Self-Reported Changes in Sun-Protection Behaviours at different latitudes in Australia

Ngadiman Djaja MEd1,9,10*, Monika Janda PhD1,9,10, Robyn M. Lucas PhD2,3,10, Simone L. Harrison PhD7,8,10, Ingrid van der Mei PhD4,10, Peter R. Ebeling PhD5,10, Rachel E. Neale PhD6,10, David C. Whiteman PhD6,10, Madeleine Nowak PhD7,8 and Michael G. Kimlin PhD1,9,10

1 School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Brisbane, Australia
2 National Centre for Epidemiology and Research School of Population Health, The Australian National University, Canberra, Australia
3 Telethon Kids Institute, University of Western Australia, Perth, Australia
4 Menzies Institute for Medical Research, Hobart, Australia
5 School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
6 QIMR Berghofer Medical Research Institute, Brisbane, Australia
7 JCU Skin Cancer Research Group, Division of Tropical Health and Medicine, College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, Australia
8 Anton Breinl Centre for Health Systems Strengthening, Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Townsville, Qld, Australia
9 Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
10 National Health and Medical Research Council Centre for Research Excellence in Sun and Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia

Correspondence author email: n.djaja@qut.edu.au (Ngadiman Djaja)

Conflict of interest statement:
Ngadiman Djaja has no financial disclosures.
Monika Janda has no financial disclosures.
Robyn M. Lucas has no financial disclosures.
Simone L. Harrison has no financial disclosures.
Ingrid van der Mei has no financial disclosures.
Peter R. Ebeling has no financial disclosures.
Rachel E. Neale has no financial disclosures.
David C. Whiteman has no financial disclosures.
Madeleine Nowak has no financial disclosures.
Michael G. Kimlin has no financial disclosures.
ABSTRACT

Sun exposure is the most important source of vitamin D, but is also a risk factor for skin cancer. This study investigated attitudes toward vitamin D, and changes in sun exposure behaviour due to concern about adequate vitamin D. Participants (n=1,002) were recruited from four regions of Australia and completed self- and interviewer-administered surveys. Chi-square tests were used to assess associations between participants’ latitude of residence, vitamin D-related attitudes and changes in sun exposure behaviours during the last summer. Multivariate logistic regression analyses were used to model the association between attitudes and behaviours. Overall, people who worried about their vitamin D status were more likely to have altered sun protection and spent more time in the sun people not concerned about vitamin D. Concern about vitamin D was also more common with increasing latitude. Use of novel Item Response Theory analysis highlighted the potential impact of self-reported behaviour change on skin cancer predisposition due concern to vitamin. This cross sectional study shows that the strongest determinants of self-reported sun-protection behaviour changes due to concerns about vitamin D were attitudes and location, with people at higher latitudes worrying more.

Keywords: self-report; sun exposure; sun-protection behaviours; vitamin D; item response theory; rasch; population-based study
INTRODUCTION

Exposure to ultraviolet (UV) radiation from the sun causes about 90% of the global skin cancer burden (1-3). The International Agency for Research on Cancer summarised the most recent evidence for the carcinogenicity of solar radiation. While there are some differences in the patterns and timing of exposure that give rise to different types of skin cancer, overall, greater sun exposure significantly increases skin cancer risk (4). Therefore minimising sun exposure or protecting the skin when outdoors by using clothing, shade and sunscreen is recommended when the UV Index is ≥3 (5).

Vitamin D is synthesized when the skin is exposed to sunlight, or is consumed in vitamin D-containing foods (naturally or fortified) or supplements (6). Research indicates that vitamin D deficiency may increase the risks not only of diseases of bone, but may also contribute to a wide range of other adverse outcomes such as cancer and immune-modulated diseases (7-10). This has led to interest in defining the optimal level of vitamin D and determining how to best achieve such a level (11, 12). To overcome concerns that sun-protection practices may lead to vitamin D deficiency, safe durations of unprotected sun exposure at different latitudes of Australia have been proposed and sun protection message is not recommended when the UV Index drops below 3 (13). Exactly how much sun exposure is required to achieve sufficient levels of vitamin D is contentious, as there is little consensus on the level considered ‘sufficient’ and vitamin D synthesis varies according to location, time of year, time of day, weather, and personal factors such as skin type and body mass index (14). In Australia, current recommendations for late autumn and winter in those parts of Australia where the UV Index is below 3, are that sun protection is
not recommended (5, 15). During these times, to support vitamin D production it is recommended that people are outdoors in the middle of the day with some skin uncovered on most days of the week. Being physically active while outdoors will further assist with vitamin D levels.

