A signalling-regulated short-chain dehydrogenase of *Stagonospora nodorum* regulates asexual development

Kar-Chun Tan¹, Joshua L. Heazlewood²,³, A. Harvey Millar², Gordon Thomson⁴, Richard P. Oliver¹ and Peter S. Solomon¹*

¹Australian Centre for Necrotrophic Fungal Pathogens, SABC, Faculty of Health Sciences, Murdoch University, Murdoch 6150, Australia. ²Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley 6009, Australia. ³Current address: Joint Bioenergy Initiative, Lawrence Berkeley Laboratories, CA, USA. ⁴School of Biological Sciences and Biotechnology, Division of Science and Engineering, Murdoch University, Murdoch 6150, Australia.

*Corresponding author. Mailing address: ACNFP, FHS, Murdoch University, South Street, Murdoch 6150, Australia. Phone: +61 8 9360 7239. Fax: +61 8 9310 4144. E-mail: p.solomon@murdoch.edu.au

Running title: Sporulation in *S. nodorum*
ABSTRACT

The fungus *Stagonospora nodorum* is a causal agent of leaf and glume blotch disease of wheat. It has been previously shown that inactivation of heterotrimeric G protein signalling in *Stagonospora nodorum* caused development defects and reduced pathogenicity [Solomon et al. *Mol. Plant-Microbe Interact.* 2004, 17, 456-466]. In this study, we sought to identify targets of the signalling pathway that may have contributed to phenotypic defects of the signalling mutants. A comparative analysis of the *Stagonospora nodorum* wildtype and a Gα-defective mutant (*gna1*) intracellular proteomes was performed via two dimensional-polyacrylamide gel electrophoresis. Several proteins showed significantly altered abundances when comparing the two strains. One such protein, the short-chain dehydrogenase Sch1, was 18-fold less abundant in the *gna1* strain implying it is positively regulated by Gα signalling. Gene expression and transcriptional enhanced-GFP fusion analyses of *Sch1* indicates strong expression during asexual development. Mutant strains of *Stagonospora nodorum* lacking *Sch1* demonstrated poor growth on minimal media and exhibited a significant reduction in asexual sporulation on all growth media examined. Detailed histological experiments on *sch1* pycnidia revealed the gene is required for the differentiation of the sub-parietal layer of asexual pycnidia resulting in a significant reduction in both pycnidiospore size and numbers.
INTRODUCTION

The heterotrimeric G protein family is a universal eukaryotic signalling component. The heterotrimer consists of α, β and γ subunits that are coupled to the cytoplasmic side of a membrane-bound G protein coupled receptor (GPCR). The binding of a ligand to the GPCR causes exchange of GDP for GTP on the Gα subunit unit resulting in its dissociation from the Gβγ complex. The released Gα subunit can then activate downstream cellular effectors (4, 52). Four different classes of mammalian Gα proteins have been proposed based on amino acid sequence relationship (40). The Gαs and Gαi classes function to stimulate and inhibit cyclic AMP production respectively, whereas Gαq subunits function within the phosphotidylinositol pathway and Gα12/13 activates signalling through the small Rho GTPase (28, 40).

The roles of heterotrimeric G proteins in plant pathogenic fungi have been extensively studied (3, 30). At least 23 Gα genes of plant pathogenic fungi have been reported in the literature thus far. These 23 genes can be subdivided into two groups related to the mammalian Gαs and Gαi proteins based on the amino acid sequences (3). Mutants that are impaired in Gαi subunits often possess significant phenotypic defects that can affect the fitness of the pathogen (12, 15, 17, 22, 23, 32, 33, 47, 57, 68), implying that this signal transduction system controls processes vital for pathogenicity (Table 1). Transcriptomics has been used to elucidate targets of Gαi subunit signalling in the gray mold Botrytis cinerea and the chestnut blight fungus Cryphonectria parasitica. These studies have shown signalling regulation of the botrydial toxin gene Bcbot1 in B. cinerea (18, 51) and hypovirus-responsive genes in C. parasitica (8), respectively.

Proteomic approaches provide a complementary means of identifying targets of G protein signalling. Previously, such approaches have been used to study phytopathogenic fungi
through protein profiling (2, 5, 13, 43, 45) and to identify host- (46) and morphogenesis-
responsive proteins (26). Recent sequencing of the genomes of the phytopathogenic fungi
Magnaporthe grisea, *Ustilago maydis*, *Fusarium graminearum* and *Stagonospora nodorum*
(7, 9, 20, 25) provides an opportunity for more thorough mass spectrometry-based proteomic
analyses (2, 43).

Stagonospora nodorum is a major fungal pathogen of wheat (54). The role of signal
transduction in the pathogenicity of *S. nodorum* has been recently scrutinised (55, 57, 60). Of
particular interest were strains harbouring an impaired Gα gene, *Gna1*. Mutants were
reduced in their ability to colonise the host, failed to sporulate, showed an albino phenotype
and reduced extracellular depolymerase activities. It was hypothesised that these impairments
were a result of changes in the state or abundance of heterotrimeric G protein signalling
targets. The aim of this experiment was to identify and functionally characterise proteins
regulated by the Gna1 protein using two dimensional-polyacrylamide gel electrophoresis
(2D-PAGE). This proteomic approach has led to the identification of several proteins
regulated by Gna1 signalling including Sch1, a short-chain dehydrogenase that is positively
regulated. Subsequent genetic dissection of *Sch1* revealed it has a required role in asexual
development, a critical facet of disease for this polycyclic pathogen.
MATERIALS AND METHODS

Gene nomenclature. The nomenclature of all *S. nodorum* genes mentioned in this study are denoted by the prefix ‘SNOG’ used in conjunction with the designated gene number. Details of the version 1 annotated sequenced genome can be found at NCBI; http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nuccore&id=62183523.

Growth and maintenance of *Stagonospora nodorum*. *S. nodorum* SN15 wildtype (Department of Agriculture, Western Australia) and the gna1-35 strain carrying a disruption in *Gna1* (Genbank accession number, EAT82421) were used in this study and were maintained on complex media as described (57). For the analysis of the intracellular proteome, 150 mg of fungal mycelia were grown in minimal medium (MM) broth (pH 6.0) which consisted of 30 g.L⁻¹ glucose as a carbon source. The fungus was grown to a vegetative phase by incubation at 22°C shaking at 150 rpm for three days. Mycelia were harvested and freeze-dried overnight.

Growth and maintenance of wheat. Growth of *Triticum aestivum* (cv. Amery) and wheat infections were performed as previously described (57).

