Shear-related gold mineralization in Northwest Ghana: The Julie deposit

Stefano Salvi1, Prince Ofori Amponsah1,2, Luc Siebenaller1, Didier Béziat1, Lenka Baratoux1,3, Mark Jessell4

1 Université de Toulouse, CNRS, Géosciences Environnement Toulouse, Institut de Recherche pour le Développement, Observatoire Midi-Pyrénées, 14 Av. Edouard Belin, F-31400 Toulouse, France

2 Azumah Resources Ghana limited, PMB CT452, Cantonments, Accra, Ghana

3 IFAN Cheikh Anta Diop, Dakar, Senegal

4 Centre for Exploration Targeting, School of Earth and Environment, The University of Western Australia, 35 Stirling Highway, Crawley WA 6009, Australia

* Corresponding author: stefano.salvi@get.obs-mip.fr

Abstract

The Julie deposit is currently the largest gold prospect in NW Ghana. It is hosted in sheared granitoids of TTG composition of the Paleoproterozoic Julie greenstone belt. The main mineralization consists of a corridor of gold-bearing quartz veins forming a network of a few tens of meters in thickness, trending E-W and dipping 30-60° N, contained within the main shear zone that affects these rocks. The core of this vein corridor is altered by sericite, quartz, ankerite, calcite, tourmaline and pyrite, and is surrounded by an outer halo consisting of albite, sericite, calcite, chlorite, pyrite and rutile. A second set of veins, conjugate to the first set, occurs in the area. These veins have alteration halos with a similar mineralogy as the main corridor, however, their extent, as well as the size of the mineralization, is less important. In the main corridor, gold forms micron-sized grains that occur in pyrite as inclusions, on its edges, and in fractures crosscutting it. Silver, tellurium, bismuth, copper and lead commonly accompany the gold. Pyrite occurs disseminated in the
veins and in the surrounding rocks. Up to several ppm Au occur in the structure of pyrite from the main mineralization.

1 Introduction and exploration history

In the Birimian terranes of southern Ghana, commercial gold exploration and exploitation have been active since the early 1900s, notably with the development of world-class deposits in the Ashanti and Sefwi belts, which have received extensive attention in the literature (e.g. Junner, 1932; Milési et al., 1989; Klemd et al., 1996; Allibone et al., 2002; Feybesse et al., 2006; Perroux et al., 2012, 2015; White et al., 2015; Fougerousse et al., in press). Conversely, very little is known of the Birimian mineralization of NW Ghana (Fig. 1), where alluvial and bedrock indications of gold have only been reported since the early 1960s. Nevertheless, it is now recognized that this part of the country hosts an important gold-producing area, known as the Wa-East gold district. Numerous gold camps occur in this district, the most important of which is the Julie deposit. Other examples include Collette, Kjersti, Julie West (Fig. 2), plus Kandia, Baayiri and Danyawu, which lie just outside the area covered by the map in Figure 2.

The first discoveries of mineralization in this part of Ghana are attributed to the Gold Coast Geological Survey (Griffis et al., 2002). Survey geologists mapped the area and outlined prospects in the Wa-Lawra greenstone belt during the early 1960s, in the adjacent Koudougou-Tumu granitoid domain and in the Julie greenstone belt. A Russian geological team carried out additional prospecting and geological mapping, also in the 1960s. However, it was not until the 1990s that systematic exploration activities started. Kenor Corporation held the first prospecting
licence for the Julie deposit, from September 1996 to May 1999, which was then
taken over by Crew Gold Corporation who detained it until February 2010. These
companies focussed their work mainly on target generational prospecting, which
included interpreting Landsat satellite and airborne geophysical data, geological
mapping, and geochemical sampling (mainly soil, grab and auger sampling
methods). Surface targets generated by these first-pass geological and geochemical
surveying methods were tested further to top of bedrock by rotary air-blast (RAB)
and air-core (AC) drilling. From December 2004 to May 2005 a total of about 4,815
m of reverse circulation (RC) core were drilled, to assess bedrock mineralization.
Crew Gold Corporation identified 312,000 oz (8.8 t) of gold (grading at 2.9 g/t) and
estimated mineralization to extend to depths of over 30 m along a 3.5 km strike
length (Azumah Resources Limited, 2012). Further exploration was carried out by
Azumah Resources Limited in 2006 and beyond, who discovered 834,000 oz (23.6 t)
of measured and indicated gold (at 1.53 g/t), with a proven reserve of 202,000 oz
(5.7 t) (at 2.84 g/t) in the Julie deposit (Table 1). Azumah acquired the prospecting
licence in February 2012. Currently, they have drilled some 43,700 m, to establish
trend and continuity of the mineralization first detected by Kenor. In 2013, 2.21 Mt of
indicated resources were estimated, making Julie the largest gold resource in NW Gha

