation of Novel Spudcan Shapes for Easing Spudcan-Footprint Interactions

Jun et al.

influence on jack-up legs with various fixity conditions. Gaudin et al. (2007), Leung et al. (2007), Cassidy et al. (2009), Gan et al. (2012), Kong et al. (2013) reported data from centrifuge tests. Tho et al. (2013) and Zhang et al. (2015) performed 3D LDFE simulations using the remeshing and interpolation technique with small strain-analysis (RITSS) technique and coupled Eulerian-Lagrangian (CEL) approach, respectively, in the commercial finite element package ABAQUS. From all investigations, as summarized in Figure 10 of Kong et al. (2013), the critical offset distance β (defined as the distance between the footprint center and spudcan center) was identified as $0.5D \sim 1.0D$. From case histories, Handidjaja et al. (2009) found that if $\beta > 1.5D \sim 1.7D$, the effect of interaction can be neglected, while Teh et al. (2010) reported a minor slip for $\beta = 1.0D$.

1.4 Existing methods for mitigating spudcan-footprint interactions

For mitigating spudcan-footprint interactions, only a minimum attention was paid. In the field, stomping, successive leg repositioning (Brennan et al. 2006), use of an identical or very similar spudcan diameter and exactly on the existing footprint (Erbrich et al. 2015), and water jetting along with the spudcan preloading (Handidjaja et al. 2009) have been used. Perforation drilling was also identified as a potential means for mitigating spudcan-footprint interactions (Maung and Ahmad 2000; Hossain and Stainforth 2016). Additional works involved with these methods incur additional cost and time to be applied in the field.

1.5 Objectives of present study

This study focuses on tweaking spudcan shapes to ease the spudcan-footprint interactions. The investigation was carried out through 3D large deformation finite element (LDFE) analyses. Firstly, for ensuring the accuracy of the numerical model, vertical (V), horizontal (H) and moment (M) loads acting on a spudcan were validated against the results from centrifuge test result performed by Kong et al. (2013) and from LDFE using RITSS
conducted by Zhang et al. (2015). Secondly, the effect of the previously developed novel spudcan shapes (Lee et al. 2015) at mitigating spudcan-footprint interactions has been evaluated through comparison with the performance of a generic spudcan shape. An extensive parametric investigation was then undertaken, encompassing the relevant range of various parameters related to the footprint geometry, reinstallation location and soil strength.

2 NUMERICAL ANALYSIS

2.1 CEL method for large deformation problem

3D LDFE analyses were carried out using the coupled Eulerian-Lagrangian (CEL) approach in the commercial FE package ABAQUS/Explicit (Dassault, 2012). Qiu et al. (2011), Chen et al. (2013), Tho et al. (2013), Hu et al. (2014), Hamann et al. (2015), Kim and Hossain (2015) and Zheng et al. (2015) investigated various geotechnical problems using the CEL approach and provided confidence to its applicability to solve problems involving large deformations.

The CEL approach is identified as advantageous in circumventing mesh distortion in large deformation problems. The soil is tracked as it flows through an Eulerian mesh, fixed in space, by computing the material volume fraction in each element. The Eulerian element can be materially void or occupied partially or fully by more than one material, with the volume fraction representing the portion of that element filled with a specified material. The structural element, such as a spudcan, is discretized with Lagrangian elements, which can move through the Eulerian mesh without resistance until they encounter Eulerian elements containing soil. The interaction between the structure and the soil is represented using a contact algorithm named ‘general contact’ in ABAQUS (Dassault 2012).
2.2 Mesh and boundary conditions

Considering the symmetry of the problem, half spudcan and soil were modelled. The lateral extensions of the soil domain from the center of the footprint were 2.5D (D is the spudcan diameter) on the left hand side and 4.5D on the opposite side, and the depth of the soil domain was ~5.5D to avoid boundary effect during the installation process (as obtained from preliminary convergence studies and also considered by e.g. Hu et al. 2015; Zheng et al. 2015). An idealized artificial footprint was considered following Kong et al. (2013). Figure 2 shows the footprint shape of a cone with $D_F = 2D$ and $z_F = 0.33D$ and 0.66D. Similar to the Kong’s experimental setup, the spudcan was assumed to be rigid with no horizontal or rotational movements allowed (fixed head condition). A typical mesh is shown in Figure 3. A very fine soil mesh was necessary to capture the spudcan-soil interaction accurately. Therefore, mesh convergence studies were first performed to ensure that the mesh was sufficiently fine to give accurate results. As shown in Figure 4, four different mesh densities were considered (in the ‘very fine mesh zone’ in Figure 3) for a spudcan reinstallation near an existing footprint. The numerical results based on mesh 1 and mesh 2, with minimum element sizes (h_{min}) 0.019D and 0.025D respectively, are essentially identical, indicating that mesh convergence was achieved with the density of mesh 2 ($h_{\text{min}} = 0.025D$). As such, for subsequent parametric analyses, the typical minimum soil element size in the very fine mesh zone was selected as 0.025D. A 3 m (i.e. 0.2D) thick void (i.e. material free) layer was set above the intact soil surface, allowing the soil to heave by flowing into the empty Eulerian elements during the penetration process. The penetration velocity of the spudcan (v) was taken as 0.1 m/s.
2.3 Constitutive law and material parameters