Consequently, health promotion messages for sun protection have become complicated, with different messages conveyed for different latitudes, seasons, times of day and skin types. People are confused about when they need to protect themselves, how much time they can spend outside, and how to balance the risk of skin cancer versus that of vitamin D deficiency (16-19). Reflecting these concerns there has been a huge increase in vitamin D testing in Australia, with costs to the health care system rising from AUS$3.2 million in 2003 to AUS$143 million in 2013 (20-23). It is unknown, however, whether changes in sun-exposure behaviour are more common in people who are concerned about achieving optimal vitamin D, and whether this depends on where they live. The challenge now is finding the best way to balance the risks and benefits of sun exposure and how to communicate this to the general public (24).

Previous studies investigating knowledge, attitudes and behaviours related to vitamin D and sun-protection have been limited by small sample sizes (16, 25-27) or a focus on specific populations (28, 29). In this paper, we used Item Response Theory (IRT) to assess the potential impact that behaviour change due concern to vitamin D may have on skin cancer predisposition. IRT (modern test theory) offers many advantages compared to classical test theory. It offers mathematical modelling that specifies the probability of selecting each questionnaire item’s response option as a function of the target latent trait (in
our case skin cancer predisposition) being measured. It therefore allows economical and
precise assessment of the characteristics under study and highlights specific targets for
personalized intervention. IRT is increasingly used in health research; examples include
assessing activity for post-acute care (30), and measures of physical functioning, health
status, and adolescent health risk behaviour (31-33). IRT allows computation of health
measures on an interval measurement scale (rather than ordinal scores provided by most
classical test theory-constructed health scales) and exploration of the performance of each
individual item rather than the scale as a whole. IRT encompasses any mathematical model
which attempts to predict observations from locations on a latent variable. It uses logistic
models including Rasch models, Generalized Rating Scale models, or Samejima's Graded-
Response models (34). These models are widely used in education and patient-reported
outcome assessments (35-38). IRT-tested scales plot both respondent’s and item’s
measurements calibrated onto a common latent trait such as skin cancer predisposition.
IRT enables researchers to better visualise how changes in sun-protective behaviours may
influence underlying skin cancer predisposition.

The present study used data from a large population-based cross-sectional study (the AusD
Study), designed to assess vitamin D status and determinants across a range of latitudes and
seasons (39, 40). We aimed to a) assess the variation in attitudes and behaviours according
to residential location; b) identify the association between participants’ attitudes about
vitamin D and their self-reported changes to sun-protection or exposure behaviours; and c)
use IRT models to model the potential effect on skin cancer predisposition that may occur
if sun-protection behaviours change due to concerns about vitamin D.
MATERIAL AND METHODS

The design, recruitment and main outcome measures of the multi-centre AusD Study have been described previously in detail (39). Approval was obtained from four institutional ethics committees. Potentially eligible participants were residents of 4 Australian cities (Hobart, Canberra, Brisbane, and Townsville) registered on the Australian Electoral Roll [a compulsory register of Australian adults aged 18+ years] and aged between 18 and 75 years. Exclusion criteria were: insufficient command of English; an impairment or illness that prevented attendance at the interview; a bleeding disorder; or positivity for hepatitis B virus, hepatitis C virus, or human immunodeficiency virus. Participants completed a mailed health questionnaire followed by two personal interviews at their local study site. At the end of the second interview, a 20-mL venous blood sample was collected from each participant to measure concentrations of serum 25-hydroxyvitamin D (25OHD). The serum and buffy coat were processed using standard procedures, before storage locally in a −80°C freezer. The final study sample was representative of the underlying population based on a set of parameters (gender, age group, country of birth, perceived health status, body mass index and smoking status) available from the population-based 2007–2008 National Health Survey; most participants (80.4%) had been born in Australia, full-time workers who worked primarily indoors and considered themselves to have fair-to-medium skin colour (participants were asked to self-report their skin colour by a reference to a Fitzpatrick Skin Type chart (41)), brown hair, and blue or grey eyes as previously reported (39). This analysis uses data from the self-administered questionnaire (demographic characteristics and questions about the way participants protect themselves from the sun), interviewer-
administered questions (phenotypic characteristics, skin cancer- and vitamin D-related attitudes, use of sun protection, and changes in sun exposure behaviours due to concern about vitamin D), and blood sample to measure concentrations of (25OHD).