2 Regional geological overview

Northwest Ghana lies on the eastern edge of the Paleoproterozoic Birimian
terrane of the West African Craton (WAC). The Wa-East gold district occurs within
the Julie greenstone belt, an E-W trending structure bounded to the east by the Bole-
Nangodi greenstone belt, to the south by the Bole-Bulenga domain, to the west by
The Wa-Lawra greenstone belt and to the north by the Koudougou-Tumu granitoid domain (Fig. 1). The Koudougou-Tumu granitoid domain is composed of tonalite-tronhjemite-granodiorite (TTG) intrusions formed between 2155 to 2135 Ma (U-Pb zircon ages; Agyei Duodu et al., 2009). Potassic porphyritic granites, dated at 2128 and 2086 Ma (U-Pb zircon ages; Taylor et al., 1992, Agyei Doudu et al., 2009), intrude these rocks. The Wa-Lawra belt is composed of shales, volcano-sediments, basalts and granitoids. Geochronological U-Pb dating on detrital zircons in the volcano-sediments gives ages older than 2139 Ma (Agyei Duodu et al., 2009). The Wa-Lawra and Koudougou-Tumu domain are juxtaposed along the crustal scale sinistral Jirapa fault. The Bole-Bulenga domain is composed of high-grade gneisses, intruded by TTG plutons commonly exhibiting migmatitic textures. The Julie belt is composed of basalts, granitoids, gabbros and volcano-sediments. To date, no geochronological data exist for the rocks from the Julie belt.

Baratoux et al. (2011), de Kock et al. (2011) and Block et al. (2015) highlighted the evidence for multiple deformation phases in the Birimian terranes of NW Ghana. An early, short-lived event (termed Eoeburnean) was identified by de Kock et al. (2011), and interpreted to be driven by pluton emplacement and basin folding, between 2160 and 2150 Ma. Block et al. (2015) proposed that the first Eburnean event (D₁) in NW Ghana occurred around 2137 ± 8 Ma (in-situ U-Pb dating on monazite). This event is characterized by intrusions of voluminous granitoid plutons, locally associated with volcanism and sedimentation, allochthonous thrusting, folding and development of penetrative metamorphic fabrics resulting in crustal thickening driven by N-S shortening. Peak metamorphic conditions of D₁ reach upper amphibolite facies (Block et al., 2015). The second Eburnean phase, D₂, is interpreted to have occurred between 2130 to 2110 Ma (U-Pb dating on rhyolites).
This event is characterized by regional scale WNW-trending sinistral and NE-trending dextral transcurrent faulting and shearing, which affected most of the rocks within the Wa-Lawra belt, west of the Julie area. Gold mineralization has been reported along these structures (e.g., Allibone et al., 2002; Béziat et al., 2008; Amponsah et al., in press). Block et al. (2015) report late, post-Eburnean brittle NE- and NW-trending faults that crosscut all existing Eburnean structures in the region. These faults are subvertical and of limited extent.

Metamorphic conditions in this region range from greenschist to granulite facies. The highest grades (granulite facies) are observed in the Bole-Bulenga domain, whereas amphibolite facies dominate in the Koudougou-Tumu domain. Rocks in the Julie belt are metamorphosed to greenschist facies, at temperatures between 230°C to 350°C and pressures between 1 to 3 kbar, determined by equilibrium mineral assemblages (chlorite-muscovite-epidote-calcite) by Block et al. (2015).

