Transport measurements in silicon-on-insulator films: Comparison of Hall effect, mobility spectrum, and pseudo-metal-oxide-semiconductor-field-effect-transistor techniques

T. V. Chandrasekhar Rao,1,a) J. Antoszewski,1 L. Faraone,1 S. Cristoloveanu,2 T. Nguyen,2 P. Gentil,2 N. Bresson,3 and F. Allibert3
1School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Crawley WA 6009, Australia
2IMEP, INPG Minatec, BP 257, 38016 Grenoble Cedex 1, France
3Soitec SA, Parc Technologique des Fontaines, Bernin 38926 Crolles Cedex, France

(Received 24 October 2007; accepted 27 November 2007; published online 5 February 2008)

We report on the nature of electrical transport in silicon-on-insulator layers, investigated using several techniques: the standard single magnetic field Hall effect, mobility spectrum analysis of the magnetic field-dependent Hall effect, and the pseudo-metal-oxide-semiconductor-field-effect-transistor technique. For moderate and strong inversion, electrical transport in the temperature range 77–300 K is dominated by a lone electron species with a mobility of 500–1000 cm²/Vs. A good correlation is noted between these methods. © 2008 American Institute of Physics.

[DOI: 10.1063/1.2837841]

I. INTRODUCTION

Silicon-on-insulator (SOI) technology is already pervasive and holds a great potential for a wide range of complementary metal oxide semiconductor (CMOS) applications in ensuing years. Some of the advantages of this technology include simple and flexible processing, vertical and lateral isolation of devices, low voltage and low-power operation, etc. In order to realize the full potential of this technology, it is crucial to characterize and understand conduction in SOI devices in terms of carrier concentrations, mobilities, and energy barriers involved in carrier activation. Indeed, such a characterization is beseeching as silicon template layers get thinner and electronic transport is dictated by a variety of factors such as surface and interface states, charge traps, altered scattering, etc. Moreover, the development and optimization of innovating SOI materials (strained Si and germanium on insulator to enhance carrier mobility) demands a systematic and in-depth evaluation of charge carriers contributing to wafer/device conductivity.

The mobility behavior in SOI is typically investigated using metal oxide semiconductor (MOS) transistors. However, CMOS processing is known to alter the mobility, which no longer reflects the property of the genuine material. This is why the pseudo-metal-oxide-semiconductor-field-effect-transistor (Ψ-MOSFET) technique is frequently utilized to compare the assets of various SOI wafers. A SOI sample is nothing but an upside-down MOS structure, where the substrate is biased as a gate to induce an inversion or accumulation channel. Two pressure probes on the film surface serve as the source and drain contacts. The carrier mobility and charge are extracted from the drain current versus gate voltage characteristics $I_d(V_g)$ with standard MOSFET methods. Pseudo-MOS measurements are extremely simple, fast, and provide reliable parameters of SOI wafers that can be utilized for efficient process control and optimization. However, the use of pressure probes makes it difficult to perform low-temperature measurements, which are necessary for a complete characterization of wafers.

The standard, single magnetic field Hall effect would give a more accurate electrical image of the material because the carrier mobility and concentration are measured independently without any modeling, but difficult to use in the case of fully depleted films unless the substrate is biased. Moreover, measurements are delicate due to the requirement of ohmic contacts (by evaporation or local implantation) on fully depleted films. This explains why only a limited number of results have been published so far. On the other hand, the magnetic field-dependent Hall effect provides more information, particularly if experimental data are analyzed using the mobility spectrum technique. This is an extremely versatile technique for analyzing electrical transport in semiconducting materials and devices. Its efficacy was demonstrated in several earlier studies wherein transport characteristics of every carrier species present in the device/sample could be evaluated, even though some carriers contributed significantly less to conduction than others. On the contrary, conventional Hall effect measurements under a single magnetic field can only provide an average carrier density and mobility, not identifiable with any specific carrier species. Mobility spectrum method has been utilized in compound semiconductors, never in SOI.

In this paper, we report on the carrier mobility in SOI structures extracted applying the mobility spectrum technique to magnetic field-dependent Hall and resistivity data. Our motivation was to check if a mobility spectrum analysis can discriminate the contributions of the carriers flowing in the inversion/accumulation channel, located at the film-buried oxide interface, and in the neutral region (i.e., vol-

---

*a)On leave from Technical Physics and Prototype Engineering Division, Bhabha Atomic Research Centre, Bombay 400085 India. Electronic mail: chandra1@barc.gov.in.
associated with a given peak, and the results obtained are compared with those extracted from single magnetic field Hall data and $\Psi$-MOSFET technique.

II. MEASUREMENTS AND DATA ANALYSIS DETAILS

The test sample has a top silicon layer of area $5 \times 5$ mm$^2$ and a thickness of 72.5 nm, representing the transistor body. The buried oxide (BOX) layer, which provides insulation from the substrate (gate), is 145 nm thick.