Protein extraction. For intracellular proteins, freeze-dried mycelia were homogenised with a cooled mortar and pestle with 10 mM Tris pH 7.6 and 1 mM PMSF. Glass beads (106 μm) of equal volume to the mycelia were used to assist tissue grinding. The crude homogenate was collected and centrifuged at 20,000 g for 1 h at 4°C. The resulting supernatant was retained and incubated with 20 units of DNase and 20 units of RNase for 1 h at 25°C. Following this, proteins were precipitated with nine volumes of ice-cold acetone. Precipitated proteins were collected by centrifugation at 4,000 g for 15 min at 4°C and washed with 90% ice-cold acetone. Precipitated proteins were solubilised with multiple surfactant solution (MSS) which consisted of 40 mM Tris, 2% (w/v) CHAPS, 2% (w/v) SB
3-10, 5 M urea, 2 M thiourea, 2 mM tributylphosphine (Bio-Rad), 0.2% (v/v) Bio-Lyte 3-10 (Bio-Rad) and 0.002% (w/v) bromophenol blue (Bio-Rad). A probe tip Misonix Sonicator XL2015 set to an output of 95 W and a 25% s^{-1} pulsar duty cycle was used to assist in protein solubilisation. Unless denoted otherwise, all chemicals used were purchased from Sigma-Aldrich, USA.

2D-PAGE. Protein concentration was estimated with a Bio-Rad RC-DC protein assay kit. For IEF, Bio-Rad 7 cm IPG strips were rehydrated with MSS containing the protein sample (200 µg to 300 µg) in a Bio-Rad Protean IEF Cell (50 V for 16 h) prior to focusing at 250 V for 15 min and 14,000 V-h (rapid ramping). The proteins in the IPG strip were equilibrated for 20 min with 6 M urea, 0.38 M Tris pH 8.8, 4% (w/v) SDS, 20% (v/v) glycerol and 2% (w/v) DTT and a further 20 min in the same buffer that consisted of 2.5% (w/v) iodoacetamide substituted for DTT. Equilibrated proteins were separated in a second dimension in manually cast 12%T SDS polyacrylamide gels. Gels were visualised via colloidal Coomassie G250 staining (39).

Gel image acquisition and densitometry analysis. Gel images were captured using the ProXPRESS scanner (Perkin Elmer). Spot detection and gel analyses were performed with the ProGENESIS Workstation 2005 software (Linear Dynamics) under default settings. Biological triplicate 2D gels were used to create average gels of SN15 and gna1-35 for comparisons. Protein spots were considered differentially abundant if \(p < 0.05 \) (unpaired t-test) and \(\geq \)two-fold difference in the normalised densitometry value of matching spots between the average gels (Supplementary Data 1). These spots were excised from gels and the proteins trypsin digested (65).

LC-MS/MS analysis and database searching. Tryptic digested peptides were analysed on an Agilent 1100 series capillary LC system coupled to an Applied Biosystems QSTAR Pulsar i LC-MS/MS system equipped with the IonSpray source in positive ion mode (65).
Mass spectra searches were performed with the Mascot search engine version 2.1.04 (Matrix Science) against the Broad-predicted protein set derived from the genome of *S. nodorum* (16,597 sequences; 6,455,598 residues), utilising error tolerances of ± 1.2 for MS and ± 0.6 for MS/MS, ‘Max Missed Cleavages’ set to one, the ‘Oxidation (M)’ variable modification and peptide charge set at 2+ and 3+. Results were filtered using ‘Standard scoring’, ‘Max. number of hits’ set to 20, ‘Significance threshold’ at p<0.05 and ‘Ions score cut-off’ at 15. Protein matches were considered positive with identifications that contained at least four matching peptides and MOWSE scores >100. A putative function was assigned to the matched protein by a BlastP homology search of the NCBI non-redundant protein database (minimum expected value cut-off score of 10^-8).

RNA isolation and RT-PCR. RNA isolation and gene transcript abundance was analysed as previously described (58). SN15 genomic DNA, prepared with a Retsch MM301 autolyser and Qiagen BioSprint 15, was used as a quantitative standard. Intron-spanning primers (Actin F/R) designed to amplify actin (*Act1*; EAT90788) were used to check all cDNA samples were free of genomic DNA via PCR (data not shown). All primer sequences from this study can be found in Supplementary Data 2

Gene expression analyses were performed using *in vitro*-grown fungal tissue and infected wheat leaves. *In vitro* gene expression analysis of SN15 and *gna1*-35 was performed from transcripts extracted under the same growth conditions used for the 2D-PAGE analysis. Gene expression was normalised against *Act1* transcript abundance. *Eflα* is more strongly expressed than *Act1* and was easier to detect on infected wheat leaves where fungal mRNA are limiting, particularly during early infection. Consequently, *Eflα* was used as the housekeeping gene for the *in planta* expression studies.

Gene expression between SN15 and *gna1*-35 were deemed differentially abundant under the criteria that p<0.05 in an unpaired t-test and ≥two-fold difference in the normalised...
transcript abundance. The expression of putative signalling target genes during SN15 infection on wheat was analysed with ANOVA set for Tukey-Kramer test in conjunction with a Dunnett’s control. Gene expression was deemed significantly different if \(p<0.05 \) and \(\geq \)two-fold difference in the normalised transcript abundance relative to the Dunnett’s control.

Construction of the Sch1 gene knockout vector. Sch1 was deleted by gene replacement with a phleomycin resistant selectable marker construct as previously described (55). The 5' and 3' untranslated region (UTR) of Sch1 was PCR amplified with the primer pairs 5'FwdXhoI-R567/5'RevHindIII-R567 and 3’FwdPstI-R567/3’RevNotI-R567, respectively. Restriction sites were introduced into the primer sequences to facilitate cloning with the phleomycin selectable marker plasmid vector pBSK-phleo (55). The 5' Sch1 UTR amplicon (562 bp) was cloned into XhoI and HindIII sites of pBSK-phleo to give pBSK-phleo-5'Sch1. The 3' Sch1 UTR amplicon (850 bp) was cloned into PstI and NotI sites of pBSK-phleo-5'Sch1 to give the knockout vector pBSK-Sch1KO. A 3.52 kb gene deletion KO construct was PCR-amplified from pBSK-Sch1KO using the primer pair R567FwdKO and R567RevKO primers.

Construction of the Sch1 promoter-enhanced green fluorescent protein gene (eGFP) expression construct. The tissue expression pattern of Sch1 was examined with transcriptional fusion of the putative Sch1 promoter sequence and an eGFP gene. A 1.8 kb 5' UTR of Sch1 containing two putative ‘TATA’ Goldberg-Hogness box core promoter sites (31, 53) was PCR-amplified with Sch1GFPtransF and Sch1GFPtransR. A partial fragment of pGPD-GFP (50) that consisted of eGFP, hygromycin resistance cassette and a TrpC terminator was also amplified with GFP-PCRf and GFP-PCRr. Both PCR fragments were fused using the Sch1GFPtransF and GFP-PCRr primers via overlapping PCR (55) with the resulting amplicon used for the subsequent transformation of SN15. PCR was used to test transformants for appropriate ectopic insertions.
Transformation of S. nodorum. The protocol for generating protoplasts and genetic transformation of *S. nodorum* SN15 was as previously described (57).