Attitudes towards vitamin D: Three questions assessed attitudes towards vitamin D (‘I worry about getting enough vitamin D’; ‘I need to spend more time in the sun during summer for a healthy vitamin D level’; ‘It is more important to stay out of the sun than to get enough vitamin D’), with answer categories using 5-point Likert scales ranging from strongly agree to strongly disagree. An option for ‘can’t say’ was included. Participants were also asked whether they had noticed any news stories about vitamin D (yes, no, unsure).

Change in sun-exposure or sun-protection behaviours due to concern about vitamin D Participants were asked if they had made changes to their personal sun-protection or sun-exposure behaviours during the previous summer in order to get enough vitamin D (‘Did you try to wear shorts more often? Did you try to wear a hat less often? Did you try to wear sunscreen less often? Did you spend more time in the sun? Any other changes?’). Answer categories were yes, no, or can’t say. Fewer than 2.5% of participants answered ‘can’t say’; these responses were combined with the ‘no’ category. Excluding participants who answered ‘can’t say’ did not significantly change the results.

Statistical analysis: Prior to analysis we grouped the response categories strongly disagree/disagree/neutral and strongly agree/agree. For the Rasch analysis, we recoded the
sun protection behaviour items (items 1-6 in table 4) so that a higher score indicated higher skin cancer predisposition as follows: strongly disagree = 4, disagree =3, neutral =2 , agree =1 , and strongly agree = 0; and less sun protection behaviour (item 7-11 e.g.: try to wear a hat less often) as follows: strongly disagree = 0, disagree =1, neutral =2 , agree =3 , and strongly agree = 4. We used chi-square tests to compare attitudes, and changes in sun-protection behaviours, stratified by participants’ locations. We also used chi-square tests to determine whether reported changes in sun-protection behaviours to get more vitamin D varied according to attitudes towards vitamin D or having heard news reports about vitamin D. Bivariate logistic regression analyses were used to determine sociodemographic and skin cancer risk factors associated with changes in sun protection behaviours. Factors that were statistically significant (p<0.2) in the bivariate analyses and did not show evidence for multi-collinearity were then included as adjustment factors in the multivariate logistic regression analyses. Multivariable logistic regression models were used to assess whether changes in sun-exposure or -protection behaviours (yes or no) were influenced by vitamin D related attitudes, adjusted for age, sex, location, education, indoor or outdoor work, ability to tan and participants’ measured concentrations of serum 25OHD. We repeated the models adjusting for season (data not shown), but results remained unchanged and the former more parsimonious models are reported.

Item response theory:

The matrix of responses of 1,002 participants to the attitude items was subjected to Rasch analysis using the Andrich rating scale model for polytomous data (42). Rasch models are a variant of IRT that model a relationship between the levels of that latent trait (for this study
skin cancer predisposition) and the items used for measurement. In clinical assessment, the concept behind IRT is that participants respond to items in a questionnaire based on the extent of the latent trait (equivalent to person ability in Rasch analysis of a physical disability instrument). Therefore, a person with an average level of severity of skin cancer disposition will likely report that they had less sun exposure behaviours compared to people with greater skin cancer predisposition. Severity of skin cancer predisposition is expressed in terms of log odds or “logits,” and persons and items are mapped along the same scale. Logit-transformed measures represent linear measures skin cancer predisposition. For an item, a logit represents the log odds of the extent of an item relative to the position of that item within the total set of items analysed. Logits of higher positive magnitude represent a participant who has higher skin cancer predisposition. We applied IRT models to assess the item information functions of 29 self-and interviewer administered questions when on an underlying latent trait of skin cancer predisposition: eighteen items measured phenotype and typical sun exposure behaviours, six items measured sun-protection behaviours and five items measured changing sun-protection behaviours due to concern about getting enough vitamin D. Item information is the contribution that an individual item makes to the total information of a measured latent construct and shows where on the underlying latent construct each item measures optimally (43). In general, item information functions tend to look bell-shaped. Highly discriminating items have tall, narrow information functions; they contribute greatly but over a narrow range. Less discriminating items provide less information but over a wider range. Plots of item information can be used to see how much information an item contributes and to what portion of the scale score range. Calibration into the Rasch Partial Credit Model (RPCM) (44) was completed using ACER ConQuest
Calibration is the procedure of estimating a person’s ability (in this case the person’s skin cancer predisposition) and item difficulty (propensity to endorse an item) by converting (scaling) raw scores to logits on an underlying uni-dimensional measurement scale.

