
This is the final published version of the article accepted for publication in the Journal of Clinical Endocrinology and Metabolism following peer review. The definitive published version (see citation above) is located on the article abstract page of the publisher, the Endocrine Society.

This version was made available in the UWA Research Repository on the 1st of December 2014, in compliance with the publisher’s policies on archiving in institutional repositories.

Use of the article is subject to copyright law. For personal use only. No other uses without permission. All rights reserved.
Overexpression of Aromatase Associated With Loss of Heterozygosity of the STK11 Gene Accounts for Prepubertal Gynecomastia in Boys with Peutz-Jeghers Syndrome

Metabolism and Cancer Laboratory (S.H., S.J.M., N.U.S., E.R.S., K.A.B.), Prince Henry’s Institute, Departments of Obstetrics and Gynecology (S.H.), Anatomy and Developmental Biology (S.J.M.), Physiology (N.U.S., K.A.B.), Biochemistry and Molecular Biology (E.R.S.), Monash University, Clayton, Victoria 3168, Australia; Departments of Paediatric Endocrinology (C.S.C., T.W.J.) and Paediatric Pathology (A.K.C.), Princess Margaret Hospital for Children (A.K.C., C.S.C., G.S.B, T.W.J.), School of Paediatrics and Child Health (A.K.C., C.S.C., G.S.B., T.W.J.), University of Western Australia, Perth, Western Australia 6008, Australia; Institute for Immunology and Infectious Diseases (G.S.B.), Murdoch University, Perth, Western Australia 6150, Australia; and Genetic Services of Western Australia (G.S.B.), King Edward Memorial Hospital, Perth, Western Australia 6008, Australia

Context: Peutz-Jeghers syndrome (PJS) is an autosomal-dominant disorder that arises as a consequence of mutations in the STK11 gene that encodes LKB1. PJS males often have estrogen excess manifesting as gynecomastia and advanced bone age. We and others have previously described an increase in testicular aromatase expression in PJS patients. However, the underlying mechanism has not yet been explored.

Objective: The aim of this study was to characterize the role of LKB1 in regulating the expression of aromatase in boys with PJS via signaling pathways involving AMP-activated protein kinase (AMPK) and cyclic AMP-responsive element binding protein-regulated transcription coactivators (CRTC).

Patients: We studied testicular biopsies from two boys with STK11 mutations: a 13-year-old boy and an unrelated 4-year-old boy with prepubertal gynecomastia and advanced bone age, as well as breast tissue from the 13-year-old boy.

Results: Loss of heterozygosity of STK11, measured by the absence of LKB1 immunofluorescence, was observed in Sertoli cells of abnormal cords of testis samples from affected individuals. This was associated with loss of p21 expression and decreased phosphorylation of AMPK, known downstream targets of LKB1, as well as the increased expression of aromatase. Similar results of low LKB1 expression in cells expressing aromatase were observed in the mammary epithelium from one of these individuals. Nuclear expression of the CRTC proteins, potent stimulators of aromatase and known to be inhibited by AMPK, was significantly correlated with aromatase.

Conclusions: Loss of heterozygosity of the STK11 gene leads to an increase in aromatase expression associated with an increase in CRTC nuclear localization, thereby providing a mechanism whereby PJS results in increased endogenous estrogens in affected males. (J Clin Endocrinol Metab 98: E1979–E1987, 2013)

Abbreviations: AMPK, AMP-activated protein kinase; CRTC, cyclic AMP-responsive element binding protein-regulated transcription coactivator; GI, gastrointestinal; LKB1, liver kinase B1 protein; LOH, loss of heterozygosity; PI1, promoter II; PJS, Peutz-Jeghers syndrome; SDS, SD score; STK11, serine threonine kinase 11 gene.
Peutz-Jeghers syndrome (PJS) is an autosomal-dominant condition characterized by gastrointestinal (GI) hamartomatous polyps and mucocutaneous pigmentation (1). Prepubertal boys may have estrogen excess manifesting as gynecomastia and an advanced bone age that is typically associated with Sertoli cell lesions of the testes of affected individuals (2–4). Gynecomastia in prepubertal boys is rare and most often arises as a consequence of endocrine abnormalities involving the increased endogenous production of estrogens within the testis or at extragonadal sites (5). Aromatase is the key enzyme responsible for the conversion of androgens to estrogens and breast growth in boys is a direct result of the dysregulation of the balance between androgens and estrogens (6).