Southern analysis. The PCR amplicon of the primer pair 5′FwdXhoI-R567 and 5′FwdXhoI-R567 was used for random labelling to develop a probe for Southern analysis. This was performed as described elsewhere (57).

Infection assays. Detached leaf and whole plant spray assays were performed as described by Solomon et al. (56).

Histological techniques. Tissues for longitudinal-section histological examination were fixed and degassed overnight in formal acetic alcohol solution in glass vials (49). For embedding in paraffin, tissues were dehydrated in an ascending series of ethanol (70%, 90% and 100% ethanol, 3 h for each step), then cleared in chloroform prior to infiltration with molten paraffin wax (Paraplast). The embedded tissues were sectioned at 10 µm using Shandon MX 35 knives on a Leica RM2235 microtome.

For embedding in Spurr’s resin, the fixed tissues were washed in several changes of 0.025 M phosphate buffer and dehydrated in an ascending series of acetone (30%, 50%, 70%, 90% and 100% acetone, two changes of each solution and 15 min for each change). The tissues were then infiltrated with an ascending series of Spurr’s resin (5% to 90%) (64) and then transferred to 100% Spurr’s resin for 2 h, and again for overnight at room temperature before being polymerised at 60°C. The embedded tissues were sectioned at 1 µm on a Reichert-Jung 2050 microtome.

The dsDNA specific stain dsDNA-specific 4’,6-diamidino-2-phenylindole dilactate (DAPI) was used to stain paraffin tissue sections according to the manufacturer (Invitrogen). A mixture of 1% methylene blue and 1% azur II in 1% sodium tetraborate solution was used as a general stain as described elsewhere (48).
For transmission electron microscope (TEM) analysis, tissues embedded in Spurr’s resin was sectioned at 80 nm using a diamond knife on a Reichart Ultracut E ultra-microtome. The sections were mounted onto 200 mesh copper grids (ProSciTech), stained for 20 min in a saturated aqueous solution of uranyl acetate, washed twice in distilled water, then stained in lead citrate for 4 min and washed again with several changes of distilled water (67). The stained sections were examined at 80 kV on a Phillips CM100 Biotransmission EM.

For eGFP analysis, mycelia containing pycnidia of the *Sch1-eGFP* transformant grown on CzV8CS agar were excised and longitudinally handsliced with a double edge SS razor blade. Sections were viewed under differential interference contrast (DIC) and blue light excitation (460 to 490 nm) for eGFP fluorescence. Composite images were constructed with the DPManager software (Olympus).

Genbank accession numbers. Broad-annotated genes analysed in this study are available in the Genbank/EMBL databases under the accession numbers; EAT82552 (*Sch1/SNOG_10217*), EAT85007 (*SNOG_07541*), EAT85070 (*SNOG_07604*), EAT79369 (*SNOG_13042*), EAT81580 (*SNOG_11081*), EAT81149 (*SNOG_11441*) and EAT84551 (*SNOG_08275*).
RESULTS

Comparative proteomic analysis and the identification of genes that correspond to the differentially abundant proteins. The intracellular proteomes of SN15 and gna1-35 were separated by 2D-PAGE (Fig. 1A and B). A total of 475 unique protein spots were identified in the SN15 and gna1-35 samples. Of these, six spots were identified as being greater than two-fold different in abundance (p<0.05). Five spots (C1 to C5) were significantly less abundant and one spot (C6) showed an increase in abundance in gna1-35. LC-MS/MS was used to obtain spectra of peptides derived from these protein spots and the resulting data were matched against the S. nodorum predicted protein set to find the matching genes (Table 2). Seven genes were identified from the six differentially abundant protein spots. Proteins identified from spot C1 to C5 matched to genes that codes for a putative Concanamycin-induced protein C (CipC: SNOG_11081), a glutathione S-transferase (SNOG_07604), short-chain dehydrogenases (SNOG_10217 and SNOG_13042) and a proteasome subunit (SNOG_07541). Two proteins (C6-1 and C6-2) were identified from spot C6 and matched to genes that code for 3-dehydroquinate dehydratase (SNOG_11441) and a protein of unknown function (SNOG_08275).

Transcriptional analysis of putative heterotrimeric G protein signalling target genes. The expression of genes encoding putative heterotrimeric G protein signalling target proteins was examined with RT-PCR. This was performed to determine whether protein abundance was regulated at the transcriptional or post-transcriptional level. The normalised expression of each gene was compared with protein abundance data to identify relative correlations of protein and transcript abundances. Of the seven genes examined, four showed a positive correlation between protein and transcript abundance implying these genes are regulated at the transcriptional level (Fig. 2). Three of these genes showed transcriptional down regulation.
(SNOG_13042, SNOG_10217 and SNOG_11081) whereas one (SNOG_11441) was up-regulated in gna1-35. The other three genes showed no correlation between protein and transcript abundances (SNOG_07541, SNOG_07604 and SNOG_08275).

Quantitative RT-PCR was also used to determine the expression profile of these genes in *S. nodorum* during infection on wheat. Sampling time points were one, three, five and eight days post infection which coincided with host penetration, proliferation, onset and late pycnidiation, respectively (63). Six of the genes identified from the proteomic analysis showed significantly differential expression during infection of detached wheat leaves by *S. nodorum* (Fig. 2). Five of these (SNOG_07541, SNOG_07604, SNOG_10217, SNOG_11441 and SNOG_13042) showed increased expression during late infection coinciding with asexual sporulation. One gene (SNOG_11081) was significantly more expressed during germination and penetration of the host at one day post infection. No expression was detected for SNOG_08275 during *in planta* growth.

SNOG_10217 encodes a putative short-chain dehydrogenase. The focus of this study was to identify and functionally characterise targets of Gna1-dependent regulation. SNOG_10217 was chosen for further analysis based on its strong down-regulation in the *gna1* strains. The open reading frame of SNOG_10217 consists of two introns and encodes a polypeptide of 299 amino acids with a predicted molecular mass and pI of 31.8 kDa and 5.5 respectively. These predicted figures closely match the experimental molecular mass and pI as described above. SNOG_10217 contained a Pfam domain of the short-chain dehydrogenase family, thus the gene was subsequently named *Sch1*. *Sch1* also possesses signature short-chain dehydrogenase motifs with inferred function in co-enzyme binding (T-G-V-S-G-G-I-G; residue 44 to 51) and structural stabilisation sequences (N-N-A-G; residue 125 to 128) (42). BlastP (1) analysis of *Sch1* revealed significant matches to hypothetical fungal short-chain dehydrogenases (40% to 50% amino acid identities).
Sch1 is highly expressed in pycnidia. Examination of gene expression by quantitative PCR showed that Sch1 transcript abundance was maximal during the latter stages of infection implying a role for Sch1 in asexual sporulation. To gain a more detailed understanding of expression during asexual development, a transcriptional fusion consisting of the Sch1 5’ putative promoter region fused to the eGFP gene was constructed and transformed into SN15. Subsequent transformants were screened with those demonstrating comparable phenotype and pathogenicity to wild-type S. nodorum chosen for further analysis (data not shown). eGFP expression was examined *in vitro* by excising hyphae and pycnidia from the transformed strain growing on complex CzV8CS agar (Fig. 3). Images collected from DIC microscopy showed asexual sporulation occurring at varying stages of development on the agar. Examination of these samples for eGFP expression highlighted that fluorescence was localised strictly to within mature pycnidia or differentiating asexual structures, known as mycelial knots. Fluorescence was not observed in vegetative mycelia. Higher magnification data revealed eGFP expression was observed in the pycnidial cavity that consisted of the sub-parietal tissue layer and asexual pycnidiospores but not the melanised pycnidial wall. These results confirm the strong expression of Sch1 during asexual development and demonstrate the specificity of the expression in the sporulation structures.