The soil was modelled as a linear elastic–perfectly plastic material obeying a Tresca yield criterion, but extended as described later to capture strain-rate and strain-softening effects. A user subroutine was implemented to track the evolving soil strength profile. The elastic behaviour was defined by a Poisson’s ratio of 0.49 and Young’s modulus of $500s_u$ throughout the soil profile. Total stress analyses were carried out adopting a uniform effective unit weight over the soil depth, representing a typical average value for field conditions.

The interaction between (e.g. spudcan) and Eulerian (e.g. soil) materials is enforced by a general contact algorithm that is based on a penalty contact method in ABAQUS (Dassault, 2012). Therefore, the spudcan-soil interface was modelled as frictional contact using this algorithm and specifying a (total stress) Coulomb friction law with a limiting shear stress (τ_{max}). Two different contact properties were applied for the side and bottom of spudcan, respectively. For the side friction of spudcan shoulder, skirt and holes, the Coulomb friction coefficient was set to a high value of $\mu_C = 50$, in order to allow the value of $\tau_{\text{max}} (= \alpha s_u,\text{ave})$, where α is the frictional ratio taken as the inverse of the soil sensitivity, $1/S_t$; s_u,ave is the average undrained shear strength along the frictional surface) to govern failure (Ma et al. 2014; Kim et al. 2015). For the friction between the bottom profile of spudcan and footprint slope, μ_C was taken as 0.1, without specifying a τ_{max}. It allows the frictional behaviour to be governed by the contact pressure beneath the spudcan (Wang et al. 2012; Wang et al. 2015; Mao et al. 2015).

2.4 Incorporation of combined effects of strain rate and strain softening

The Tresca soil model was extended in order to take the combined effects of rate dependency and gradual softening into account following the Einav & Randolph model (Einav & Randolph 2005). The undrained shear strength at individual Gauss points was
modified at the beginning of each time step, $\dot{\gamma}$, according to the average rate of maximum shear strain in the previous increments and the current accumulated absolute plastic shear strain, ξ, expressed as

$$s_u = \left[1 + \mu \log \left(\frac{\max(\dot{\gamma}, \dot{\gamma}_{\text{ref}})}{\dot{\gamma}_{\text{ref}}} \right) \right] \delta_{\text{rem}} + (1 - \delta_{\text{rem}}) e^{-3\xi_{95}/\xi_{\text{ref}}} s_{u,\text{ref}} \tag{1}$$

The first bracketed term augments the strength according to the maximum strain rate relative to a reference value, $\dot{\gamma}_{\text{ref}}$, which was considered as 1.5%/h as consistent with triaxial tests (Lunne et al. 2006), following a logarithmic law with rate parameter μ taken as 0.1 for ‘circular’ spudcan foundations (Low et al. 2008). The second part of Equation 1 models the degradation of strength according to an exponential function of cumulative shear strain, ξ, from the intact condition to a fully remoulded ratio, $\delta_{\text{rem}} (= 1/S_t = \alpha)$. The relative ductility is controlled by the parameter, ξ_{95}, which represents the cumulative shear strain required for 95% remoulding. A typical value of $\xi_{95} = 15$ (i.e. 1500% shear strain; Randolph 2004) was considered. Further details can be found in Hossain & Randolph (2009) and Zheng et al. (2015).