Most PJS cases occur as a consequence of mutations in the serine threonine kinase 11 (STK11) gene (1, 7). These range from point mutations, located in the kinase domain and C-terminal domain, to more substantial alterations including complete truncations of the catalytic domain. STK11 encodes the Liver kinase B1 (LKB1) protein. LKB1 is a tumor suppressor through its interaction with p53 to increase the expression of cell cycle arrest proteins including p21 and is a key regulator of energy homeostasis by directly phosphorylating and activating AMP-activated protein kinase (AMPK) (7). We have established a link between LKB1 and aromatase in the female breast involving cyclic AMP-responsive element binding protein-regulated transcription coactivator 2 (CRTC2) (8). By directly phosphorylating AMPK, LKB1 inhibits the nuclear translocation of CRTC2 within breast adipose tissue and decreases the cAMP-dependent activation of aromatase promoter II (PII). In breast cancer, tumor-derived inflammatory factors, which include prostaglandin E2, decrease the expression and activity of LKB1, causing the increased nuclear localization of CRTC2 and increased expression of aromatase. Three CRTC2 exist, but the role of CRTC1, CRTC2, and CRTC3 in the regulation of aromatase expression in the testis has not yet been established. We postulated that similar events account for prepubertal gynecomastia observed in PJS.

The aim of this study was to characterize the role of LKB1 in regulating the expression of aromatase in the testis of two boys with PJS via signaling involving pAMPK and CRTC1, CRTC2, and CRTC3, as well as examine this relationship in breast tissue.

Case Reports

Patient 1
Patient 1 presented initially at 1 year of age with bleeding per rectum associated with GI hamartomatous polyps. During polyectomy he was noted to have hyperpigmented macules of the lips and oral mucosa, supporting a provisional diagnosis of PJS. There was no family history suggesting PJS. The patient was lost to follow-up for some years but represented with per rectal bleeding at 9 years of age. He was referred for endocrine assessment at 12 years 5 months of age for investigation of prepubertal gynecomastia characterized by firm nontender breast tissue corresponding to Tanner stage 3, which had developed over the previous 2.5 years. Breast tissue was palpable beneath prominent areola bilaterally and testes measured 4 mL bilaterally. At the chronological age of 12 years 5 months, bone age was advanced corresponding closest to the male standard for 14 years in Greulich and Pyle (SD ~10.5 mo). Serum estradiol levels were elevated at 30 pmol/L (9). A testicular ultrasound identified microlithiasis with no evidence of testicular tumors, consistent with previous PJS reports (3). The patient was offered treatment with an aromatase inhibitor but declined this medical therapy. Mastectomy and a biopsy of the testis were performed at 13 years 3 months of age. A heterozygous mutation in STK11 (910delC) was identified on analysis of genomic DNA at 12.5 years of age, confirming the clinical diagnosis of PJS. Height at 13 years 5 months of age was 171 cm (height SD score [SDS]) +1.3). Final adult height at 18.1 year of age was 183 cm (SDS +1.0).

Patient 2
Patient 2 was referred for assessment of prepubertal gynecomastia at 4 years of age. The available interval of follow-up is approximately 6 years from first presentation. There was a family history of PJS associated with a known STK11 mutation, c.180C>A p.Tyr60X (11), affecting his mother. The same mutation was identified in genomic DNA from patient 2 as part of endocrine investigations confirming PJS at 4 years of age. Height at a chronological age of 4 years 1 month was 112.5 cm (SD +2.3). The associated bone age corresponded nearest to the male standard for 5 years in Greulich and Pyle (SD ~6.6 mo). Growth velocity prior to initial presentation is not known. Letrozole (a third-generation oral aromatase inhibitor) was commenced at 4 years of age to treat gynecomastia and reduce the rate of skeletal maturation. Aromatase inhibition therapy continued without interruption until 10 years of age; the dose throughout this interval was 2.5 mg per day. Growth velocity averaged 4.45 cm per year during the 6-year period of letrozole therapy. At 10 years 2 months of age, his height was 139.2 cm (SD +0.1). At 10 years chronological age, bone age corresponded closest to the male standard for 10 years in Greulich and Pyle. Serum estradiol levels were assayed at 4 years of age prior to initiation of letrozole treatment and again at 9 years of age while on letrozole therapy. On both
occasions serum estradiol levels were below the limits of detection. Estrone levels were not determined on either occasion. On ultrasound examination at 4 years 6 months of age, testes were enlarged, 3.5 mL on the right and 2.8 mL on the left. Microlithiasis was identified. Bilateral mastectomy and biopsy of the testis were performed at 5 years 1 month of age. Annual testicular ultrasound findings did not change significantly over the follow-up period of 6 years.