Unweighted and weighted fit statistics were used to check the quality of the scale from the Rasch model perspective. The mean square error (MNSQ) fit statistic is a measure of the extent to which the data match the specifications of the model. As in common practice in Rasch analysis, items that don’t fit with the model are removed. Values of unweighted and weighted MNSQ can range from 0 to positive infinity with an ideal value of 1.0 indicating that the data perfectly fit the model. Values below 1.0 suggest that variation in the observed data is over-predicted by the Rasch model while values above 1.0 show that variation in the observed data is greater than that predicted by the model. Currently there is no standard cut-off value for MNSQ; different acceptable ranges are used to indicate good-fit of the model.

We used a relatively strict standard (unweighted MNSQ values between 0.75 and 1.33) as a criteria and indication of good-fit (46). Once the skin cancer predisposition scale was calibrated, we plotted each item and its response categories along this underlying latent trait logit scale which is expressed as theta, with 0 representing the mean skin cancer predisposition. To illustrate the potential effect of changing sun-protection behaviour due to concern about vitamin D, we plotted a hypothetical example for a person endorsing items that confer a high or low skin cancer predisposition to show the impact on the underlying construct of skin cancer predisposition.
RESULTS

Of 11,713 people approached, 1,269 agreed to participate and 1,002 provided data (overall study participation rate 9.1%). Demographic and phenotypic characteristics of the sample have been previously reported (39). The distribution of participants was approximately equally spread between the four study locations. The average age of participants was 48 years (SD 16) and 46% were male. Over 80% of participants were born in Australia and most had fair or medium skin colour (90%) and green, hazel, grey or blue eyes (80%) placing them environmentally and constitutionally (having a phenotype that confers overall higher than average risks of developing skin cancer based on accumulated epidemiologic evidence e.g. skin type 1, red hair, lack of tanning ability and propensity to freckle and burn) at risk of skin cancer. Fifty-six participants had serum 25(OH)D levels below 25nmol/L; a significantly greater proportion of these participants (32.1 %) were worried about not getting enough vitamin D compared to participants with level above 25 nmol/L (24.0 %, p<0.03). Participants from Canberra were more likely than those from other locations to: work indoors (81% vs 68%) (p<0.001); have a bachelor degree (30% vs 22%; p<0.001); and be born outside Australia (29% vs 16%, p<0.001). Participants from Canberra were less likely to report fair skin than other participants (50% vs 68%; p<0.001), while participants from Hobart were more likely to report blue, grey or green eye colour compared to participants from elsewhere (64% vs 52%; p<0.001). A larger proportion of participants from Hobart entered the study in spring while a larger proportion of participants from Canberra participated during winter.
Concerns about vitamin D, and reported change in sun-exposure or sun-protective behaviours due to those concerns, increased with increasing latitude (Table 1). For example, 18% of participants from Townsville, 21% of participants from Brisbane, 31% from Canberra and 40% from Hobart agreed with the statement ‘I need to spend more time in the sun during summer for a healthy vitamin D level’ (p<0.001). Overall, between 4 and 15% of participants reported that they had changed their sun-exposure or -protection behaviours during the previous summer to get sufficient vitamin D. People from Hobart were significantly (p<0.001) more likely to report wearing shorts (24%) and spending more time in the sun due to concern about vitamin D (28%) than those from Brisbane or Townsville (8-10%). There were no significant differences in hat and sunscreen use or other sun-protective behaviours according to participants’ locations (Table 1), although these behaviours also followed a latitudinal gradient.

Associations between vitamin D-related attitudes and sun protection behaviours

A larger proportion of people who worried about vitamin D or who felt they needed to spend more time in the sun for vitamin D production reported that they had altered their sun-exposure behaviours during the last summer (Table 2). In adjusted multivariable logistic regression analyses, those who worried about getting enough vitamin D wore sunscreen less often (adjusted OR=3.2; 95CI 1.6-6.2; p=0.001) and shorts more often (adjusted OR=1.6; 95CI 1.0-2.6; p=0.04) and tended to spend more time in the sun.
Those who agreed that they needed to spend more time in the sun in summer for a healthy vitamin D level were less likely to wear a hat (adjusted OR=2.6; 95CI 1.2-5.6; p=0.04) or sunscreen (adjusted OR=2.6; 95CI 1.3-5.0; p=0.004), and more likely to wear shorts (adjusted OR=3.0; 95CI 1.9-4.7; p<0.001) and increase the amount of time spent in the sun (adjusted OR=4.2; 95CI 2.8-6.4; p<0.001) (Table 3).