3 VALIDATION AGAINST CENTRIFUGE TESTING AND PREVIOUS LDFE ANALYSIS

The LDFE results were validated against previously published centrifuge test data and LDFE results using the alternative RITSS method. Kong et al. (2013) presented data from a centrifuge test carried out at 250 g in kaolin clay. A model flat base circular footing (D = 15 m) was adopted, instead of real spudcans to eliminate any effects of spudcan base profile, and an idealized artificial footprint ($D_F = 2D$ and $z_F = 0.33D$; footprint A in Figure 2) were used in that testing. The slope angle of the footprint (θ_F) was 18.5°. The soil undrained
shear strength of $s_{u,ref}$ was deduced from T-bar penetration tests as $s_{un,ref} = 7.5$ kPa at the
ground surface with a linearly increasing gradient of $k = 0.92$ kPa/m down to 3.4 m; and
$s_{un,ref} = 5$ kPa and gradient of $k = 1.68$ kPa/m for the soil below 3.4 m. The footing was
penetrated at an offset of $\beta = 0.55D$ from the footprint center. In the LDFE simulation, these
parameters and $\mu = 0.1; \delta_{rem} = 1/S_t = 1/3; \xi_{95} = 15; \text{ and } \gamma_{ref} = 1.5\% \text{ h}^{-1}$ were used. For the
same case, Zhang et al. (2015) performed a 3D LDFE simulation using the RITSS technique.
The soil was modelled as an elasto-plastic material obeying a Tresca yield criterion, with
strain softening and rate dependency of the undrained shear strength not incorporated.

Figure 5 shows penetration resistance profiles, in terms of horizontal force (H), vertical force
(V) and bending moment (M) distribution along the normalized penetration depth, d/D (where
d is the penetration depth of spudcan base i.e. lowest point of largest section from mudline).
The results from Zhang et al.’s (2015) LDFE/RITSS simulation are also included for
comparison. By comparing with the measured data, the horizontal and vertical load responses
from this study are in reasonable agreement, while the moment response is slightly higher.
The horizontal load response from the LDFE/RITSS analysis is significantly higher. It can be
explained as the LDFE/RITSS analysis adopted a ‘tie restrained condition’ between the soil
and the footing, and an ideal Tresca soil material (without any softening effect). This may
have led to a larger horizontal force. In order to highlight the individual effect of strain rate
dependency and softening, two additional analyses have been performed considering (i) rate
dependent, non-softening soil ($\mu = 0.1; \delta_{rem} = 1$), and (ii) rate independent, softening soil ($\mu =
0; \delta_{rem} = 1/3; \xi_{95} = 15$). The results are also plotted in Figure 5. As expected, for this spudcan
penetration problem, the curves for rate-dependent softening soil is somewhat bounded by the
curves for rate dependent, non-softening soil and rate independent, softening soil (see Figure
5); with H_{max} for these three cases being 0.84, 0.92 and 0.77 MN, respectively (see Figure 5a).
The influences will be more profound for deeper penetration depths with soil flow around the
embedded spudcan (Hossain and Randolph, 2009). In practice, the undrained shear strength of clay is assessed through e.g. triaxial tests. During a spudcan penetration in the field, the operational shear strength of the adjacent soil is affected by the strain rate induced by the spudcan penetration rate and accumulated plastic shear strain simultaneously. As such, the rate dependent, strain softening soil ($\mu = 0.1; \delta_{rem} = 1/S_t = 1/3; \xi_{95} = 15$) was chosen for the further parametric analyses. As the moment about the load reference point (RP) at the center of a footing is mainly governed by the resultant vertical force and its eccentricity from RP (see Figure 5c), the difference in moment response between the LDFE simulations are not very obvious (will discuss later). Overall, this validation analysis has reasonably confirmed the capability and accuracy of the CEL approach in assessing responses during penetration of a footing adjacent to an existing footprint.

4 RESULTS AND DISCUSSION: PARAMETRIC STUDY

To examine whether by changing spudcan shape spudcan-footprint interactions can be mitigated, an extensive parametric study was carried out varying (a) the spudcan shape (conventional or generic spudcan – referred to as spudcan A, novel spudcan with 4 rectangular holes – referred to as spudcan S, and novel spudcan with 6 circular holes and sloped bottom profile – referred to as spudcan H; Table 1 and Figure 6); (b) the reinstallation location ($\beta = 0.55D \sim 1.5D$); (c) the footprint geometry ($z_F = 0.33D$ and $0.66D$); and (d) the soil undrained shear strength (soft to stiff clay deposit). The results from this parametric study, as assembled in Table 2, are discussed below. Parameters in terms of rate dependency and strain-softening were taken as $\mu = 0.1; \delta_{rem} = 1/S_t = 1/3; \xi_{95} = 15$; and $\gamma_{ref} = 1.5\% \, \text{h}^{-1}$, as they typically provided good match in the validation exercise.
4.1 Effect of novel spudcan geometry