3 Local geology

3.1 Main rock types

The principal lithology in the area of the Julie deposit consists of metamorphosed granitoids that are deformed to various degrees, and which are in contact with basalt and volcanic sediments, a few km to the north (Fig. 2; see also Fig. 3). The granitoids are metaluminous and their normative composition overlaps the compositional fields of tonalite, granodiorite and trondhjemite (TTG) (Amponsah et al., in press). Their trace geochemistry corresponds to typical magmatic rocks in active margins, with a Rb vs Y+Nb signature corresponding to the volcanic arc.
granites field of Pearce et al. (1984; Amponsah et al., in press). Texturally, the TTG
are medium to coarse grained, and are primarily composed of quartz, hornblende,
plagioclase and biotite plus accessory magnetite, zircons and titanite. A greenschist
metamorphic assemblage consisting of epidote, calcite, chlorite and rutile
overprinted these minerals.

To the north of the Julie shear zone, the basaltic flows alternate with
sediments consisting of metamorphosed volcanic sediments with minor intercalated
greywacke and shale. The basalts are strongly magnetic and are made up of
plagioclase, green amphibole, calcite, chlorite with minor titanite and magnetite. The
sediments are fine to medium grained, black to grey in colour, and consist of quartz,
muscovites, chlorite, biotite and locally graphite.

3.2 Structural features and quartz veins

Three deformational phases were mapped in the deposit area (D\textsubscript{J1}, D\textsubscript{J2} and
D\textsubscript{J3}; Amponsah et al., in press). In the TTG, the D\textsubscript{J1} deformation is defined by an E-
W-trending penetrative foliation (S\textsubscript{1}) that dips between 35° and 70° to the north,
representing a brittle-ductile shear zone. This shear reflects a regional scale thrust,
and has a general top-to-the-south movement, although E-W to WNW-ESE mylonitic
dextral shears can be observed to locally crosscut the ductile fabric and are
interpreted as late D\textsubscript{J1}. Quartz veins are abundant within this shear zone and are
commonly boudined parallel to it (Fig. 4a). In addition to quartz, the veins contain
lower proportions of calcite, ankerite, tourmaline and pyrite. These veins host the
main mineralization at Julie. A few isolated, undeformed quartz veins ranging in
strike from N-S to NE-SW were observed in exploration trenches and pits. They are
interpreted to represent a conjugate set to the E-W (S1-parallel) veins (see section 6). They never extend for more than 100 m along strike, have a vuggy aspect and, in addition to quartz, contain chlorite, carbonates, muscovite and pyrite (Fig. 4b). These veins also host some mineralization, although to a lesser extent than the E-W veins.

Dj2 is characterized by an E-W compression, which produced F2 isoclinal folds with a fold axis verging northwards, and axial planes striking N-S with subvertical dips. This event is not observed in the intrusives at Julie but affected the basalts and volcano-sedimentary units north of the deposit, mostly in the form of crenulation of the D1 fabric. Quartz veins formed within the S2 foliation plane, but were only observed in the basalt. They are deformed, contain traces of calcite and tourmaline, and are not mineralized.

The latest stage of deformation recognized at Julie, Dj3, is characterized by brittle faults that crosscut the Dj1 and Dj2 structures, strike NE-SW and dip 30 to 40° to the northwest.

4 Ore body characteristics

Mineralization in the Julie deposit is mostly related to the E-W trending Dj1-related S1 shear zone. The main ore body consists of a network of numerous quartz veins, which form a corridor striking E-W and dipping 30 to 60° to the north (Fig. 3). The ore body extends over 3.5 km along strike and has a thickness varying from 20 to 30 m. It is enclosed by an alteration envelope that gradually changes away from the mineralized zone into the barren rock; an inner zone affects the vein corridor, within a width of about 50 m (Fig. 3), and has particularly-low magnetic susceptibility.
relative to the barren rock. This alteration consists of sericite + quartz + ankerite +
calcite + tourmaline + pyrite. In this zone, the average gold grade is about 3.0 g/t. A
second alteration envelope surrounds this inner zone and consists of albite + sericite
+ calcite + chlorite + pyrite + rutile (Fig. 3). Here, pyrite partially replaces primary
magnetite and albite replaces most feldspars, and gold grades range between 0.1 g/t
to 0.4 g/t. Further away from this zone, a metamorphic assemblage of chlorite,
epidote and calcite affects the barren rocks.

Gold mineralization also occurs in the N-S trending quartz veins. An alteration
envelope, similar to that affecting the main ore, characterizes these veins, although
in this case it is much more limited in space. In these veins, gold grades range
around 0.2 g/t, although in a few places values up to 3.5 g/t have been measured.