There were no significant differences in participants’ self-reported sun-protection behaviours according to whether or not they had heard any ‘news about vitamin D’ or agreed or disagreed with the statement ‘it’s more important to stay out of the sun than to get enough vitamin D’.

Potential effect of changes in sun-protection behaviour and underlying skin cancer predisposition

For ease of interpretation, we transformed the person ability score (the skin cancer predisposition score) from a logit score into a T-Score (see supplement 2) which follows a T-score distribution with a mean of 50 and standard deviation of 10. Overall the current participants were found to have skin cancer predisposition below the mean (Mean=44.10). Table 4 shows the item locations and the scale and fit statistics (MNSQ statistic) of selected sun exposure behaviour items within the calibrated skin cancer predisposition latent trait continuum, expressed on a logit scale. Estimates below 0 (negative) represent a low skin cancer predisposition, while those above 0 (positive) represent an increasingly high skin cancer predisposition, based on the self- and interviewer administered questions. The
overall item parameter estimates show that all 11 items fitted the skin cancer predisposition scale well, as all were located within the recommended MNSQ bounds of 0.75 – 1.33.

Figure 1 visualises two items assessing hat wearing behaviours on calibrated skin cancer predisposition scale. Compared to a hypothetical person who agrees with the item “wear a hat” (i.e. skin cancer predisposition <0), a person who endorses the item ‘try to wear a hat less often’ will be assigned a score well above 0. A Wilcoxon Signed-Ranks Test indicated that the item location of concern about vitamin D were statistically significantly higher than the item location of sun protection behaviour (Z=-2.023, p=.043). This shows the potential effect of changing sun protection behaviours.

DISCUSSION

Approximately one quarter of the participants were concerned about their vitamin D status and believed they needed to spend more time in the sun. Although only 4% reported changing their hat-wearing behaviours, 15% reported that they tried to spend more time in the sun in the previous summer to synthesize enough vitamin D. Attitudes about vitamin D and changes in sun-protection behaviours were significantly related to each other and differed according to the latitude at which the participant lived.

The United States Preventive Services Task Force recently reviewed the evidence on the effect of vitamin D on fractures, cancers and other chronic disease prevention, and concluded that while there is some positive evidence for fracture prevention, the evidence for other chronic diseases is still inconclusive (47, 48). Given the uncertainties surrounding the role of vitamin D in health, the known skin cancer-inducing effects of sun exposure,
and our findings suggesting a close association between attitudes towards vitamin D and sun exposure behaviour, it is important to ensure that public concern about vitamin D does not jeopardise skin cancer prevention messages (29, 28).

IRT models graphically highlight the potential impact of self-reported behaviour change on skin cancer predisposition. Cancer Council Australia’s Skin Cancer Committee has updated their skin cancer prevention messages to accommodate the balance between the risks and benefits of sun exposure; for example they have contributed to a position statement which recommends sun protection if the UV Index is ≥ 3 but also “exposing the face, arms and hands or the equivalent area of skin to a few minutes of sunlight on either side of the peak UV periods on most days of the week” (49). A previous study (50) found that sun exposure to the arms and legs as little as two exposures per week of 5 minutes duration may be sufficient to main adequate vitamin D >30nmol/L (depending on time of day, season, etc.).

One of the concerns with changing the sun-protection messages provided by preventive health authorities is that people may be confused. For example, should they discard hats and sunscreen in order to optimise vitamin D regardless of where they live? Our finding that vitamin D-related attitudes and self-reported changes in sun-protective behaviours increased with increasing latitude is reassuring and is consistent with the messages and position statements issued by health authorities which recommend, for example, to discard use of hats only in the southern states of Australia in winter (51). Once adjusted for relevant confounders, latitude and 25OHD level, only people who worried about vitamin D, and those who specifically thought that they needed to spend more time in the sun for vitamin D production, had higher odds of having changed their sun-exposure behaviours. These
findings suggest that people make choices about their sun exposure based on their attitudes and environment (latitude), and more research on these interactions is needed to determine what influences these attitudes. We previously found that people obtained information through the media (19, 28), but in this study we did not observe a strong association between having heard about vitamin D on the news and change in either attitudes or behaviours. Future work needs to explore this in more detail and should address important issues such as adding some questions about participants’ knowledge of sun protection and vitamin D.