Numerical analyses were performed using 3 spudcans (spudcan A, spudcan S and spudcan H) of 15 m diameter (Group I; Table 2). The shape of spudcan A (Figure 6a) was chosen similar to the spudcans of the ‘Marathon LeTourneau Design, Class 82-SDC’ jack-up rig, as illustrated by Menzies & Roper (2008). The basic shape of spudcan S (Figure 6b) is similar to spudcan A. A skirt of height 2 m was added around the periphery, and four evenly spaced rectangular holes (2 m × 4.95 m) were made at the base close to the skirt. The ratio of skirt length to diameter (L/D) was 0.13. The shape of spudcan H (Figure 6c) is innovative and featuring six evenly spaced circular holes (of diameter \(d_h = 2.1 \) m) with slopes at the base. More details can be found in Lee et al. (2015). The spudcans were penetrated at an offset of \(\beta = 0.55D \) from the footprint center \((z_F = 0.33D, D_F = 2D \) and \(\theta_F = 18.5^\circ \); footprint A in Figure 2).

Performance of novel spudcans

Figure 7 shows a comparison of performance of the generic and two novel spudcans in terms of horizontal (H), vertical (V) and moment distribution (M) along the normalized penetration depth \(d/D \). The corresponding failure mechanisms at different stages of penetration are illustrated in Figure 8.

It is seen that vertical forces (V) and maximum moments (\(M_{\text{max}} \)) for all the spudcans are similar. Note, at the shallow penetration stage prior to the footprint toe level (\(d/D < 0.33 \)), the vertical forces (V) for spudcans H and S are larger than that for spudcan A although the net area (\(A_{\text{net}} \)) is smaller (\(A_{\text{net}} = 155.9 \text{ m}^2 \) and 136.5 m\(^2 \) for spudcans H & S vs 176.7 m\(^2 \) for spudcan A; Table 1). This indicates that the effect of the increased initial bottom contact area by trapped soil (see Fig. 8b) and the frictional resistance mobilized between the trapped soil flowed through the holes and the holes peripheral surface (as was modelled as frictional
contact; see Figs. 8a–8e) outweigh the effect of less net area. After the footprint toe level (d/D > 0.33), the gap gradually diminishes and the curves merge together. This is because the soil flowed back around the spudcan and the flowed through the holes gradually seal the holes (see Fig. 8e) with negligible or no further effect of the holes.

By using spudcan H, a reduction in induced horizontal force was measured. The maximum horizontal force (H_{max}) for spudcan H is around 1.17 MN, which is about 18.8 % lower than that for spudcan A (H_{max} = 1.44MN). As discussed later, this is because the holes of the advancing spudcan and underside profiles (e.g. slopes) provide a preferential soil flow path, forcing the spudcan to remain vertical. The depth of the peak also shifts down (0.05D for spudcan A to 0.2D for spudcan H) due to the skirt. The deeper mobilisation of H_{max} of spudcans S and H provides more potential for the spudcan to reach its vertical capacity before reaching its horizontal capacity H_{max}. For instance, for spudcan A, V = 10.0 MN at H_{max} = 1.44 MN; while for spudcan H, V = 29.5 MN at H_{max} = 1.17 MN.

Soil failure mechanisms

Figure 8 depicts the instantaneous (resultant) velocity vectors during reinstallation of the spudcans in soft clay (note, the instantaneous velocity vector plots are not the same as for the real Lagrangian material, but the representation of the deformed soil flow in Eulerian element; e.g. Tho et al. 2013; Kim et al. 2015). The soil failure mechanisms show that the asymmetric soil (and hence the tendency of horizontal force towards the footprint toe) has been reduced by the novel spudcan owing to soil flowing through the holes.

For the generic spudcan, once the footprint toe level is reached, the localized soil backflow on the left hand side begins to collapse back on the spudcan (d/D = 0.38 in Figure 8). Generally, after passing this depth, soil begins to flow back on both sides of the spudcan
(Zhang et al. 2015); the influence on the failure mechanism caused by the presence of the footprint geometry therefore diminishes.

For the novel spudcans in Figures 8b and 8c, the holes on the spudcans make this process occur earlier, easing the footprint interactions. Interestingly, spudcan H shows more efficiency compared to spudcan S, even though the net area of spudcan H is larger \((A_{\text{net}} = 155.9 \text{ m}^2 \text{ for spudcan H vs } 136.5 \text{ m}^2 \text{ for spudcan S}; \text{ see Table 1}) \). It can be explained that the underside profile (e.g. various slopes at the base) of spudcan H reduces the horizontal force to some extent by trapping more soil volume underneath. Based on these results, only spudcan H was used as a novel spudcan for further parametric studies described below.