Targeted gene deletion of Sch1. The eGFP expression analysis highlighted a potential role for Sch1 in asexual development. Mutants of *S. nodorum* lacking Sch1 were created by homologous recombination with a Sch1 gene deletion construct conferring phleomycin resistance (Fig. 4A). Initial PCR screening enabled the recovery of two independently derived gene deletion mutants designated as *S. nodorum sch1-11* and *sch1-42* and an ectopic strain designated as *Sch1-30*. Southern analysis confirmed the presence of Sch1 in *Sch1-30* and successful gene deletion in *sch1-11* and *sch1-42* (Fig. 4B). 2D-PAGE of the transformants confirmed that the protein spot corresponding to Sch1 was present in SN15 and *Sch1-30* but
not in the \textit{sch1} mutants (Fig. 4C). This indicates a correct protein-to-gene assignment via mass spectrometry identification and unequivocal evidence of gene deletion.

\textbf{Sch1 deletion affects vegetative growth}. Vegetative growth of the \textit{sch1} strains was compared with SN15 and \textit{Sch1-30} on solid agar media. All strains examined demonstrated a similar radial growth rate on complex CzV8CS agar with the \textit{sch1} mutants producing a green pigment in older mycelia (Fig. 5A). When grown on defined MM agar, the \textit{sch1} mutants showed a significant reduction in radial growth compared to both SN15 and \textit{Sch1-30}. The inclusion of components from the complex media into the MM failed to complement the growth defect implying the phenotype is more than a simple auxotrophic response. The vegetative phenotype of the \textit{sch1} mutants was also investigated when grown as submerged cultures in shaking flasks consisting of MM broth. At 24 hours post inoculation, the mycelia of both SN15 and the ectopic mutant was dispersed throughout the media as is typically observed. The mycelia of the \textit{sch1} strains were not dispersed but appeared to aggregate into a single mass (data not shown).

Based on the phenotypic variation apparent from these simple \textit{in vitro} growth assays, we attempted to complement the mutation by re-introducing the \textit{Sch1} gene into the \textit{sch1} background. Attempts to generate the required number of \textit{sch1} protoplasts proved difficult, most likely due to the clumping phenotype observed in the shaking flasks. Multiple flasks were attempted to generate sufficient protoplasts but this too was unsuccessful. Consequently, genetic complementation of the \textit{sch1} strains was not possible.

\textbf{Sch1 is dispensable for proliferation on wheat}. The \textit{sch1} mutants were examined for their ability to cause lesions on wheat. A detached leaf assay was used to measure the progress of lesion development from a single point inoculation over a 14 day period. Lesion sizes caused by all fungal strains on detached wheat leaves were not significantly differently (data not shown). A whole plant spray assay was also used to simulate a field infection by
spraying spore suspensions onto two week old wheat plants. The disease scores for all strains were comparable indicating that Sch1 is dispensable for lesion development on wheat (data not shown).

Sch1 deletion affects asexual sporulation in vitro and in planta. The eGFP-fusion experiments revealed the localised nature of Sch1 expression during asexual development. Also apparent from the sub-culturing and harvesting of the sch1 strains was the very low numbers of spores recovered. To analyse the sporulation phenotype further, pycnidiospores of all strains were harvested and compared via light microscopy (Fig. 5B). Spore suspensions derived from SN15 and Sch1-30 were predominantly composed of pycnidiospores. The spore suspensions harvested from the sch1 strains contained far fewer spores and much of what was assumed to be mycelial debris. Quantitative analysis of the spores harvested showed an approximate 50-fold decrease in the number produced by the sch1 strains (Fig. 6C). Significantly fewer pycnidiospores were also produced by the sch1 strains in planta implying the phenotype is not restricted to a specific growth environment (Fig. 6D). The sch1 deletion also resulted in reduced average spore length (Fig. 6E) although the germination rate of the mutants was unaffected (data not shown).

Sch1 is required for pycnidial development in vitro and in planta. Abnormalities in asexual sporulation of the sch1 mutants prompted further studies of the mutant pycnidia. The pycnidia of SN15 and Sch1-30 exuded a pink cirrhi when grown on CZV8Cs, whilst the cirrhi secreted by the sch1 pycnidia appeared much paler, almost white, and less abundant (Fig. 6A). On wheat leaves, the mutant phenotype was further exaggerated with the sch1 strains not exuding visible cirrhi from the pycnidia (Fig. 6B). The diameter of sch1 pycnidia was also significantly smaller than those of the wild-type or ectopic both in vitro and in planta suggesting a structural role for Sch1 (Fig. 6C and D).
The ontogeny of SN15 and sch1-42 pycnidia in vitro was compared via tissue longitudinal-sectioning and visualisation with DIC, bright field and TEM (Fig. 7A). Immediately apparent was the smaller size of the sch1 pycnidium confirming the measurements reported above. Within the pycnidial cavity, far few pycnidiospores were present for the mutant which is consistent with the much lower density of spores demonstrated in the exuding cirrhus. The cell walls of the two strains were also structurally different with the cells within the SN15 wall appearing more uniform than the corresponding cells in sch1-42.

The pycnidia of sch1-42 showed similar developmental defects during growth on wheat leaves (Fig. 7B). The contents of the pycnidial cavity again significantly differed with the wildtype cavity comprising of tightly packed uniform spores. Surrounding the cavity is the sub-parietal layer that lines the inner wall of the pycnidium. The sub-parietal layer was evident in SN15 as a dense ring enveloping the cavity but was poorly defined for the sch1 strain. It was further observed that the conidiogenous cells in sch1-42 were unable to differentiate into distinct pycnidiospores. As witnessed for the in vitro samples, the pycnidial wall cells of SN15 and sch1-42 were morphologically different as indicated by the staining pattern.