5 Microscopic features of the ore

Mineralization in the D₃₁-related vein corridor occurs mostly in the form of
micron-sized gold grains that form inclusions in pyrite crystals that are commonly
deformed, as well as larger grains occurring within fractures in pyrite or along its
crystal edges (Fig. 4c, d). In many instances, gold is accompanied by silver, bismuth,
tellurium, copper and lead. Gold-bearing pyrite occurs in the quartz veins as well as
disseminated in the wall rock, within the alteration selvages described above, and no
particular difference was observed between the two. In the N-S trending veins, gold
occurs in quartz as rare free grains, although mostly in fractures within pyrite from
the veins and the alteration halos, and it is commonly accompanied by minor silver.
However, in these veins gold was not found as inclusions in pyrite.
Amponsah et al. (in press) detected the presence of up to 15 ppm Au in pyrites from the main mineralized zone by LA-ICP-MS analyses; the data did not allow to distinguish whether gold is in the structure of this sulphide or forms nanoparticles (cf. Deditus et al., 2011). Only ppb amounts of Au were detected by this technique in a few pyrites from the N-S veins. In addition to gold, other metals detected by LA-ICP-MS in pyrite from the main mineralization include Ag, Te, Pb, Se, Ni and Co.

6 Genetic considerations

The main ore body in the Julie deposit occurs in the form of a network of quartz veins along the E-W trending S1 shear zone. The hydrothermal alteration that affected the rocks containing the vein network, defines the mineralized corridor. It consists mainly of sericitization, carbonatization and sulphidation. Amponsah et al. (in press) show that these secondary minerals are foliated parallel to the local S1 foliation plane, which is consistent with a syn-deformation emplacement of the mineralized system, which, in turn, is coherent with the fact that the veins are boudinaged along S1. The N-S trending veins are interpreted by these authors as being a conjugate set to the S1-parallel veins, i.e., they formed pene-contemporaneously, and represent the σ3 direction for D1. They base their argument on the their orientations, as well as the fact that both vein sets display the same type of alteration halos and contain fluid inclusions with the same physicochemical characteristics. Nevertheless, the fact that in the N-S veins gold only occurs in fractures, suggests that these veins were under a brittle deformational regime, and recorded only the late stages of mineralization. The D1 event, responsible for the formation of the S1 shear zone and the mineralization at Julie, has the same
kinematic indicators as the regional D₁ of Block et al. (2015) and likely represents a
local expression of this regional scale deformation episode.

A study of the fluid inclusions found in the veins indicates the presence of
immiscible aqueous and carbonic fluids circulating at about 250°C and 1 kbar
(Amponsah et al., in press). Their composition suggests a metamorphic origin of the
mineralizing fluids, rather than orthomagmatic. This is consistent with the alteration
mineralogy, which is typical of orogenic gold deposits hosted in metamorphosed
volcanic rocks (e.g., Saunders et al., 2014). The PT conditions are interpreted to
record hydrostatic regime during drops in pressure subsequent to the creation of
open space during deformation (e.g., Sibson et al., 1998). As suggested by
Amponash et al. (in press), these pressure drops most likely triggered gold
precipitation (e.g., Kouzmanov and Pokrovski, 2012), along with other metals and
quartz.

7 Summary and conclusions

The Julie deposit, hosted in the Wa-Lawra greenstone belt in NW Ghana, will
be potentially the next operating mine in the country and the largest resource in the
region. It is hosted in sheared Paleoproterozoic granitoids of TTG composition and
the main ore consists of a mineralized corridor, trending E-W and dipping N, formed
by a network of quartz veins emplaced along the main shear zone, which is an
expression of the regional D₁ deformation episode. Minor gold mineralization was
also found in a set of quartz veins that are conjugate to the main veins though
formed slightly later, mostly under a brittle regime. Within the main vein corridor, gold
occurs almost exclusively within pyrite, as inclusions, in fractures and along its
edges. In both vein sets, this sulphide occurs in the veins as well as in the host rock
where it is contained within an alteration selvage, which defines the extent of the mineralized body. Invisible gold occurs in pyrite from both vein sets, although only ppb amounts were detected in pyrite from the conjugate veins.