4.2 Effect of offset distance

Spudcan reinstallation processes near the idealized footprint \((z_F = 0.33D, D_F = 2D \text{ and } \theta_F = 18.5^\circ) \) were investigated with different offset distances (e.g. \(\beta = 0.55D, 1.00D \text{ and } 1.50D; \text{ Group II; Table 2} \)). This parametric study aims at investigating the combination effect between the spudcan shape and offset distance during reinstallation processes. The results of this analysis are plotted in Figure 9. Deviations in the vertical penetration resistances are shown in the initial penetration stage (see Figure 9b). As expected, the magnitude of the vertical force \((V) \) increases with the offset distance \(\beta \) as a result of increasing initial contact area. For all cases, as the penetration continues, the contact area increases rapidly and thus leads to increase the vertical forces. The effect of offset distance becomes less influential on the vertical penetration resistance as the penetration depth increases, which results in the merging of the six vertical force curves at a depth of about \(d/D = 0.4 \) after the spudcans pass the toe of the footprint.

The horizontal and moment distribution for each offset distance \(\beta \) are presented in Figure 9a and Figure 9c. Peak \(H_{\text{max}} \) and \(M_{\text{max}} \) are observed at an offset value of 0.55D; these findings
confirm the physical modelling results of previous publications, such as Cassidy et al. (2009) and Gan et al. (2012), in which a critical offset distance range of 0.5D to 1.0D was suggested. The horizontal force and moment reduce with increasing β. The reduction in H_{max} with increasing β for spudcan A is more pronounced than that for spudcan H. Eventually the horizontal force for spudcan A becomes lower than that for spudcan H for $\beta = 1.50D$. This could be attributed to the skirt on spudcan H. As β increases and particularly for $\beta = 1.50D$, the left skirt of spudcan H touches the soil surface and buries earlier than the shoulder of spudcan A (see Figure 11). The buried section of the left skirt is still close to the footprint slope. This leads to increase the resulting imbalance in earth pressure, compared to the generic spudcan.

The corresponding soil flow mechanisms can be seen in Figures 10 and 11. As the reinstallation location moves away from the center of the footprint (i.e. increasing β), the localized soil backflow is initiated earlier on the left hand side of the spudcan, which significantly reduces the asymmetry of the soil failure mechanism of the spudcan. As a consequence, the horizontal force and moment dramatically reduce with increasing the offset value up to $\beta = 1.50D$. The reduction in H_{max} with increasing β for spudcan A is more pronounced than that for spudcan H. This could be attributed to the skirt and holes on spudcan H that initiate the symmetry of soil failure mechanisms earlier than spudcan A (see Figure 11).

4.3 Effect of footprint depth and soil strength

So far, as discussed in section 4.2, a conical crater of dimensions $2D$ wide ($D_F = 2.0D$) and $0.33D$ depth ($z_F = 0.33D$) and slope angle $\theta_F = 18.5^\circ$ was considered for soft clay deposits ($s_{u,\text{ref}} = 7.5 + 0.92z$ kPa (for $z < 3.4$ m) and $5.0 + 1.68z$ kPa (for $z \geq 3.4$); footprint A in Figure 2). The effect of footprint depth and soil strength were explored considering both a shallow
(\(D_F = 2D\), \(z_F = 0.33D\)) as well as a deeper conical crater (\(D_F = 2D\), \(z_F = 0.66D\) depth; footprint B in Figure 2) with a stiff clay strength more representative of that found in the field the Gulf of Mexico \((s_u,ref = 19 + 1.46z\) kPa; Menzies and Roper, 2008) for spudcan A and spudcan H (Groups III and IV; Table 2). An analysis was also carried out on a uniform clay deposit with \(s_u,ref = 19\) kPa (Group V; Table 2) for comparison. Note, the deeper conical crater was shifted down by a cylindrical cavity of depth 0.33D (hence slope angle \(\theta_F\) is the same of 18.5\(^\circ\)) as shown in Figure 2.

The effects of footprint geometry and soil strength are shown in Figure 12 for both spudcans A and H. With a deeper footprint depth (\(z_F = 0.66D\); Group III; Table 2), the maximum horizontal force increases significantly (185% for spudcan A; 261% for spudcan H). The corresponding moments was also nearly 50% higher compared to that for a shallow footprint crater on the clay deposit with identical strength (\(z_F = 0.33D\); Group IV; Table 2). This is because of the asymmetric soil flow, which is more critical for the deeper footprint depth. As expected, spudcan H shows a mitigation effect regardless of footprint depths. For instance, for the shallow footprint depth (i.e. \(z_F = 0.33D\)) with stiff clay, \(H_{\text{max}}\) of spudcan H is 1.54 MN, which is about 42.3% lower than that of spudcan A (\(H_{\text{max}} = 2.67\) MN). For the deeper footprint depth (i.e. \(z_F = 0.66D\)) this difference is 19% on the soil deposit with \(s_u,ref = 19 + 1.46z\) kPa and 13% on the clay with \(s_u,ref = 19\) kPa.