Informed consent for publication of these case studies was obtained according to the institutional guidelines of Princess Margaret Hospital for Children’s Human Research Ethics Committee and the Southern Health Human Research Ethics Committee.

Materials and Methods

Genetic and biochemical studies

In the setting of a mutation search of STK11, denaturing HPLC analysis was performed to screen for STK11 mutations. Genomic sequencing was performed to confirm any mutation. Testing for a known familial mutation was performed by restriction enzyme digest. Serum estradiol was assayed by Siemens Coat-A-Count Estradiol (Siemens Health Care Diagnostics Inc). This is a sensitive estradiol assay that uses a double antibody estradiol sequential RIA. The lower limit of detection is 20 pmol/L. For patient 2, an additional measurement was performed at age 9 years using liquid chromatography–tandem mass spectrometry (Mayo Clinic Laboratories) where the lower limit of detection is 10 pg/mL (or 36.7 pmol/L).

Detection of LKB1 expression and activity

The LKB1 antibody (catalog no. 3050, Cell Signaling) used in Western blotting and immunofluorescence binds to a region between amino acids 340 and 450 of human LKB1, indicating that it will not detect the proteins associated with the germline mutations identified for both patients. To determine the effect of mutation on protein expression and stability, mutations were introduced into a construct containing the open reading frame with in-frame flag tag at the 5′ end using site-directed mutagenesis. Proteins were overexpressed in COS-7 cells and detected by Western blotting using antiflag (catalog no. 2368, Cell Signaling) or anti-LKB1 antibodies. Proteins were visualized with the Odyssey infrared imaging system (Loric Biosciences) after conjugation with a secondary antibody (Alexa Fluor 680 goat antirabbit antibody, Invitrogen). Protein stability was also assessed by Western blotting of protein extracts from cells treated for 0, 4, and 8 hours with 200 μM cycloheximide to inhibit protein translation. Aromatase promoter PII reporter assays were performed as previously described (8) to determine the effect of CRTC1, CRTC2, and CRTC3 on aromatase expression. Briefly, COS-7 cells were seeded at 2 × 10⁵ per well in six-well plates and incubated overnight prior to transfection. Cells were cotransfected with a PII-reporter construct, and expression vectors for CRTCs and LKB1 using Fugene6 (Roche Applied Science) followed by serum starvation for 24 hours with serum-free media containing 0.1% BSA. After starvation, luciferase reporter assays were performed using the Dual-Glo luciferase assay system (Promega) as described by the manufacturer. The effect of LKB1 on the CRTC-mediated activation of PII was also assessed.

Figure 1. Testis cord structure and aromatase immunofluorescence of healthy prepubertal and PJS testis samples. (A, C, E) Hematoxylin and eosin staining was performed to assess histopathology and identify abnormal cords in PJS patient samples (C and E, black arrows). (B, D, and F) Aromatase immunofluorescence (green) was strongest in abnormal cords from PJS patient samples (D and F, white arrows). Somatic cell marker, GATA4 (pink); nuclear stain, TOPRO3 (blue). Scale bar 20 μm.
Histology

Testicular biopsies were obtained from patient 1 and patient 2 when they were aged 13 and 4, respectively, and compared to normal archival testicular tissue from a 4-year-old boy. Breast tissue from patient 1 was obtained at 13 years of age and compared to breast tissue derived from an adult man and healthy and tumor-bearing woman. Formalin-fixed paraffin-embedded tissue, sectioned (5 μm), was stained using hematoxylin and eosin or immunofluorescence was performed using a protocol adapted from Tarulli et al (12). Immunohistochemistry for aromatase on breast tissue was performed using the Vectorstain ABC-HP kit and 3,3’-diaminobenzidine tetrahydrochloride (Sigma-Aldrich) as a substrate, adapted from Samarajeewa et al (13). Antibodies used were as follows: LKB1 (catalog no. 3050), CRTC1 (catalog no. 2501), CRTC2 (catalog no. 3826), CRTC3 (catalog no. 2768), pAMPK (catalog no. 2535s), and p21 (catalog no. 2947s), and were purchased from Cell Signaling. Somatic cell nuclear marker GATA4 antibody (catalog no. 14-9980) was purchased from eBioscience. Aromatase mouse monoclonal primary antibody 677 was obtained from Prof. Dean P. Edwards (Baylor College of Medicine). Secondary antibodies and TOPRO3 nuclear stain (catalog no. T3605) were purchased from Invitrogen.