TEM was used to interpret the structural alteration of sch1 pycnidia in greater detail (Fig. 7Biii and vi). It was observed that a substantial portion of most SN15 pycnidial wall cells was occupied by a vacuole. Electron dense materials, presumed to be cytoplasmic constituents, were often located adjacent to the intracellular side of the cell wall. In contrast, corresponding cells in sch1-42 contained multiple small vacuoles and a high proportion of cytoplasmic constituents.

It was observed that the pycnidia of sch1-42 resembled previously described immature pycnidia of S. nodorum (11). Hence, it was possible that Sch1 may be involved in the
differentiation of the pycnidial primordium to maturity. To test this hypothesis, SN15 (mature and developing) and sch1-42 pycnidia were examined for nuclei distribution using DAPI staining (Fig. 8). The mature SN15 sub-parietal layer was distinguishable from the cell wall as the latter tissue revealed comparatively less nuclei. Nuclei were also observed in spores located in the pycnidial cavity amidst the background fluorescence. The pycnidial cell wall and sub-parietal layer of sch1-42 were indistinguishable as the DAPI staining indicated that most cells surrounding the pycnidial cavity were nucleated. DAPI staining of an immature pycnidium of SN15 showed a similar nuclei distribution pattern to sch1-42 (Fig. 8). Collectively, these data suggest that the pycnidial wall of sch1-42 may be attenuated in pycnidial maturation.

Sch1 regulation is independent of Ca2+/calmodulin signalling. Sch1 abundance was examined in previously characterised signalling mutant strains lacking the MAP kinase Mak2 and the Ca2+/calmodulin protein kinase CpkA (55, 62). The level of Sch1 protein in the cpkA strain was not significantly different from SN15 suggesting that the regulation of Sch1 is independent of the Ca2+/calmodulin-dependent signalling (Fig. 9). The amount of Sch1 protein was significantly less in the mak2 strain than in SN15 but was comparable to the level observed in sch1-42 suggesting that the Mak2 MAP kinase signalling pathway has a role in the regulation of Sch1.
DISCUSSION

We have previously shown that inactivation of Gna1 has resulted in extensive changes in the phenotype and pathogenicity of *S. nodorum*. Hence, the aim of this study was to identify and functionally characterise proteins in the pathogen *S. nodorum* that are regulated by signalling events associated with the Gαi subunit Gna1.

2D-PAGE was used to directly compare the intracellular proteomes of the gna1 and wildtype *S. nodorum*. The analysis of the 2D-PAGE dataset led to the identification of seven intracellular proteins that were regulated at a significant level by Gna1 in biological independent samples analysed in triplicate. The subsequent data were subjected to rigorous statistical analysis with only proteins with significant differences reported. A less stringent approach would have resulted in the identification of many more ‘regulated’ proteins, but their biological significance would have been questionable.

The seven genes identified encode for putative proteins of diverse function. SNOG_11081 encodes a putative Concanamycin induced protein C. CipC was first identified as an accumulated protein in *Aspergillus nidulans* exposed to the antibiotic concanamycin A (37). Orthologs of CipC were also identified in other fungi however their function is unknown (2, 29, 38, 44, 66). The gene expression profile of *CipC in planta* showed maximal transcript abundance during one day post infection which suggests that this gene may play a role during early infection. Gene disruption of SNOG_11081 had no effect on pathogenicity or phenotype of *S. nodorum* (data not shown). SNOG_07694 and SNOG_13042 encode a putative glutathione S-transferase and short-chain dehydrogenase, respectively. These too were subsequently characterised by gene disruption. The resulting mutants appeared identical to the wild-type strain implying that these genes, whilst regulated by Gna1, did not significantly contribute to the phenotype of the gna1 strains (data not shown).
The disruption of a fourth gene, SNOG_10217, generated strains of *S. nodorum* unable to
differentiate mature pycnidia. Sequence analysis of SNOG_10217 identified it as also
belonging to the family of short-chain dehydrogenase and the gene was subsequently named
Sch1. The pycnidia developed by *sch1* strains were smaller and contained a significantly
lower number of pynidiospores which appeared abnormal in shape. Histological analysis of
these mutant pycnidia highlighted significant structural differences compared to wild-type
including the spore density and shape within the pycnidial cavity and also structural
deformity of the sub-parietal layer and pycnidial wall.

It was observed that the protein sequences of *Sch1* and SNOG_13042 shared
approximately 30% similarity. On this basis, we investigated whether SNOG_13042 was
partially compensating for the loss of *Sch1* in the *sch1* strains via the creation of a double
mutant lacking both *Sch1* and *Sch2*. The resulting mutants were identical to the *sch1* strains
strongly suggesting that *Sch2* is not compensating for the loss of *Sch1* (Supplementary Data
3).

There have been several recent reports examining the molecular and biochemical
requirements of asexual sporulation in *S. nodorum*. The cAMP-dependent (*Gna1*), MAP
kinase (*Mak2*) and calcium signalling pathways (*CpkA*) all have a demonstrated role in
sporulation (55, 57, 60). Analyses in this study have shown that *Sch1* is regulated by *Gna1*
and *Mak2* but not *CpkA*. Shared regulation by the cAMP-dependent and MAP-kinase
signalling pathways was not unexpected as cross-talk between these pathways has been well
documented (24, 41).

The presence of the sugar alcohol mannitol has also been identified as a requirement for
S. nodorum to undergo asexual sporulation (56, 59, 61). The levels of mannitol appear
unchanged when comparing the *sch1* strains with SN15; excluding it as having a role in the
schl defect (data not shown). Hence, Schl appears to be a novel factor in S. nodorum required for appropriate sporulation.

Douaiher et al (2004) have previously reported the ontogeny of S. nodorum pycnidia in vitro (10). This detailed examination elegantly described the differentiation of a pycnidium from the initial formation of the mycelial knot through to a fully mature structure. A comparative analysis of these structures described by Douaiher et al with those produced by the schl strains indicate that differentiation of the schl pycnidia is interrupted through the development of the pynidal primordium. This stage has been defined as the formation and the extension of the pycnidial cavity and conidiogenesis. A pycnidial cavity has clearly formed for the schl structures but the conidiogenesis cells are difficult to distinguish. Furthermore, using DAPI staining we have shown that the walls of schl-42 pycnidia contain a similar nuclei distribution to that of an immature pycnidium of SN15. Hence, the evidence reported here indicates that the Schl gene/product has a discrete role in this stage of pycnidial development.

Many important phytopathogenic fungi such as C. parasitica, Cochliobolus heterostrophus and Mycosphaerella graminicola are capable of asexual sporulation through pycnidia. Recent studies have identified various signalling pathways as having a role in pycnidial development in these fungi (6, 36). Similar studies in S. nodorum also identified that the calcium/calmodulin-dependent protein kinase CpkA was required for proper pycnidial differentiation (55). However the genes and proteins regulated by these signalling pathways that are required for development of wild-type pycnidia are yet to be identified. To our knowledge, Sch1 is the first signal transduction target identified to play a required role in the development of pycnidia.