Study limitations: The main limitation of this study was its cross-sectional design. Further research incorporating longitudinal assessment of 25OHD is needed to determine whether people who are worried about vitamin D status actually have lower 25OHD levels, and if so, whether additional sun exposure helps to increase these levels.

While the AusD Study recruited participants from a population-based register of all Australian voting adults, the participation rate was low, and only through its sampling requirements achieved a similar proportion of men and women. Results from this study may not be generalizable to general adult Australian population due to low response rate (9.1%). Participants were more likely than nonparticipants to be female (54.2% vs. 47.2% (P < 0.001) and older than age 39 years (P < 0.001) (39).

Overall this study attracted a higher proportion of women and older, indoor-working, well-educated participants compared with the underlying population. It is possible that these participants may have been more motivated to participate because they were more concerned about vitamin D than non-participants.
Conclusion: We found that the strongest and most consistent determinant of self-reported sun-protection behaviour changes due to concerns about vitamin D were attitudes and location, with those at higher latitudes worrying more. Further research is needed to understand what drives people’s vitamin D-related attitudes. This information may be useful to inform public health strategies or to help people to make behavioural choices that are consistent with their values.

Acknowledgements

The authors thank the AusD investigators who provided the data extract used in this study. Ngadiman Djaja is supported by the National Health and Medical Research Council of Australia (NHMRC) CRESH PhD scholarship. Rachel E. Neale is funded by a NHMRC Senior Research Fellowship. Robyn M Lucas is supported by a NHMRC Career Development Fellowship.
References

Table 1. Differences in vitamin D attitudes and sun protection behaviours by location

<table>
<thead>
<tr>
<th>Location</th>
<th>Townsville 19.3°S</th>
<th>Brisbane 27.5°S</th>
<th>Canberra 35.3°S,</th>
<th>Hobart 42.8°S</th>
<th>p-value(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=259 (%)</td>
<td>N=254 (%)</td>
<td>N=252 (%)</td>
<td>N=237(%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Attitude</th>
<th>Agree(^2) N</th>
<th>N (%)</th>
<th>p-value(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I worry about getting enough vitamin D</td>
<td></td>
<td>0.001</td>
</tr>
<tr>
<td>Agreed</td>
<td>30 (11.7)</td>
<td></td>
<td>53 (21.0)</td>
<td></td>
<td>63 (25.5)</td>
<td></td>
<td>91 (39.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I need to spend more time in the sun during summer for a healthy vitamin D</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Agreed</td>
<td>47 (18.3)</td>
<td></td>
<td>53 (20.9)</td>
<td></td>
<td>78 (31.1)</td>
<td></td>
<td>92 (39.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>It is more important to stay out of the sun than to get enough vitamin D</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Agreed</td>
<td>60 (23.3)</td>
<td></td>
<td>35 (13.9)</td>
<td></td>
<td>40 (16.1)</td>
<td></td>
<td>25 (10.8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Have you ever heard news reports about getting vitamin D from sunlight</td>
<td></td>
<td>0.002</td>
</tr>
<tr>
<td>Yes</td>
<td>139 (55.2)</td>
<td></td>
<td>165 (66.0)</td>
<td></td>
<td>167 (67.6)</td>
<td></td>
<td>162 (70.7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last summer did you make any changes to the way you protected yourself from the sun so you could get enough vitamin D?</td>
<td></td>
</tr>
<tr>
<td>Wear hat less often</td>
<td>N=41 (4.1%)</td>
<td></td>
<td>8 (3.1)</td>
<td></td>
<td>7 (2.8)</td>
<td></td>
<td>11 (4.4)</td>
<td></td>
<td>15 (6.5)</td>
<td></td>
<td>0.46</td>
</tr>
<tr>
<td>Wear sunscreen less often</td>
<td>N=57 (5.8%)</td>
<td></td>
<td>8 (3.1)</td>
<td></td>
<td>13 (5.1)</td>
<td></td>
<td>18 (7.2)</td>
<td></td>
<td>18 (7.8)</td>
<td></td>
<td>0.18</td>
</tr>
<tr>
<td>Wear shorts more often</td>
<td>N=136 (13.8%)</td>
<td></td>
<td>21 (8.2)</td>
<td></td>
<td>26 (10.3)</td>
<td></td>
<td>33 (13.5)</td>
<td></td>
<td>56 (24.2)</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Spend more time in the sun</td>
<td>N=153 (15.5%)</td>
<td></td>
<td>20 (7.8)</td>
<td></td>
<td>23 (9.2)</td>
<td></td>
<td>44 (17.7)</td>
<td></td>
<td>66 (28.4)</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Any other changes</td>
<td>N=81 (8.2%)</td>
<td></td>
<td>20 (7.8)</td>
<td></td>
<td>19 (7.5)</td>
<td></td>
<td>21 (8.5)</td>
<td></td>
<td>21 (9.1)</td>
<td></td>
<td>0.29</td>
</tr>
</tbody>
</table>