Statistical analyses

Reporter assays and Western blotting were performed at least three times and results are displayed as mean ± SEM. Analysis was performed by a two-tailed Student t test using GraphPad Prism version 5. Statistical significance was identified with P < .05. For Figure 2F, statistically significant differences were identified using different letters.

Results

Abnormal testis cords and heterogeneous aromatase staining

Both patients displayed similar morphology on histopathological assessment of testicular biopsies. Notably, abnormal cords with thickening of the basement membrane and the peritubular stroma, and enlarged cells containing ovoid nuclei, wispy cytoplasm, and prominent central nucleoli were observed (Figure 1, C and E). Involutions of stroma into the tubular epithelium were also recognized in some areas. The surrounding cords showed evidence of increased Sertoli cells with occasional germ cells. These histopathological findings are consistent with the Sertoli cell proliferations found in previously published cases of PJS (3). VASA staining confirmed the presence of germ cells within the normal cords (data not shown). No evidence of malignancy was discovered. Abnormal cords contained cells positive for GATA4, a somatic cell marker.
that is specific for Sertoli cells within cords, which also displayed intense staining for aromatase (Figure 1, D and F) compared to healthy prepubertal testicular tissue (Figure 1B) and normal cords within PJS patient samples. On closer examination, aromatase immunoreactivity was found to be heterogeneous within abnormal cords.

Effect of mutations on LKB1 protein stability and expression within cords

A heterozygous mutation in the STK11 gene was identified for each patient. For patient 1, a frameshift mutation p.Arg304Glyfs*32 was identified. As a result, the LKB1 protein has complete loss of function of the C-terminal domain and is truncated (Figure 2A). The truncation of this protein with predicted molecular weight of 38 kDa was confirmed when the protein was overexpressed and visualized by Western blot using an antiflag antibody (Supplemental Figure 1A, published on The Endocrine Society’s Journals Online web site at http://jcem.endojournals.org/). Stability assays demonstrate that this mutation significantly impairs protein stability when compared to the full-length protein (Figure 2C). For patient 2, a nonsense mutation was identified at c.180C>T, p.Tyr60X. This mutation leads to complete loss of the kinase and C-terminal domains (Figure 2A) and the protein, with predicted molecular weight of 8 kDa, is undetectable in cells transfected with a flag-tagged construct (Supplemental Figure 1A). Full-length LKB1 protein expression, as demonstrated by the presence of LKB1 immunofluorescence, was present in cells within normal cords from sections from patient 1 (Figure 2B). Abnormal cords displayed heterogeneous expression of LKB1 with some cells displaying intense LKB1 staining (Figure 2B, white arrow) and others with apparent loss of heterozygosity (LOH), where LKB1 staining was absent (Figure 2B, black arrow). Cells within abnormal cords which displayed LKB1 staining had low to undetectable expression of aromatase. This was evident from the lack of yellow staining. STK11 LOH was also examined in patient sections by staining for LKB1 downstream targets, pAMPK and p21 (Figure 2, D and E, respectively). Staining for pAMPK revealed strong punctate expression localized to a single region within the cell cytoplasm, whereas p21 staining was predominantly nuclear. In cells where pAMPK and p21 were present (Figure 2, D and E, respectively, white arrows), aromatase staining was low to undetectable. Conversely, cells that displayed intense aromatase staining had low to undetectable staining for LKB1, p21, and pAMPK (Figure 2, B, D, E, respectively, black arrows). Results for patient 2 were similar (Supplemental Figure 1, B–D).
LKB1 inhibits the CRTC-mediated activity of aromatase PII and increased aromatase expression is associated with an increase in CRTC nuclear staining

Results from reporter assays demonstrated that CRTC1, CRTC2, and CRTC3 significantly increase the activity of aromatase promoter PII in vitro (Figure 2F; blue bars) with CRTC3 causing the most dramatic effect. Full-length LKB1 significantly inhibited the CRTC-mediated activation of PII (Figure 2F; red bars). Staining for CRTC1 and CRTC3 was detectable by immunofluorescence in patient 1 testes sections within normal and abnormal cords (Figure 3, A and E, respectively). CRTC2 staining was undetectable (Figure 3C). CRTC1 and CRTC3 subcellular localization was associated with intensity of aromatase staining (Figure 3, A and E), where cells with high nuclear CRTC immunoreactivity had high aromatase staining (filled arrows) and cells with weak nuclear CRTC immunoreactivity had low aromatase staining (open arrows). Quantification of fluorescence intensity revealed a significant positive correlation between average intensity of aromatase and nuclear CRTC1 and CRTC3 (Supplemental Figure 3). A positive correlation between nuclear CRTC3 and aromatase was also found for patient 2 (Supplemental Figure 3).