Three additional genes were identified during the course of this study as regulated by G protein signalling, but are yet to be functionally characterised. SNOG_07541 encodes an
alpha type 2 proteasome subunit which comprises part of the 20S proteasome, the central
enzyme of nonlysosomal protein degradation in both the cytosol and nucleus (35). SNOG_08275 encodes a protein of unknown function that is not expressed during infection, while SNOG_11441 encodes a putative dehydroquinate dehydratase. The 3-dehydroquinate dehydratase protein is associated with quinate metabolism (16). In Neurospora crassa, Qa-2p is required for the conversion of 3-dehydroquinate to 3-dehydroshikimate. Both compounds are intermediates of aromatic amino acid biosynthesis and quinate catabolism pathways (16, 21). It is possible that the increased abundance of the Qa-2p orthologue in S. nodorum may have led to a perturbation of the aromatic amino acid pathway. This in turn may have affected dihydroxyphenylalanine melanin biosynthesis in the gna1 strains and resulting in the albino vegetative phenotype previously reported. However, this hypothesis requires further investigation.

A thorough gene expression analysis, both in vitro and in planta, was undertaken on the genes encoding the seven proteins. Quantitative transcript measurements revealed a correlation between protein and transcript abundance in four of the seven genes. Three of the genes were down-regulated in the gna1 background whilst one was up-regulated. The protein and transcript abundance in the three remaining genes did not correlate in vitro. Similar observations were previously made from studies of other biological systems using both proteomics and transcriptomics to analyse gene expression (14, 19). This may be attributed to post-transcriptional regulation or differing half-lives of transcripts and proteins (27, 34). Nevertheless, some of these genes showed a differential expression pattern during infection suggestive of transcriptional regulation by unknown factors.

This study has demonstrated that 2D-PAGE is an effective method for analysing the proteomes for downstream targets of signalling pathways that are differentially accumulated between S. nodorum SN15 and gna1 strains. The genes encoding several of these proteins
were functionally characterised by gene disruption. Through this approach, the short-chain
dehydrogenase *Schl*, which is subjected to positive regulation by Gna1, was found to be
required for the differentiation of pycnidia. *S. nodorum* is a polycyclic pathogen, and as such,
asexual sporulation is an attractive target for investigating mechanisms of disease control. It
is relevant to note that although deformed, the *schl* strains were able to form pycnidia. In
contrast, the *Gna1* mutants were unable to differentiate pycnidia suggesting that additional
unidentified signalling targets are required to initiate pycnidial formation from precursor
hyphal cells. It should also be considered that proteome changes observed in this study may
have been the result of perturbation in other parts of the heterotrimeric G protein pathway
rather than Gna1 alone. Therefore, the proteins identified could have been directly or
indirectly regulated by Gna1.

We anticipate that this study will stimulate research to further understand the biology of
pycnidial development in other fungal pathogens and its requirement for the establishment of
diseases.
ACKNOWLEDGEMENTS

We thank Kasia Rybak and Eva Antoni for technical assistance and Dr. Barbara J. Howlett at The University of Melbourne for providing the pGPD-GFP construct. This research was supported by the Grains Research and Development Corporation. K.-C.T. was funded by an Australian Postgraduate Award. JLH and AHM were supported as an ARC Australian Post-doctoral Fellow and an ARC Australian Professorial Fellow, respectively.
REFERENCES

66. Teichert, S., Schonig, B., Richter, S., and Tudzynski, B. 2004. Deletion of the *Gibberella fujikuroi* glutamine synthetase gene has significant impact on

FIGURE LEGENDS

Figure 1. (A) Representative 2D-PAGE gels of SN15 and *gna1-35* showing differentially abundant proteins in the intracellular proteomes. (B) Sub-panels of the regions marked in (A) for each of the biological triplicate samples. Gels representing each of the biological triplicates are available in Supplementary Data 4.

Figure 2. Protein/transcript abundance graphs for each of the targets identified via 2D-PAGE. The transcript profiling of each gene is comprised of two panels. The panel on the left is a comparison of relative protein (white bars) and transcript (black bars) levels for each of the targets *in vitro*. Asterisks located on top of bar graphs signify significant differences in protein and transcript abundances. ‘S’ and ‘G’ on the x-axis denote SN15 and *gna1-35*, respectively. The panels on the right (line graphs) depict gene expression *in planta* for each target gene. Numbers on the x-axis are days post infection and * denotes differential gene expression relative to the Dunnett’s control group ‘D’. The y-axis represents relative gene expression normalised to *Act1 (in vitro)* or *Efl α (in planta)*. SE bars are shown.

Figure 3. Expression of the *Sch1* promoter-eGFP fusion construct in SN15. Longitudinal section images taken with DIC microscopy showing hyphae, mature and immature pycnidia (mycelial knots). (A), (B) and (C) represent increasing magnification. C, conidiogenous cell; Cv, pycnidial cavity; H, hyphae; MK, mycelial knot; P, pycnidium; S, spore; SL, sub-parietal layer and W, pycnidial wall.

Figure 4. Construction of the *sch1* mutants. (A) (i) The *Sch1* knockout vector was constructed by ligating PCR amplified 5' and 3' untranslated region (UTR) of *Sch1* to the
XhoI/HindIII and PstI/NotI restriction sites of pBSK-phleo, respectively. (ii) The knockout vector was PCR-amplified and transformed into SN15 to facilitate (iii) homologous gene replacement. Restriction sites are as follows, X. XhoI; H. HindIII; P. PstI and N. NotI. Primers are as follows; 1. 5’FwdXhoI-R567, 2. 5’RevHindIII-R567, 3. 3’FwdPstI-R567, 4. 3’RevNotI-R567, 5. R567FwdKO and 6. R567RevKO. Primer sequences are listed in Supplementary Data 2. Probe used for Southern analysis is indicated. (B) Southern analysis of S. nodorum SN15 (i), Sch1-30 (ii), sch1-11 (iii) and sch1-42 (iv). Bands corresponding to 4.2 and 5.5 kb were predicted for strains carrying an intact and deleted gene, respectively. Genomic DNA was digested with XhoI prior to blotting. (C) Detection of Sch1 via 2D-PAGE (arrows).

Figure 5. Vegetative morphology of the schl mutants. (A) Colony morphology after two weeks growth on CzV8CS and MM agar. (B) Light microscope images of pycnidiospores (arrows) harvested from S. nodorum SN15, Sch1-30, sch1-11 and sch1-42. Notice the mycelial debris associated with the spores of the schl mutants. (C) Spores per plate from strains grown on CzV8CS agar for two weeks. Mean values were calculated from three spore counts of biological pooled plate replicates of SN15 (n = 3), Sch1-30 (n = 3), sch1-11 (n = 11) and sch1-42 (n = 12). (D) In planta sporulation assay. Mean values were calculated from three spore counts of pooled spores derived from biological infected replicates; SN15 (n = 10), Sch1-30 (n = 10), sch1-11 (n = 5) and sch1-42 (n = 5). (E) A comparison of the average spore length of SN15, Sch1-30 and sch1-42 (n = 34). Note that an asterisk denotes a significant difference to SN15 (p<0.05).