\(^1\) n may vary slightly due to some missing values
\(^2\) Agree = combined categories of strongly agree/agree
\(^3\) p-value from Chi Square test
Table 2. Vitamin D-related attitudes and self-reported changes in sun protection behaviours

<table>
<thead>
<tr>
<th>Last summer did you make any changes to the way you protect yourself from the sun so you could get enough vitamin D?</th>
<th>Wear hat less often</th>
<th>Wear sunscreen less often</th>
<th>Wear shorts more often</th>
<th>Spend more time in the sun</th>
<th>Any other changes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>I worry about getting enough vitamin D</td>
<td>N 237 (24.0%)</td>
<td>22 (55.0%)</td>
<td>730 (76.9%)</td>
<td>26 (47.3%)</td>
<td>726 (77.7%)</td>
</tr>
<tr>
<td>Strongly disagree/disagree/neutral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strongly agree/agree</td>
<td>18 (45.0%)</td>
<td>219 (23.1%)</td>
<td>29 (52.7%)</td>
<td>208 (22.3%)</td>
<td>54 (40.3%)</td>
</tr>
<tr>
<td>I need to spend more time in the sun during summer for a healthy vitamin D level</td>
<td>N 724 (72.8%)</td>
<td>19 (46.3%)</td>
<td>705 (74.0%)</td>
<td>27 (47.4%)</td>
<td>697 (74.4%)</td>
</tr>
<tr>
<td>Strongly disagree/disagree/neutral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strongly agree/agree</td>
<td>22 (53.7%)</td>
<td>248 (26.0%)</td>
<td>30 (52.6%)</td>
<td>240 (25.6%)</td>
<td>71 (52.2%)</td>
</tr>
<tr>
<td>It is more important to stay out of the sun than to get enough vitamin D</td>
<td>N 829 (83.8%)</td>
<td>35 (87.5%)</td>
<td>794 (83.7%)</td>
<td>49 (87.5%)</td>
<td>780 (83.6%)</td>
</tr>
<tr>
<td>Strongly disagree/disagree/neutral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strongly agree/agree</td>
<td>5 (12.5%)</td>
<td>155 (16.3%)</td>
<td>7 (12.5%)</td>
<td>153 (16.4%)</td>
<td>12 (9.0%)</td>
</tr>
<tr>
<td>Have you ever heard news reports about getting vitamin D from sunlight</td>
<td>N 633 (64.7%)</td>
<td>29 (72.5%)</td>
<td>604 (64.4%)</td>
<td>36 (64.3%)</td>
<td>597 (64.8%)</td>
</tr>
<tr>
<td>No</td>
<td>11 (27.5%)</td>
<td>334 (35.6%)</td>
<td>20 (35.7%)</td>
<td>325 (35.2%)</td>
<td>47 (35.6%)</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 N may vary slightly due to some missing values
Table 3. Multivariable logistic regression models of associations between vitamin D-related attitudes and changes made during the last summer to the way people protected themselves from the sun so they can get enough vitamin D*