Aromatase is increased in epithelial cells with LKB1 LOH from PJS breast tissue

Immunohistochemistry demonstrated that aromatase is expressed in PJS breast tissue from patient 1 (Figure 4A). Aromatase immunoreactivity was higher than that of tissue obtained from non-PJS gynecomastia and healthy female breast (Figure 4, C and D, respectively) and was comparable to levels seen in female postmenopausal breast cancer (Figure 4B). Multichannel confocal images also demonstrated that similar to testicular tissue, aromatase immunoreactivity was undetectable in cells where LKB1 was high, and elevated in cells were apparent LKB1 LOH had occurred (Figure 4E). All three CRTCs were detectable in PJS breast tissue (Figure 4, F–H) and nuclear CRTC fluorescence intensity was significantly positively correlated with aromatase average intensity (Supplemental Figure 3).

Discussion

This report describes a mechanism that explains the clinical findings of prepubertal gynecomastia in two unrelated male patients. Namely, increased expression of aromatase resulting from nuclear localization of CRTC proteins due to LOH of the STK11 gene and decreased phosphorylation of AMPK.

The age of onset and severity of bilateral breast enlargement were different in each patient. Although they both developed hamartomatous polyps at an early age, prepubertal gynecomastia was evident in patient 2 at 4 years of age and developed from approximately 8 years of age in patient 1. The mutation identified for patient 2 (c.180C>A) causes the complete loss of the kinase and C-terminal regulatory domains, and the protein is undetectable when overexpressed, suggesting that it is rapidly
degraded. This boy had a much earlier onset of breast enlargement compared with patient 1, who has a mutation that causes loss of the C-terminal domain with significantly impaired protein stability, raising the possibility of a correlation between the genotype and phenotype. Function of the C-terminal regulatory domain of LKB1 is not yet fully understood. Truncation of this domain does not appear to affect the ability of LKB1 to phosphorylate AMPK in vitro or cause cell cycle arrest (14). Nonetheless, several mutations that lead to early stop codons or frame-shifts within the C-terminal regulatory domain have been identified in patients with PJS or sporadic cancers (7), suggesting that the impaired stability of the patient 1 protein may account, at least in part, for the observed PJS phenotype. A study by Nony et al (15) suggests that proteosomal, rather than lysosomal, degradation accounts for LKB1 protein degradation. On the other hand, the impact of C-terminal mutations on LKB1 mRNA stability has also been proposed. It has been suggested that truncated forms of LKB1 may be expressed at very low levels in vivo due to nonsense-mediated decay, a mechanism that causes the degradation of mRNA containing premature stop codons (16, 17). LKB1 and aromatase expression were heterogeneous in abnormal testis cords from both PJS patients. Cells expressing full-length LKB1 and its downstream targets pAMPK and p21 did not express aromatase. Reciprocally, Sertoli cells displaying intense aromatase staining had low to undetectable levels of LKB1, pAMPK, and p21. This suggests that impaired LKB1 protein expression is necessary for the abnormal induction of aromatase within the testis. Bardeesy et al (18) have suggested that LOH of STK11 is necessary for the development of PJS-like features in LKB1 +/- mice. These animals, which develop GI polyps, similar to that in PJS, had either lost the wild-type LKB1 allele or had completely lost LKB1 expression in cells isolated from the polyps. This was also demonstrated to be the case for LKB1 +/- mice which develop hepatocellular carcinomas, where LKB1 mRNA and protein expression were absent (19). Loss of the homologous normal allele of LKB1/STK11 has also been described in humans, including one report demonstrating LOH in aggressive breast cancer (20). Based on our immunofluorescence data, we speculate that decreased expression of LKB1 is due to STK11 LOH within human testicular Sertoli cells of PJS patients, and that this leads to an increase in aromatase expression and the development of abnormal cords.

Although serum estradiol levels were not elevated in patient 2 (both prior to and during letrozole treatment) and only mildly elevated in patient 1, both displayed signs of estrogen excess with advanced bone age and bilateral prepubertal breast enlargement. Neither were obese individuals. Increased gonadal expression of aromatase has been demonstrated in PJS patients and testicular expression of aromatase has been suggested to be the cause of gynecomastia in prepubertal boys with PJS (21–23). Lefevre et al (24) noted normal plasma estrogen levels in one of their patients with prepubertal gynecomastia, and varying levels of plasma estradiol in their review of the literature identifying 22 patients with PJS and testicular tumors.