Figure 6. Schl deletion affects pycnidial function and size. (A) Digital images of pycnidia produced on CzV8CS agar and (B) wheat leaves. Pycnidia of the schl mutants rarely exude
spores. Key = Ch, cirrhus and Py, pycnidium. (C) The average diameter of pycnidia derived
from growth on CzV8CS agar (SN15, n = 191; Sch1-30, n = 146; sch1-11, n = 144 and sch1-
42, n = 286) and (D) wheat leaves (SN15, n = 69; Sch1-30, n = 69; sch1-11, n = 151 and
sch1-42, n = 184). Note that an asterisk denotes a significant difference to SN15 (p<0.05).

Figure 7. Analysis of SN15 and sch1-42 pycnidia via longitudinal sectioning. (A) The
morphology SN15 and sch1-42 melanised pycnidal wall (i and iii) and cirrhi (ii and iv) are
demonstrated via paraffin embedding and sectioning. Magnified images of the unstained
pycnidal wall cellular arrangements (v and vii) and cirrhi (vi and viii) are shown. (B) Spurr’s
resin embedding sectioning of SN15 (i, ii and iii) and sch1-42 (iv, v and vi) pycnidia showing
greater details of cells of the pycnidal wall and the sub-parietal layer. (i) and (iv) show
pycnidia of SN15 and sch1-42. (ii) and (v) are images taken from increase magnifications of
the pycnidal wall and cavity interface of SN15 and sch1-42 pycnidia. Cells of the pycnidia
wall were examined via TEM (iii and vi). C; conidiogenous cell; Ch, cirrhus; Cp, cytoplasm;
Cv, pycnidal cavity; N, nucleus; PC, plant cell; OC, ostiolar cone; S, spore; SL; sub-parietal
layer; Vc, vacuole and W, pycnidal wall.

Figure 8. The nuclear content of SN15 and sch1-42 pycnidia was examined from
longitudinal tissue sections stained with DAPI. (A) A comparison of nuclei distribution in
pycnidia of SN15 at different stages of development and sch1-42. Boxes are expanded in (B)
showing greater magnification of DAPI-stained cell wall and sub-parietal layer regions of
SN15 and sch1-42 pycnidia. Key; Cv, pycnidal cavity; N, nucleus; OC, ostiolar cone; SL;
sub-parietal layer; Vc, vacuole and W, pycnidal wall [prefix (D), developing; (M), mature].
Figure 9. Representative regions of 2D gels from *S. nodorum* SN15, *mak2-65* and *cpkA-73*. The arrows indicate the presence/absence of Sch1.
Table 1. Phenotypes of plant pathogenic fungi defective in Gαi protein signalling.

<table>
<thead>
<tr>
<th>Organism</th>
<th>Gαi gene</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stagonospora nodorum</td>
<td>Gna1</td>
<td>Pycnidiation, extracellular protease secretion, DOPA metabolism and virulence</td>
</tr>
<tr>
<td>Alternaria alternata</td>
<td>Aga1</td>
<td>Conidial germ tube formation and virulence</td>
</tr>
<tr>
<td>Botrytis cinerea</td>
<td>Bcg1</td>
<td>Vegetative growth, conidiation, extracellular protease secretion and virulence</td>
</tr>
<tr>
<td>Cochliobolus heterostrophus</td>
<td>Cga1</td>
<td>Appressorium formation and female fertility</td>
</tr>
<tr>
<td>Colletotrichum trifolii</td>
<td>Ctg1</td>
<td>Vegetative growth, conidia germination and virulence</td>
</tr>
<tr>
<td>Cryphonectria parasitica</td>
<td>Cpg1</td>
<td>Colony morphology, female fertility, pigmentation, hydrophobin expression and virulence</td>
</tr>
<tr>
<td>Fusarium oxysporum</td>
<td>Fga1</td>
<td>Conidiation, heat resistance and virulence</td>
</tr>
<tr>
<td>Magnaporthe grisea</td>
<td>MagB</td>
<td>Vegetative growth, conidiation, appressorium formation, female fertility and virulence</td>
</tr>
</tbody>
</table>
Table 2. Identification of differentially abundant proteins with LC-MS/MS and Mascot.

<table>
<thead>
<tr>
<th>Spot</th>
<th>Fold diff.</th>
<th>SNOG</th>
<th>Putative identity</th>
<th>Observed; predicted pI</th>
<th>Observed; predicted Mr (kDa)</th>
<th>Mowse; peptide number (% coverage)</th>
<th>Signal peptide</th>
<th>Transcript correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>-2.7</td>
<td>13042</td>
<td>Short-chain dehydrogenase</td>
<td>5.81; 5.41</td>
<td>27.1; 28.9</td>
<td>748; 20 (52)</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>C2</td>
<td>-17.5</td>
<td>10217</td>
<td>Short-chain dehydrogenase</td>
<td>5.94; 5.46</td>
<td>28.5; 31.8</td>
<td>696; 16 (55)</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>C3</td>
<td>-7.2</td>
<td>07541</td>
<td>Proteasome component</td>
<td>6.06; 6.20</td>
<td>29.2; 27.9</td>
<td>256; 7 (37)</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>C4</td>
<td>-3.5</td>
<td>07604</td>
<td>Glutathione transferase</td>
<td>7.43; 6.53</td>
<td>23.3; 24.4</td>
<td>128; 4 (24)</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>C5</td>
<td>-19.2</td>
<td>11081</td>
<td>Concanamycin-induced protein C (CipC)</td>
<td>5.70; 5.21</td>
<td><15.0; 15.1</td>
<td>386; 10 (60)</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>C6</td>
<td>+4.7</td>
<td>11441</td>
<td>3-dehydroquinate dehydratase</td>
<td>7.43; 6.49</td>
<td><15.0; 16.5</td>
<td>223; 6 (37)</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>C6</td>
<td>+4.7</td>
<td>08275</td>
<td>Unknown</td>
<td>7.43; 6.13</td>
<td><15.0; 14.7</td>
<td>205; 6 (44)</td>
<td>N</td>
<td>N</td>
</tr>
</tbody>
</table>

\(^a\) Fold difference of matching protein spots is calculated from normalised spot value of SN15 relative to gna1-35; \(^b\) Refer to Fig. 2.
Figure 2

SNOG_13042 (C1)

SNOG_07541 (C3)

SNOG_10217 (C2)

SNOG_07604 (C4)