<table>
<thead>
<tr>
<th></th>
<th>Try to wear a hat less often? OR (95%CI); p value</th>
<th>Try to use sunscreen less often? OR (95%CI); p value</th>
<th>Try to wear shorts or short sleeved clothing more often? OR (95%CI); p value</th>
<th>Try to spend more time out in the sun? OR (95%CI); p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>I worry about getting enough vitamin D</td>
<td>Strongly disagree/ disagree/neutral 1.0 1.0 1.0 1.0</td>
<td>Strongly agree/ agree 1.5 (0.7-3.4); 0.31 3.2 (1.6-6.2); 0.001 1.6 (1.0-2.6); 0.04 2.4 (1.5-3.7); 0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I need to spend more time in the sun during summer for healthy vitamin D level</td>
<td>Strongly disagree/ disagree/neutral 1.0 1.0 1.0 1.0</td>
<td>Strongly agree/ agree 2.6 (1.2-5.6); 0.04 2.6 (1.3-5.0); 0.004 3.0 (1.9-4.7); <0.001 4.2 (2.8-6.4); 0.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>It is more important to stay out of the sun than to get enough vitamin D</td>
<td>Strongly disagree/ disagree/neutral 1.0 1.00 1.0 1.0</td>
<td>Strongly agree/ agree 0.9 (0.3-2.7); 0.82 1.5 (0.6-3.8); 0.34 0.6 (0.3-1.1); 0.11 0.7 (0.4-1.3); 0.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Have you ever heard news reports about getting vitamin D from sunlight</td>
<td>No 1.0 1.0 1.0 1.0</td>
<td>Yes 1.1 (0.5-2.3); 0.93 0.7 (0.4-1.3); 0.25 0.9 (0.6-1.4); 0.61 0.6 (0.4-1.0); 0.05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*For ease of reporting, all models are adjusted for age, sex, latitude, season, education, occupational exposure, ability to tan, measured 25OHD (continuous)
Table 4. Item location and fit statistics of sun protection behaviour items calibrated within a skin cancer predisposition model.

<table>
<thead>
<tr>
<th>Item No</th>
<th>Item</th>
<th>Estimated delta (standard error)*</th>
<th>Unweighted Fit MNSQ**</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wear a broad-brimmed hat</td>
<td>-0.997 (0.032)</td>
<td>1.01</td>
</tr>
<tr>
<td>2</td>
<td>Wear a cap</td>
<td>-1.246 (0.039)</td>
<td>1.02</td>
</tr>
<tr>
<td>3</td>
<td>Wear any other head covering</td>
<td>-1.834 (0.070)</td>
<td>1.00</td>
</tr>
<tr>
<td>4</td>
<td>Wear a shirt with long sleeves</td>
<td>-0.634 (0.030)</td>
<td>0.99</td>
</tr>
<tr>
<td>5</td>
<td>Wear long trousers or clothing that covers all or most of your legs</td>
<td>-0.399 (0.031)</td>
<td>1.01</td>
</tr>
<tr>
<td>6</td>
<td>Wear sun glasses</td>
<td>-0.351 (0.031)</td>
<td>1.00</td>
</tr>
<tr>
<td>7</td>
<td>Try to wear a hat less often</td>
<td>2.542 (0.155)</td>
<td>1.00</td>
</tr>
<tr>
<td>8</td>
<td>Try to use sunscreen less often</td>
<td>2.188 (0.133)</td>
<td>1.00</td>
</tr>
<tr>
<td>9</td>
<td>Try to wear shorts or short sleeved clothing more often</td>
<td>1.218 (0.091)</td>
<td>0.99</td>
</tr>
<tr>
<td>10</td>
<td>Try to spend more time out in the sun</td>
<td>1.092 (0.087)</td>
<td>0.99</td>
</tr>
<tr>
<td>11</td>
<td>Make any other changes to the way you protect yourself from the sun</td>
<td>1.802 (0.113)</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: MNSQ = Mean Square

* The estimate delta is the item location within a skin cancer predisposition continuum on a logit scale. The score can be from negative infinity to positive infinity. Scores below 0 (negative) represent low skin cancer predisposition score and scores above 0 (positive) represent increasingly high skin cancer predisposition score.

** The fit of the items is evaluated using unweighted Mean Square (MNSQ). A MNSQ near 1 indicates a good fit. MNSQ <1 indicates an overfit, that is, the item discriminates more than assumed in the model. MNSQ scores >1 usually occur if the discrimination of the item is low; this is considered to be more serious violation to model fit than MNSQ <1.
Figure 1. Item Information Functions from two items plotted along the latent trait logits of skin cancer predisposition

*Average skin cancer disposition is located at zero.

**Graph indicating that if a person were to endorse the item “wear a broad-brimmed hat” their skin cancer risk is below average, whereas if they endorse the item “Last summer …, tried to wear a hat less often” risk is above 0 (average).