As shown in Figure 13, in general, the failure mechanisms in the stiff clay are consistent to those in the soft clay (Figure 8 and Group I; Table 2), but the amount of soil flowing through the holes is different. Due to the higher soil strength, the effect of hole is of course more pronounced and it leads to an increase in the reduction of \(H_{\text{max}}\) (reduction \(H_{\text{max}} = 42.3\% \) for the stiff clay in Figure 12a vs 18.8% for the soft clay in Figure 9a).
4.4 Effect of horizontal force on jack-up leg bending moment

The horizontal force induced by spudcan-footprint interactions generates additional bending moment \(M_a \) along a jack-up leg and the largest one occurs at the top level (or just below the hull). If the moment is over the structural capacity, the leg can be damaged. Therefore, the reduction in horizontal force on the spudcan has a significant effect on the structural integrity of the jack-up leg.

All the results in the thus far discussed parametric studies are obtained using the reference point at the center of spudcans (see RP in Figure 2). With this reference point, the bending moment \(M \) on the spudcan is induced only by the resultant vertical force and its eccentricity as the resultant horizontal force \(H \) passes nearly through RP. If the reference point is located at the top of the leg (see RP1 in Figure 4a), an additional moment \(M_a \) will be mobilized by \(H \) and its eccentricity (= the leg length). The horizontal and vertical forces are not affected by this change of RP.

The analyses of Group IV (Table 2) were carried out to examine the effect of this shifting of the reference point. The leg length was set up as \(L_h = 150 \text{ m} \), which is similar to the practical maximum length (submerged in water i.e. = maximum operable water depth) in the field (e.g. GustoMSC CJ-80, KFELS N-Class; Koole and van der Kraan 2015). The top head of the leg was fully fixed and the spudcan was considered as a rigid body. Thus, the additional bending moment \(M_a \) at RP1 due to the horizontal force acting on the spudcan can be calculated as \(M_a = H \times L_h \) (Figure 4a). The total moment about RP1 can therefore be calculated as \(M_{t,max} = M + M_a \). The \(M_t \) profiles are shown in Figure 4b and the values of the maximum moment, \(M_{t,max} \) about RP1 are summarized in Table 2. With the reference point being shifted from RP to RP1, the novel spudcan H shows more benefit in reducing \(M_{t,max} \) about the fixed leg head. For instance, for the shallow footprint with stiff clay (Group IV; Table 2), the reduction in \(M_{t,max} \)...
is as high as 38.3% by replacing the generic spudcan A with the novel spudcan H (see Figure 14b). This means that the use of the novel spudcan can significantly reduce the damage potential at the leg top level induced by spudcan-footprint interactions.

5 CONCLUDING REMARKS

To ease spudcan-footprint interactions during a jack-up installation near exiting footprints, the performances of two novel spudcan shapes, skirted spudcan with four rectangular holes (spudcan S) and skirted spudcan with six circular holes and sloped bottom profile (spudcan H), were investigated against a conventional/generic spudcan (spudcan A). The potential of spudcan sliding towards to the existing footprint center was evaluated by the maximum horizontal force and moment acting on the spudcan during installation. The computed LDFE results presented in this paper have confirmed that the novel spudcan H is more effective at mitigating spudcan-footprint interactions than the novel spudcan S and the generic spudcan A. It is attributed to the holes and various slopes at the base of spudcan H, allowing more soil volume to be trapped underneath the spudcan and forcing the soil to flow through the holes. With the footprint geometries setup in the current study in both soft and stiff clays, spudcan H can reduce the maximum horizontal force by up to 42.3% and the maximum moment up to 38.3% at the top of the jack-up leg, when comparing with the generic spudcan A. It should be noted that the novel spudcan H shows comparable vertical resistance to the generic spudcan A.