SNOG_11081 (C5)

SNOG_11441 (C6-1)

SNOG_08275 (C6-2)

SNOG_08275 expression not observed in planta
<table>
<thead>
<tr>
<th>Spot</th>
<th>Strain</th>
<th>Normalised protein abundance value</th>
<th>Mean</th>
<th>Standard error</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Experiment 1</td>
<td>Experiment 2</td>
<td>Experiment 3</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>SN15</td>
<td>6.014</td>
<td>2.709</td>
<td>5.199</td>
<td>4.641</td>
</tr>
<tr>
<td></td>
<td>SNGna35</td>
<td>1.567</td>
<td>1.421</td>
<td>2.082</td>
<td>1.69</td>
</tr>
<tr>
<td>C2</td>
<td>SN15</td>
<td>2.189</td>
<td>2.354</td>
<td>3.415</td>
<td>2.653</td>
</tr>
<tr>
<td></td>
<td>SNGna35</td>
<td>0.077</td>
<td>0.14</td>
<td>0.238</td>
<td>0.152</td>
</tr>
<tr>
<td>C3</td>
<td>SN15</td>
<td>0.272</td>
<td>0.716</td>
<td>0.84</td>
<td>0.609</td>
</tr>
<tr>
<td></td>
<td>SNGna35</td>
<td>0.254</td>
<td>0</td>
<td>0</td>
<td>0.085</td>
</tr>
<tr>
<td>C4</td>
<td>SN15</td>
<td>0.486</td>
<td>0.41</td>
<td>0.224</td>
<td>0.373</td>
</tr>
<tr>
<td></td>
<td>SNGna35</td>
<td>0.131</td>
<td>0.105</td>
<td>0.083</td>
<td>0.106</td>
</tr>
<tr>
<td>C5</td>
<td>SN15</td>
<td>3.14</td>
<td>4.096</td>
<td>4.074</td>
<td>3.77</td>
</tr>
<tr>
<td></td>
<td>SNGna35</td>
<td>0.588</td>
<td>0</td>
<td>0</td>
<td>0.196</td>
</tr>
<tr>
<td>C6</td>
<td>SN15</td>
<td>0.238</td>
<td>0</td>
<td>0</td>
<td>0.079</td>
</tr>
<tr>
<td></td>
<td>SNGna35</td>
<td>0.297</td>
<td>0.322</td>
<td>0.445</td>
<td>0.355</td>
</tr>
<tr>
<td>Gene</td>
<td>Primer code</td>
<td>Sequences (5’-3’)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sch1</td>
<td>FP1F01 Fwd</td>
<td>CACTCAAGAGTCCTTGCCCATCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FP1F01 Rev</td>
<td>ATCAGCACATCGATCTTGCCG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sch1</td>
<td>5’FwdXhoI-R567</td>
<td>CTCGAGATCTACGCTTGGTGTCGAGTGATCT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5’RevHindIII-R567</td>
<td>AAGCTTTAGCTCGGAGTCGCGATCT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sch1</td>
<td>3’FwdPstI-R567</td>
<td>CTGCAGGAAGGCCAGATAGGTGAA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3’RevNotI-R567</td>
<td>GCGGCCGCTACACATAAACTTGAGCTG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sch1</td>
<td>R567FwdKO</td>
<td>CTTGGTCCAGTGAATCAGA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R567RevKO</td>
<td>CGACCTGTCATCGTATGGAACACT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sch1</td>
<td>Sch1GFPtransF</td>
<td>AGCCATCGCTTTGTTAGGTGTC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sch1GFPtransR*</td>
<td>TCGCCCTTGTCTACATTTGTAGCTGAGGATCTG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGFP</td>
<td>GFP-PCRf</td>
<td>ATGGTGAGCAAGGGCGA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GFP-PCRr</td>
<td>GAGCCCGTCACAGAGATGAGA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNOG_01139</td>
<td>ActinF</td>
<td>CTGCTTTGAGATCCACAC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ActinR</td>
<td>GTCACCACCTTCTAACTCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNOG_01139</td>
<td>ActinqPCRf</td>
<td>AGTCAAGGGCTGTTGATATCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ActinqPCRr</td>
<td>ACTTGCGGTGCTGAA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNOG_07541</td>
<td>R563RTF</td>
<td>CAGCCTCATAACACCTAACCATTGCG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R563RTR</td>
<td>GTCTTGACCCGTATGGAAGCT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNOG_07604</td>
<td>R646RTF</td>
<td>GTCTGATTCAGGGCCGCTCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R646RTR</td>
<td>GAGTACTTGCCGCCGACAA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNOG_08275</td>
<td>R800RTF</td>
<td>TATCACAAGTACATCAGC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R800RTR</td>
<td>GAGACCGGTTGAGGAAAGGCA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNOG_11081</td>
<td>F6B03rtF1</td>
<td>GGTCTTCGGGATAAAGAC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F6B03rtR1</td>
<td>TTAGCTCAGTCTGAGC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNOG_11441</td>
<td>R806RTF</td>
<td>GATCACCTTTTCGACACATCGATCC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R806RTR</td>
<td>TTAATGCTCAGGGGTTGATCACAA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNOG_11663</td>
<td>EF-1alphaF</td>
<td>TGGTTGTCGCCGTTGAAATC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EF-1alphaR</td>
<td>CTACATCGCGCCACATCAC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNOG_13042</td>
<td>R1048RTF</td>
<td>AGTGACGAGCACCAGAAACGTG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R1048RTR</td>
<td>AACTGAGGTTGGCTAGGG</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*underlined sequence is a reverse complement of GFP-PCRf
Comments

<table>
<thead>
<tr>
<th>RT-PCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplification of 5' Sch1 UTR for knockout vector construction</td>
</tr>
<tr>
<td>Amplification of 3' Sch1 UTR for knockout vector construction</td>
</tr>
<tr>
<td>Amplification of the Sch1 knockout vector</td>
</tr>
<tr>
<td>Amplification of the Sch1 putative promoter site</td>
</tr>
<tr>
<td>Amplification of eGFP from pGPD-GFP</td>
</tr>
</tbody>
</table>

Intron spanning PCR

<table>
<thead>
<tr>
<th>RT-PCR</th>
</tr>
</thead>
</table>
Supplementary Data 3. (A) Stereomicroscope images of pycnidia produced by SN15, sch2-7 and 3 independently derived sch1sch2 strains. The images of the double mutants closely match those observed with sch1 strain (Figure 6); (B) Microscopic images of toluidine blue stained sectioned pycnidia of the SN15, sch2-7 and 3 independently derived sch1sch2 strains. As in observed in (A), the images of the double mutants closely correlate with the sectioned images of the sch1 pycnidia (Figure 7).
Supplementary Data 3. Replicate 2DE gels of SN15 (A and B) and gna1-35 (C and D) intracellular proteomes.