For resistivity and Hall effect measurements, we have used five electrical contacts to the device—four at the corners of top silicon layer in Van der Pauw configuration—and fifth, the gate, to the silicon substrate through the etched portion of SiO$_2$ layer, as shown in Fig. 1(a). Contact pads consisting of Al, Cr, and Au were deposited by thermal evaporation. Field-dependent measurements were made using a superconducting magnet (M/S, Oxford Instruments; field range 0 to $\pm 10$ T). A constant current of 10 $\mu$A was passed through the device for these measurements, and its temperature was varied between 77 and 300 K using a liquid helium cryostat. Voltage drops were measured across appropriate pairs of contacts according to a standard switching procedure for resistivity and Hall effect measurements.

Magnetic field-dependent Hall and resistivity data were analyzed using quantitative mobility spectrum analysis (QMSA) (version i-QMSA provided by Lakeshore) based on an algorithm outlined by Vurgaftman et al. The output of this algorithm is a “mobility spectrum” (see for example Fig. 3), depicting peaks corresponding to each of the carrier species present in the structure. Typically, each peak consists of a small distribution of mobilities and the corresponding contribution to the device conductivity. Carrier density ($n$) and mobility ($\mu$) associated with a given peak can be evaluated using the relations

$$n = \sum_{i=1}^{N} \frac{\sigma_i}{q \mu_i},$$

$$\mu = \frac{\sum_{i=1}^{N} n_i \mu_i}{\sum_{i=1}^{N} n_i},$$

where $N$ is the number of conductivity amplitudes ($\sigma_i$) associated with a given peak, and $\mu_i$ and $n_i$ are the corresponding mobility and number density values. $q$ is electron charge.

In the case of single magnetic field Hall effect measurements, we have evaluated the Hall coefficient ($R_H$) and resistivity ($\rho$) using appropriate voltages measured under a field of 1 T; the carrier density and mobility were obtained using standard relations,

$$n = \frac{1}{qR_H},$$

$$\mu_{\text{Hall}} = \frac{R_H}{\rho}.$$

The value of the mobility so extracted is related to the effective mobility through a Hall scattering factor $\mu_{\text{Hall}} = \gamma_H \mu_{\text{eff}}$, where the scattering factor $\gamma_H$ depends on the band structure and applicable scattering mechanisms.

For transistor measurements in $\Psi$-MOSFET configuration, we have used two-pressure adjustable probes placed on the surface of samples to serve as the source and drain [Fig. 1(b)]. The transconductance ($g_m$) provides the field-effect mobility $\mu_{\text{FE}}$ of the channel carriers,

$$\mu_{\text{FE}} = \frac{g_m}{f_g C_{\text{BOX}} V_d},$$

where $f_g=0.75$ is a geometrical coefficient (aspect ratio), $V_d$ is the threshold voltage, $\theta$ is the mobility reduction factor, and $C_{\text{BOX}}$ is the capacitance of the buried oxide. For parameter extraction we use an $I_d/\sqrt{V_g}$ versus $V_g$ plot. The low-field mobility $\mu_{\text{FE}}$ is extracted from the slope and the threshold voltage from the intercept with the horizontal axis. The effective mobility is then computed using the relation $\mu_{\text{eff}} = \sqrt{\mu_{\text{FE}} \mu_{\text{eff}}}$.10

III. ANALYSIS AND RESULTS

Preliminary characterization of the device was done using a parameter analyzer (HP 4156A). Figure 2 shows linear...
$I_d$ versus $V_d$ plots for the device for a range of gate voltages measured in $\Psi$-MOSFET configuration. From the data, we estimate the drain voltage $V_d$ to be $\sim 0.14$ V for $I_d$ = $10 \mu A$ and $V_g = 30$ V, a combination used for most measurements discussed below. The inset of Fig. 2 shows $I_d$ versus $V_d$ data measured on an identical device for $V_d$ = 0.2 V, showing the threshold voltage $V_t$ to be 2 V. This value of $V_t$ affirms that the device operates under conditions of moderate and strong inversion within the parametric regime being investigated.

A. Studies at 300 K

Hall coefficient and resistivity measurements used in QMSA were carried out using a drain current of $10 \mu A$ and positive gate voltages in the range 7–30 V, wherein the device operates in the moderate to strong inversion region. QMSA fits were excellent. A single electron species was noted for $V_g$ $\geq$ 15 V with a mobility of $\sim 500$ cm$^2$/Vs, while two were seen for lower gate voltages. However, the second species, with a mobility of $\sim 1050$ cm$^2$/Vs, contributes less than 1% to total conductivity (lower than the accuracy of the $i$-QMSA algorithm) and can be ignored. The lone hole species seen is probably a ghost peak, a typical side effect of the QMSA algorithm, and was also ignored. Examples of mobility spectra on a log scale are shown in Fig. 3 for $V_g$ = 30 and 10 V.