Acknowledgement

This work was financed by the AMIRA WAXI Phase II sponsors (project number P934), including AusAid and the ARC Linkage Project LP110100667, and by Azumah Resources Limited. The latter are also thanked for field assistance, access to their core and data, and for granting permission to publish this paper. We also acknowledge the contribution of Geological Surveys/Department of Mines in West Africa as sponsors in-kind of WAXI. Constructive reviews by German Vélasquez and Steven Micklethwaite were appreciated and contributed to improve the quality of the manuscript.

References

controls, including regional stress modeling. Precambrian Research 149, 149-196.

Table captions

Table 1. General information on the Julie deposit.
Figures captions

Figure 1. Regional litho-structural map of Precambrian terranes in NW Ghana (modified after Block et al., 2015), showing the geological context of the Julie belt. The red insert localises the study area.

Figure 2. Simplified map of the Julie Belt, showing several mineralized occurrences in the Wa-East district (modified after Amponsah et al. in press). The Julie deposit, in the lower right of the map, consists of several potentially exploitable workings. The N-S cross-section shown in Figure 3 is also located.

Figure 3. Cross-section of the Julie deposit along 579100 m E (see Figure 2 for location), constructed based on drill core information (single drill holes are labelled on the section). The section shows the main mineralized corridor, which is defined by wall-rock alteration. High-grade mineralization is confined to the inner alteration zone. The external alteration selvage contains low-grade mineralization.

Figure 4. Macroscopic and microscopic images of samples from the Julie deposit.
(a) Drill core of sheared granitoid from the main mineralization zone, showing several quartz veins and pyrite grains (Py) stretched along the main foliation. (b) Hand sample of vuggy quartz from the N-S veins. The sample shows a pyrite agglomerate in quartz. (c) Photomicrograph under reflected light of a pyrite grain deformed parallel to the foliation (vertically with respect to the image) from the main mineralized zone. (d) SEM image showing details of a pyrite grain, also from the main mineralized zone, where gold occurs as micron-sized inclusions and in a fracture. Inclusions of ankerite (Ank), sericite (Ser), rutile (Rt) and biotite (Bt) are also visible.
Wa-Lawra belt

Maliwe do main

Undifferentiated granitoids
Undifferentiated gneiss
Volcano-sediments
Intermediate and felsic volcanics
Epiclastic sediments
Basalt

Minor shear zone

2°W 1°W

9°N

Jirapa shear zone

Bole

Sawla

Wechiau

Bulenga

Jang shear zone

Bole-Bulenga domain

Koudougou-Tumu granitoid domain

Julie belt

Tumu

Navrongo

Bolgatanga

Bolgatanga

Lawra

Tumu

Koudougou-Tumu granitoid domain

Bole-Nangodi shear zone

Jang shear zone

Bole-Nangodi shear zone

Minor shear zone

Major shear zone

Thrust fault

Normal shear zone

Town

Figure 1

Bole-Bulenga domain

Maluwe domain

Undifferentiated granitoids
Undifferentiated gneiss
Volcano-sediments
Intermediate and felsic volcanics
Epiclastic sediments
Basalt

2°W 1°W

9°N
<table>
<thead>
<tr>
<th>Deposit name</th>
<th>Julie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commodity of exploitation</td>
<td>Au</td>
</tr>
<tr>
<td>Location</td>
<td>NW Ghana</td>
</tr>
<tr>
<td>Longitude-Latitude [dec degrees]</td>
<td>10.205°N–2.189°W</td>
</tr>
<tr>
<td>Geographic location</td>
<td>NW Ghana, Upper West Region. The deposit is situated 60.8 km west of the regional capital (Wa)</td>
</tr>
<tr>
<td>Geological location</td>
<td>Leo-Man shield of the West African Craton; in the Julie greenstone belt, between the Wa-Lawra and Bole-Nangodi belts</td>
</tr>
<tr>
<td>Deposit status</td>
<td>Prospect under development (mine development stage)</td>
</tr>
<tr>
<td>Deposit type</td>
<td>Granitoid hosted; shear-zone related, quartz veins</td>
</tr>
<tr>
<td>Current owner</td>
<td>Azumah Resource Limited</td>
</tr>
<tr>
<td>Average grade</td>
<td>2.0 g/t</td>
</tr>
<tr>
<td>Tonnage</td>
<td>2.21 Mt of measured and indicated resource; 202,000 oz proven reserves (September, 2014)</td>
</tr>
<tr>
<td>Past production</td>
<td>No production to date</td>
</tr>
</tbody>
</table>

Table 1