In this study, the analyses were performed on previously developed novel spudcan shapes aiming at assessing their performance in easing spudcan-footprint interactions, and the viability of the numerical technique in analysing novel spudcan penetration adjacent to a footprint. Further systematic analyses are being carried out varying skirt length, bottom profile, and number of holes to propose an optimum spudcan shape at mitigating spudcan-footprint interactions. The results will be published in the future.
6 ACKNOWLEDGEMENTS

The third author is an ARC Discovery Early Career Researcher Award (DECRA) Fellow and is supported by the ARC Project DE140100903. The work forms part of the activities of the Centre for Offshore Foundation Systems (COFS), currently supported as a node of the Australian Research Council Centre of Excellence for Geotechnical Science and Engineering and as a Centre of Excellence by the Lloyd’s Register Foundation. This support is gratefully acknowledged, as is the benefit of discussion with Dr. Dong Wang.
REFERENCES

Table 1. Details of spudcans

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol (unit)</th>
<th>Spudcan A (conventional type)</th>
<th>Spudcan H (6 circular holes)</th>
<th>Spudcan S (4 rectangular holes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spudcan diameter</td>
<td>D (m)</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Skirt length</td>
<td>Lₘ (m)</td>
<td>-</td>
<td>1.9</td>
<td>2.0</td>
</tr>
<tr>
<td>Spudcan base angle (underside profile)</td>
<td>αₑ (°)</td>
<td>13.0</td>
<td>-43.0 ~ 21.5 (8 slopes per 1 hole)</td>
<td>13.0</td>
</tr>
<tr>
<td>Number of holes</td>
<td></td>
<td>-</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Hole size</td>
<td>m</td>
<td>-</td>
<td>dh = 2.1</td>
<td>2 x 4.95</td>
</tr>
<tr>
<td>Total spudcan plan area (at largest section)</td>
<td>A_total (m²)</td>
<td>176.7</td>
<td>176.7</td>
<td>176.7</td>
</tr>
<tr>
<td>Total hole area</td>
<td>A_hole (m²)</td>
<td>-</td>
<td>20.8</td>
<td>40.2</td>
</tr>
<tr>
<td>Net spudcan plan area (A_total – A_hole)</td>
<td>A_net (m²)</td>
<td>176.7</td>
<td>155.9</td>
<td>136.5</td>
</tr>
<tr>
<td>A_net / A_total</td>
<td>(%)</td>
<td>100</td>
<td>88.2</td>
<td>77.2</td>
</tr>
</tbody>
</table>
Table 2. Summary of 3D LDFF analyses performed

<table>
<thead>
<tr>
<th>Group</th>
<th>Spudcan shape (see Figure 6)</th>
<th>$s_{u,ref}$ (kPa)</th>
<th>Footprint depth, z_F (m)</th>
<th>Offset distance, β (m)</th>
<th>Spudcan responses</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>H_{max} (MN)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M_{max} (MN-m)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$M_{t,max}^\wedge$ (MN-m)</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Spudcan A</td>
<td>Soft clay*</td>
<td>0.33D (footprint A; see Figure 2)</td>
<td>0.55D</td>
<td>1.44</td>
<td>21.3</td>
</tr>
<tr>
<td></td>
<td>Spudcan H</td>
<td></td>
<td></td>
<td></td>
<td>1.17 (18.8%)</td>
<td>22.0</td>
</tr>
<tr>
<td></td>
<td>Spudcan S</td>
<td></td>
<td></td>
<td></td>
<td>1.32 (8.3%)</td>
<td>21.8</td>
</tr>
<tr>
<td>II</td>
<td>Spudcan A</td>
<td>Soft clay</td>
<td>0.33D (footprint A)</td>
<td>1.0D</td>
<td>1.06</td>
<td>11.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spudcan H</td>
<td></td>
<td></td>
<td>1.5D</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Spudcan A</td>
<td>Stiff clay#</td>
<td>0.66D (footprint B; see Figure 2)</td>
<td>0.55D</td>
<td>4.96</td>
<td>68.01</td>
</tr>
<tr>
<td></td>
<td>Spudcan H</td>
<td></td>
<td></td>
<td></td>
<td>4.02 (19.0%)</td>
<td>59.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(12.7%)</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Spudcan A</td>
<td>Stiff clay</td>
<td>0.33D (footprint A)</td>
<td>0.55D</td>
<td>2.67</td>
<td>43.3</td>
</tr>
<tr>
<td></td>
<td>Spudcan H</td>
<td></td>
<td></td>
<td></td>
<td>1.54 (42.3%)</td>
<td>45.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4.2%)</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Spudcan A</td>
<td>Stiff clay</td>
<td>0.33D (footprint A)</td>
<td>0.55D</td>
<td>3.22</td>
<td>39.24</td>
</tr>
<tr>
<td></td>
<td>Spudcan H</td>
<td></td>
<td></td>
<td></td>
<td>2.79 (13.3%)</td>
<td>36.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(6.6%)</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Spudcan A</td>
<td>Homogeneous</td>
<td>0.66D</td>
<td>0.55D</td>
<td>3.22</td>
<td>39.24</td>
</tr>
<tr>
<td></td>
<td>Spudcan H</td>
<td>stiff clay$^\wedge$</td>
<td></td>
<td></td>
<td>2.79 (13.3%)</td>
<td>36.67</td>
</tr>
</tbody>
</table>