The sheet carrier density ($n_d$) of the main electron species derived from Eq. (1) is shown in Fig. 4 as a function of ($V_g$ − $V_t$). Using the relation $n_d = I_d / V_d q \mu_{eff}$ (where $q$ is electron charge) and the expression for $I_d$ in terms of effective mobility, we arrive at

$$n_d = \frac{C_{BOX}}{q} (V_g - V_t).$$

Thus, $n_d$ will have a linear dependence on ($V_g$ − $V_t$) and, from the slope of the linear fit shown in Fig. 4, we evaluate $C_{BOX}$ to be $\sim 20$ nF/cm$^2$, in reasonable agreement with the BOX thickness.

The mobility of the main carrier ($\sim 500$ cm$^2$/Vs), estimated by the QMSA, single-field Hall effect, and $\Psi$-MOSFET, shows a decrease with $V_g$ Fig. 5. This degradation with $V_g$ is due to the dominance of scattering from interfacial roughness as the vertical field builds up under strong inversion and electrons are pushed toward the interface. Moreover, the trends shown by $\mu_{eff}$, $\mu_{Hall}$, and $\mu_{QMSA}$ are in good accordance. The ratio of about 1:2 between $\mu_{Hall}$ and $\mu_{QMSA}$ at ambient temperature can be reconciled in terms of the Hall scattering factor for acoustic phonons. The difference between $\mu_{Hall}$ and $\mu_{QMSA}$ is related to experimental in-
accuracies and the values themselves become less reliable at lower gate voltages with the sample resistance increasing as $V_t$ is approached. For weak inversion, however, the mobility extracted from the transconductance is not realistic as the conduction is governed by diffusion. This explains the underestimated values of $\mu_{\text{eff}}$ for $V_g < 5$ V. Finally, the equivalence of the mobility estimates from the three techniques validates the QMSA result of single carrier conduction noted above.

**B. Variable temperature measurements**

Temperature-dependent measurements were performed with a gate voltage of 30 V and constant $I_d=10$ $\mu$A. Two electron species were noted for most parts of the temperature window investigated, but one of them hardly contributes to conductivity. A typical mobility spectrum (at 200 K) is shown in Fig. 6.

Theoretically, the coexistence of two carrier species in SOI layers may be justified by considering those in the inversion channel at the interface (primary species) and others flowing through the volume of the film (secondary species). This latter species is expected to exhibit a higher mobility because it is less affected by surface effects. However, QMSA data negate the existence or practical impact of the second species in such thin, fully depleted films. Thicker and/or intentionally doped (partially depleted) SOI films are needed to show the impact of conduction in the film volume.

Figure 7 shows the sheet density of the main carrier species ($n_d$) plotted as a function of inverse temperature, indicating a decrease with temperature in two distinct regimes. Since $n_d$ scales with $(V_d-V_t)$ [Eq. (4)], we attribute this fall in $n_d$ to an increase in $V_t$. For the region 300–175 K, $V_t$ shows a milder increase and quasilinear dependence with temperature due to the increase in Fermi potential (note that the related extension of the depletion region at lower temperature is irrelevant in fully depleted structures). We have estimated the change in $V_t$ to be $\sim 12$ mV/K, which matches quite well with an earlier reported value. Below 175 K, $V_t$ increases more rapidly ($\sim 150$ mV/K), presumably due to changes in the Fermi potential through the thermal ionization of dopants or impurities. The associated activation energy is estimated to be $\sim 22$ meV.

The mobility of the main electron species from QMSA is plotted against temperature in Fig. 8, along with single-field Hall effect estimates. The data show features reported earlier for SOI MOSFETs, viz., a peak around 100 K and a decrease at lower temperatures due to dominant Coulomb scattering. On the other hand, the mobility decrease for $T > 100$ K essentially reflects the role of acoustic phonon scattering; indeed, surface roughness scattering has a weak dependence on temperature. We have noted that $\mu_{\text{Hall}} \sim T^{-1.25}$, in good agreement with the exponent value 3/2 reported earlier. Thus, Figs. 7 and 8 clearly bring out the near-identical nature of the results obtained from single and variable magnetic field data, confirming the dominant role of a single carrier in the parametric regime investigated.
IV. CONCLUSION

We have analyzed electrical transport in thin SOI films using: (i) single magnetic field Hall effect; (ii) magnetic field-dependent Hall effect analyzed with QMSA; and (iii) \( \Psi \)-MOSFET technique. We have shown that a single carrier with an ambient temperature mobility of \( \sim 500 \text{ cm}^2/\text{Vs} \) is essentially responsible for device conduction and extracted relevant parameters.

Further, we have demonstrated that all three methods provide similar material parameters at ambient temperature. Variable temperature measurements could not be carried out using the \( \Psi \)-MOSFET technique, as pressure probes it deploys are unsuitable for cryogenic temperatures, but results from the other two techniques are in agreement. QMSA is a powerful method which can resolve different conductive species and its application should be relevant in thicker and/or doped SOI materials.

ACKNOWLEDGMENTS

One of the authors (T.V.C.R.) would like to acknowledge support from the Gledden Foundation.