Although estrone levels were not assessed in either of our patients, it is possible that increased testicular aromatase activity may have resulted in elevated levels of other estrogens (eg, estrone) as has been observed in kindred with gain of function aromatase mutations (25, 26). Neither of our patients had a bone biopsy, and it is conceivable that the bone age advancement observed in these two patients may have resulted in part from a local autocrine action of increased aromatase activity (27, 28). Normalization of bone age and growth in patient 2 who was treated with an aromatase inhibitor despite low serum
estradiol levels raises the possibility of local inhibition of aromatase activity in bone to account for these clinical observations (29, 30).

We have shown that LKB1 is a negative regulator of aromatase in the female breast (8). It is conceivable that altered expression of LKB1 in breast tissue also contributes to breast enlargement observed in these two patients and findings presented in the present article support that hypothesis. In particular, our results suggest that LKB1 LOH also occurs in the mammary epithelium and this is associated with the increased nuclear expression of CRTC proteins and aromatase. A mechanism whereby this occurs involves LKB1 activating AMPK by directly phosphorylating the α subunit at Thr172. As a result, AMPK phosphorylates CRTC, coactivators of CREB and potent stimulators of aromatase expression, and causes their cytoplasmic sequestration via interactions with 14-3-3 proteins. Our previous research in the breast has demonstrated that decreased expression of LKB1 is sufficient for CRTC2 to enter the nucleus where it can activate the promoter PII-dependent transcription of aromatase (8). Interestingly, it is also aromatase promoter PII that is used to drive gonadal expression of aromatase, and we and others have demonstrated that PII-specific transcripts are increased in the PJS testis (31, 32).

The luciferase assay demonstrates that all three CRTCs induce PII in vitro and that LKB1 significantly suppresses the CRTC-dependent activation of aromatase PII. CRTC2 staining was absent from testicular tissue biopsied from both patients and control prepubertal testis tissue (data not shown) consistent with data from Conkright et al (33) demonstrating that CRTC2 mRNA expression in the testis is low when compared to CRTC1 and CRTC3. We did not observe a relationship between cytoplasmic CRTC1 staining and aromatase in patient 2. In vitro reporter assays demonstrated that CRTC1 caused the lowest fold induction to promoter PII compared to other CRTCs. CRTC3, on the other hand, potently stimulated PII activity in vitro and, consistent with these findings, there was increased cytoplasmic staining for CRTC3 colocalized with intense aromatase staining within abnormal cords of both patients. Conversely, cells that had low to undetectable levels of aromatase had low nuclear staining for CRTC3. In the breast, all three CRTCs were detectable and their nuclear localization was positively correlated with aromatase immunoreactivity. Our previous work in the breast also demonstrated that CRTC overexpression was associated with an increase in aromatase transcript expression, whereas knockdown of CRTCs is sufficient to decrease aromatase activity in breast stromal cells (10).

Taken together, our results suggest that the normal allele of STK11 in PJS patients encodes a protein capable of causing CRTC cytoplasmic sequestration and as a result inhibits aromatase expression (Figure 5). Loss of LKB1 expression is then associated with an increase in CRTC nuclear localization and aromatase expression and hence estrogen biosynthesis in the testis and breast. This is the first report to describe a mechanism whereby loss of LKB1 is associated with development of breast tissue in the prepubertal boy.

Acknowledgments

Address all correspondence and requests for reprints to: Dr. Kristy A. Brown, Prince Henry’s Institute, P.O. Box 5152, Clayton, Victoria 3168, Australia. E-mail: kristy.brown@princehenrys.org.

This research was supported by NHMRC (Australia) Program Grant GNT494802 and Project Grant GNT1005735 and by the Victorian Government Operational Infrastructure Support Program. K.A.B. is supported by NHMRC (Australia) Career Development Award GNT1007714. E.R.S. is supported by an NHMRC Senior Principal Research Fellowship GNT0559090. C.S.C. is a recipient of a School of Pediatrics and Child Health, University of Western Australia Telethon Foundation Investigator Grant.

Disclosure Summary: The authors have nothing to disclose.

References

10. Samarajewa NU, Docanto MM, Simpson ER, Brown KA. CREB-regulated transcription co-activator family stimulates promoter II

Renew your Society membership by Dec. 31 to maintain access to your Society member benefits.

www.endocrine.org/renew