* Soft clay: $s_{u,ref} = 7.5 + 0.92z$ kPa (for $z < 3.4$ m) and $5.0 + 1.68z$ kPa (for $z \geq 3.4$) (Kong et al. 2013)

Stiff clay: $s_{u,ref} = 19.0 + 1.46z$ kPa (Menzies & Roper 2008)

$^\wedge$ Jack-up leg height = 150 m

+ Reduction percentage compared to spudcan A
No of Figure: 14

Figure 1. Jack-up installation near a footprint: (a) Bathymetry plot showing footprints (after Pollock et al. 2015); (b) Section view (A-A’)

Figure 2. Schematic diagram of spudcan-footprint interaction

Figure 3. Typical mesh used in 3D LDFE analysis: (a) Typical 3D mesh; (b) Detail plan view; (c) Side view

Figure 4. Effect of FE mesh density on spudcan penetration response near an existing footprint: (a) Horizontal force; (b) Vertical force; (c) Moment distribution

Figure 5. Validation of current LDFE results: (a) Horizontal force; (b) Vertical force; (c) Moment distribution

Figure 6. Generic and novel spudcan shapes: (a) Spudcan A (generic); (b) Spudcan S (4 rectangular holes); (c) Spudcan H (6 circular holes with base slopes)

Figure 7. Effect of spudcan shape (Group I; Table 2): (a) Horizontal force; (b) Vertical force; (c) Moment distribution

Figure 8. Effect of spudcan shapes: soil failure mechanisms (Group I; Table 2): (a) d/D = 0.1; (b) d/D = 0.12; (c) d/D = 0.2; (d) d/D = 0.3; (e) d/D = 0.38

Figure 9. Effect of spudcan offset distance (Groups I and II; Table 2): (a) Horizontal force; (b) Vertical force; (c) Moment distribution

Figure 10. Effect of offset distance: failure mechanisms of spudcan A (Groups I and II; Table 2): (a) d/D = 0.1; (b) d/D = 0.2; (c) d/D = 0.3; (d) d/D = 0.38

Figure 11. Effect of offset distance: failure mechanisms of spudcan H (Groups I and II; Table 2): (a) d/D = 0.1; (b) d/D = 0.2; (c) d/D = 0.3; (d) d/D = 0.38
Figure 12. Effect of footprint depth and soil strength (Groups III, IV and V; Table 2): (a) Horizontal force; (b) Vertical force; (c) Moment distribution

Figure 13. Effect of footprint geometry and soil strength: failure mechanisms (Groups III and IV; Table 2): (a) $d/D = 0.1$ & $d/D = 0.2$; (b) $d/D = 0.2$ & $d/D = 0.4$; (c) $d/D = 0.3$ & $d/D = 0.6$; (d) $d/D = 0.38$ & $d/D = 0.78$

Figure 14. Effect of horizontal force on total moment (Group IV; Table 2): (a) Shift load reference point; (b) Moment distribution
Figure 1. Jack-up installation near a footprint
Figure 2. Schematic diagram of spudcan-footprint interaction
Numerical Investigation of Novel Spudcan Shapes for Easing Spudcan-Footprint Interactions

Jun et al.

Figure 3. Typical mesh used in 3D LDFE analysis
Figure 4. Effect of FE mesh density on spudcan penetration response near an existing footprint
Figure 5. Validation of current LDFF results
Numerical Investigation of Novel Spudcan Shapes for Easing Spudcan-Footprint Interactions

Jun et al.

Figure 6. Generic and novel spudcan shapes
Figure 7. Effect of spudcan shape (Group I; Table 2)
Figure 8. Effect of spudcan shapes: soil failure mechanisms (Group I; Table 2)
Figure 9. Effect of spudcan offset distance (Groups I and II; Table 2)
Figure 10. Effect of offset distance: failure mechanisms of spudcan A (Groups I and II; Table 2)
Figure 11. Effect of offset distance: failure mechanisms of spudcan H (Groups I and II; Table 2)
Figure 12. Effect of footprint depth and soil strength (Groups III, IV and V; Table 2)
Figure 13. Effect of footprint geometry and soil strength: failure mechanisms (stiff clay; Groups III and IV; Table 2)
Figure 14. Effect of horizontal force on total moment (Group IV; Table 2)